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Abstract—This paper proposes efficient strategies that shave
Data Centers (DCs)’ monthly peak power demand with the aim
of reducing the DCs’ monthly expenses. Specifically, the proposed
strategies allow to decide: i) when and how much of the DC’s
workload should be delayed given that the workload is made up
of multiple classes where each class has a certain delay tolerance
and delay cost, and ii) when and how much energy should
be charged/discharged into DCs’ batteries. We first consider
the case where the DC’s power demands throughout the whole
billing cycle are known and present an optimal peak shaving
control strategy for it. We then relax this assumption and propose
an efficient control strategy for the case when (accurate/noisy)
predictions of the DC’s power demands are only known for short
durations in the future. Several comparative studies based on real
traces from a Google DC are conducted in order to validate the
proposed techniques.

Index Terms—energy efficiency, peak shaving, data centers,
energy storage, workload shifting, convex optimization.

I. INTRODUCTION

According to [1], large IT companies such as Google and
Amazon spend millions of dollars per month on their Data
Centers (DCs)’ electricity bills. These bills account for 30%
to 50% of the total DCs operational expenses [2]. Therefore,
there is a great need for cutting down on those expenses. A
DC’s electricity bill is typically made up of two components
[3]: i) Energy Charge, which is dependent on how much en-
ergy (in Kilo Watt Hour (KWH)) the DC consumes throughout
the entire billing cycle (e.g. month), and ii) Peak Charge1,
which is a penalty proportional to the maximum amount of
power (measured in Kilo Watt (KW)) that was drawn by
the DC during the billing cycle period. This penalty is very
expensive and is enforced by the grid company to encourage
the DC to balance its power demand and to discourage spiky
power usages. The maximum amount of power drawn by the
DC is calculated in a time-slotted fashion where the grid
company calculates the DC’s average power usage during each
slot of a certain length (e.g. 15-minutes), and the peak charge
is calculated based on the slot with the maximum average
power among all the billing cycle’s slots.

The majority of the prior techniques that were proposed to
reduce the electricity bill focused exclusively on minimizing
the Energy Charge while completely ignoring the Peak Charge.
Unlike these techniques, this paper focuses on minimizing the

This work was supported in part by Cisco and NSF CAREER award CNS-0846044.
1Peak Charge is sometimes referred to by Demand Charge in the literature.

Peak Charge component due to its high contribution to the
total electricity bill as will be seen in our case studies. This is
achieved by shaving the peak power drawn by the DC using a
controller that tunes two knobs: 1) Workload Shifting, where
some of the DC’s computing jobs are delayed (and so are
their corresponding power demands) during peak periods, and
2) Energy Storage, where extra power is drawn from the grid
during low-demand periods and stored in batteries so that it
can be used during peak periods later.

Challenges in finding efficient control strategies:

• Battery Losses and Constraints: Batteries are not ideal
as they leak some of their stored energy over time;
these losses are called leakage losses. In addition, due
to conversion operations, energy can also be lost when it
is being routed to the battery; these are called conversion
losses. Furthermore, there is a limit on how much and
how fast energy can be charged/discharged into batteries.

• Workload Heterogeneity: DC hosts jobs with different pri-
orities and different Service-Level Agreements (SLAs).
Each class of jobs can tolerate getting its requested power
demands delayed by a certain amount of time and such
delays have certain delay charges.

• Workload Uncertainty: DC workload changes over time
and the duration of the billing cycle is long (typically
one month). This makes it hard to make optimal control
decisions as it is generally hard to know the DC’s future
power demands throughout the whole billing cycle.

• Shaving Technique Selection: Another key challenge is
deciding which portion of the peak should be shaved by
workload shifting and which one should be shaved by
the stored energy based on multiple aspects such as delay
tolerance, energy storage constraints (leakage/conversion
losses, discharge/charge rate), and workload uncertainty.

This paper proposes a controller that considers all of the
above-mentioned aspects. We start first by assuming that the
DC’s power demands throughout the whole billing cycle are
known in advance (full-horizon knowledge), and we present a
controller that finds the optimal control strategy for a battery
with specific losses and constraints and for a workload with
different classes in terms of delay tolerance and delay charges.
The proposed full-horizon approach makes optimal decision
when the DC’s demands are predictable over the entire billing
cycle. It also provides an upper bound of how much monetary



savings can be achieved and helps with selecting what type
of battery the DC should be equipped with based on the DC’s
workload demands. We then consider the case where we only
know the DC’s power demand for a short duration in future
(limited-horizon knowledge), where we propose a control
algorithm that uses this knowledge to decide at each time step
how much energy the battery needs to charge/discharge and
whether the demanded power should be delayed for some of
the classes of jobs hosted in the DC.

Main contributions of this paper:
• Proposed a peak shaving strategy that combines energy

storage and workload shifting decisions to save energy.
• The strategy accounts for real energy storage losses and

constraints, and considers a heterogeneous DC workload
with multiple classes with each class having different
delay tolerance and price.

• The strategy operates by solving a well formulated opti-
mization problem that models and integrates the inter-
actions among the different variables. The problem is
proven to be convex and thus can be solved quickly.

• The strategy makes optimal decisions under full-
knowledge of the future demands and significantly out-
performs existing techniques under limited future knowl-
edge. This was verified using real Google traces.

The rest is organized as follows. Section II illustrates why
one should worry about reducing the DC’s Peak Charge,
and Section III introduces our notations. Sections IV and V
present the full-horizon and limited-horizon control strategy
frameworks. Section VI provides an evaluation study. Section
VII summarizes how our work differs from prior work. Finally,
Section VIII concludes and provides future directions.

II. MOTIVATION: THE CASE FOR GOOGLE DC

In order to illustrate the significance contribution of the Peak
Charge component to the total electricity bill, we conduct an
experiment where we rely on real workload traces [4] from a
Google DC that is made up of around 12K servers to calculate
how much power that DC consumes over time. Google traces
report the jobs that clients submitted to one of Google DCs.
Each job belongs to one of four classes: non delay-sensitive,
low delay-sensitive, medium delay-sensitive and high delay-
sensitive2. We refer to these four classes by c1, c2, c3 and
c4 respectively. Each submitted job is made up of a number
of tasks where each task is assigned a Linux container and
utilizes an amount of CPU resources over time. In order to
calculate Google DC’s power consumption, we parse the traces
and track at each time slot how much CPU resources are being
utilized by all the tasks belonging to all the jobs that are
currently hosted on the Google DC. We then calculate for each
time slot what is the least number of servers needed to be kept
ON to server those tasks as if state-of-the-art Energy Charge
minimizing techniques [5–8] were applied to consolidate the
DC’s workload. The power consumption of each ON server

2High delay-sensitive jobs are called production jobs in the traces and
represent jobs that produce monetary revenue.
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Fig. 1: The power drawn from Grid by Google DC.
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Fig. 2: Breakdown of Google DC total electricity bill (based on the
power consumption in Fig. 1)

is then calculated based on the power model in [9] where the
server’s consumed power, Pon increases linearly from Pidle to
Ppeak as the server’s CPU utilization, ν, increases from 0 to
100%. More specifically, Pon(ν) = Pidle + ν(Ppeak − Pidle),
where Ppeak = 400 and Pidle = 200 Watts. The rest of the
DC servers that are not hosting any tasks don’t consume any
power as they are assumed to be switched off completely or put
to highly power efficient sleep states to save energy. Google
DC is assumed to have a Power Usage Efficiency (PUE) of
1.7, which is a typical value for DCs [10] and means that for
every watt spent on IT power, an additional 0.7 watt is spent
by non-computing infrastructure (e.g. cooling devices).3

Fig. 1 plots the calculated power drawn by Google DC
(referred to by No Peak Shaving) over the entire trace period
(29 days). Fig. 1 also plots the power consumption of the
Google DC when the same energy that was consumed by
the DC during the 29-day period was spread evenly over the
entire billing duration. This case is referred to by Optimal
Peak Shaving as it represents the case where the DC had the
same Energy Charge as the No Peak Shaving case but where
the Peak Charge was minimal.

We then calculate the electricity bill for Google DC during
the entire 29-day period4 and using real power prices [11],
where the price to calculate the Energy Charge is α =
0.05 $/KWH , whereas the price to calculate the Peak Charge
is β = 20 $/KW and where the Peak Charge is calculated
based on dividing the billing cycle into slots of length τ = 15
minutes. We plot in Fig 2 the contribution of both the Energy
Charge and the Peak Charge components to the total electricity
bill based on the power consumption of No Peak Shaving

3It is worth mentioning that both the Energy Charge and the Peak Charge
are directly proportional to the DC’s PUE value. Thus the contribution (as a
percentage of the total electricity bill) for the Peak Charge, the Energy Charge
and the reported amount of savings that our approach achieves remain the
same regardless of the DC’s PUE value.

4Google revealed traces for only 29 days and thus our analysis considers
the length of the billing cycle to be 29 days rather than 30 or 31 days.



and Optimal Peak Shaving cases that were shown in Fig. 1.
Observe that for the No Peak Shaving case, the Peak Charge
contributes to 56% of the total electricity bill while the Energy
Charge accounts for the remaining 44%. Observe also that
the Optimal Peak Shaving case reduces the paid Peak Charge
during that month by $86K when compared with the No Peak
Shaving case, which is equivalent to a 30.8% reduction of
the total electricity bill5. This translates into saving more than
$1M per year. These numbers highlight the high contribution
of the Peak Charge to the total electricity bill and show the
potentials for saving significant amount of money by making
smart energy storage and workload shifting decisions.

III. NOTATIONS

We consider a time-slotted billing model, where the billing
cycle is divided into n slots, each of length τ minutes. The
index i ∈ [1, . . . , n] is used to refer to the billing cycle’s slot i.
All powers mentioned next are measured in Kilo Watt (KW).
To easily distinguish the decision variables from the input
parameters (the known quantities), small alphabetic letters
are used exclusively to refer to the former whereas capital
alphabetic letters or mathematical symbols (e.g. α, η) are used
to refer to the latter. We introduce next the notations used in
our paper (also summarized in Table I).

A. Energy Storage Notations

For a slot i, the power flow depicted in Fig. 3 uses the
following notations:
• gi: power taken from grid to serve the DC’s power

demands during the ith slot.
• c+i : power taken from grid to charge battery in slot i.
• ti: total power taken from the grid during the ith slot.
• c−i : power discharged from the battery to serve the DC’s

power demands during the ith slot.
• mi: power that our controller decides to provide to the

DC in slot i from both the grid and the battery. This power
can be lower than the DC’s power demands in slot i if the
controller decides to delay providing the power demands
of some of the DC’s jobs. It can also be higher than the
DC’s power demands in slot i if our controller decides
to provide power for some of the jobs that were delayed
from the previous time slots.

• ri: energy stored in battery at the beginning of slot i.

B. Battery Specs

The specs of the battery are summarized by the tuple Φ =
(ηc, ηl, C

+
max, C

−
max, Rmax), where:

• ηc represents the battery’s conversion efficiency and falls
within the range (0, 1], and means that only ηcc+i percent
out of the c+i power that the battery draws from the grid
ends up being stored in the battery, whereas the remaining
(1− ηc)c+i gets lost due to conversion operations.

5We also estimated the savings that Optimal Peak Shaving achieves for a
much lower peak price (β) values. As expected, the savings decrease as the
peak price decreases but remain significant (23.8% for β = 12 $/kw and
15.2% β = 6 $/kw).
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Fig. 3: Illustration of the power flow

• ηl represents the battery’s leakage efficiency and falls
within the range (0, 1] and means that the battery losses
(1− ηl) percent of its stored energy per one slot of time
due to leakage losses.

• C+
max and C−max are the maximum charging and discharg-

ing rates which represent the maximum amount of power
that the battery can draw from the grid and that the battery
can discharge to the data center respectively.

• Rmax represents the battery’s maximum energy storage
capacity that can be used for peak shaving.

In addition to those specs that are summarized by Φ, the initial
energy that is stored in the battery at the beginning of the first
slot in the billing cycle is referred to by Rinit.

There are three things to mention regarding the battery
model. First, although the term battery is normally used to
refer to a device that stores energy chemically, it is actually
used in this paper to refer to any energy-storage device
regardless of the underlying storage technology as our battery
model is general enough to cover the different technologies.
Second, although the battery shown in Fig. 3 is represented
as a single entity, it is actually made up of many storage cells
that are normally placed in a large room in the DC’s facility
[2]. Finally, the DC’s battery always stores a amount of energy
called the backup energy that is enough to power the DC at full
capacity for one minute while the remaining battery’s capacity
is used for peak shaving. The backup energy is used to power
the DC during the transition time until the Diesel generator
starts providing power when a power outage occurs. According
to [12], this transition time is less than a minute while the DC’s
battery has usually enough capacity to power the DC at full
capacity for more than half an hour.

C. Workload Shifting Notations

The DC draws power in order to execute jobs belonging to
different classes. Let C be the set of all the job classes that
the cluster hosts. Each class c ∈ C has a different priority
and can tolerate getting the requested power demands within
a Delay Window of length T c time slots from the time the
power demands are requested. The longer the length of the
class’s Delay Window, the less sensitive the jobs belonging to
that class are to delays. We also consider the case where the
DC is charged a delay cost for not providing the requested
power demands directly. For a time slot i and a job class c,
the following notations are used:

• Dc
i : power demanded by class c at time step i.

• aci,k: power requested at time step i and allocated (pro-
vided) in time step k for class c where i ≤ k ≤ i+ T c.



• lci,k: power left to provide at the beginning of time slot k
from the power requested at slot i for class c.

• mc
i : power provided for class c at step i. This power

could be equal to Dc
i if all the class’s requested power

in slot i is directly provided with no delay and no power
demands delayed from a previous slot were provided in
slot i. The provided power mc

i can also be less than Dc
i

if a portion of the requested power demands in slot i is
delayed for a latter slot. Also mc

i can be greater than Dc
i

if some of the class’s power demands that were requested
previously were deferred and were provided in slot i.

TABLE I: Summary of our notations.

Notation Description

i index of a slot in the billing cycle
gi grid power that the workload uses in slot i
c+i power charged into the battery in slot i
ti total power drawn from grid in slot i
c−i power discharged from the battery in slot i
mi power provided to the DC in slot i
ri energy left in the battery at the beginning of slot i
ηc battery’s conversion efficiency
ηl battery’s leakage efficiency

C+
max battery’s maximum charging rate

C−max battery’s maximum discharging rate
Rmax battery’s maximum storage capacity

Φ a tuple that summarizes all the battery’s specs
Rinit energy stored in battery prior to start of the billing cycle
C set of all job classes
c index of one of the job classes
T c length of the delay window for class c
Dc

i power demanded by class c at slot i
aci,k power requested at slot i but allocated at slot k for class c
lci,k power left to allocate at the beginning of slot k from

the power requested at slot i for class c
mc

i power provided for class c at slot i
α the energy price measured in ($/KWH)
β the peak price measured in ($/KW )
γck the cost for delaying the power demands of

class c by k time slots measured in ($/KW)

IV. FULL-HORIZON OPTIMAL CONTROL

Given that we know the DC’s power demands for each class
c ∈ C throughout the whole billing period referred to by ~Dc =
{Dc

1, D
c
2, ..., D

c
n}, the specs of the battery Φ, and the initial

amount of energy that the battery holds Rinit, we find the
optimal control strategy with the minimal electricity bill by
solving the following optimization problem.

Objective: Minimize the total electricity bill made up
of both Energy Charge and Peak Charge. We also seek to
minimize Delay Charge that results from not providing the
requested power demands directly for the different job classes.
Thus, our objective can be expressed as:

Minimize αξ

n∑
i=1

ti︸ ︷︷ ︸
Energy Charge

+ βmax
i
{ti}︸ ︷︷ ︸

Peak Charge

+
∑
c∈C

T c∑
k=1

γck

n∑
i=1

aci,i+k︸ ︷︷ ︸
Delay Charge

where α is the energy price in $/KWH , ξ = τ/60 is a
constant that converts the total energy the DC draws from

the grid into KWH , β is the peak price in $/KW , and γck
is the cost in $/KW of delaying the power demands of class
c by k time slots.

Constraints: The optimization problem is solved subject to
the following constraints. One,

ti = gi + c+i , 1 ≤ i ≤ n (C.1)

which states that for each time slot i the total power drawn
from the grid is the aggregation of the power used to sever
the DC’s power demand and the power drawn to be stored in
the battery. Two,

gi + c−i = mi , 1 ≤ i ≤ n (C.2)

which states that the power provided to the DC is taken
from the grid and from the power discharged from the battery
for each time slot i. Three,

ri =

{
Rinit , i = 1

ηcc
+
i−1τ + ηl(ri−1 − c−i−1τ) , 1 < i ≤ n

(C.3)

Which calculates how much energy will be stored in the
battery at the beginning of each slot while accounting for the
conversion and leakage losses. Four,

c−i τ ≤ ri , 1 ≤ i ≤ n (C.4)

which states that the amount of discharged energy within the
slot i that has a duration of τ must not exceed the amount of
energy that is stored in the battery. Five,

c−i ≤ C
−
max , 1 ≤ i ≤ n (C.5)

which states that the discharged power at any time slot must
not exceed the maximum discharging rate that the battery
supports. Six,

c+i ≤ C
+
max , 1 ≤ i ≤ n (C.6)

which states that the charged power at any time slot must not
exceed the maximum supported charging rate. Seven,

ri ≤ Rmax , 1 ≤ i ≤ n (C.7)

which states that the amount of energy that the battery stores
is bounded by the battery’s maximum storage capacity. Eight,

mi =
∑
c∈C

mc
i , 1 ≤ i ≤ n (C.8)

which states that the power provided to the DC at time slot i
is the aggregation of the power provided for each class c ∈ C
at that time slot. Nine,

ti, gi, c
+
i , c
−
i , ri,mi ≥ 0 , 1 ≤ i ≤ n (C.9)

which states that these decision variables are all non-negative.
Recall that each class c has a certain delay window T c

within which the requested power demands must be provided.



Thus, for each class c ∈ C the following constraints (C.10 to
C.15) must hold:

mc
i =

i∑
k=max{i−T c, 1}

ack,i , 1 ≤ i ≤ n (C.10)

Which states that the power provided for class c at time slot i is
the aggregation of the power that was request at i and provided
directly without delay in addition to the power deferred from
previous time slots. We take k = max{i−T c, 1} as there are
no power demands prior to the first time slot.

lci,i+1 = Dc
i − aci,i , 1 ≤ i ≤ n (C.11)

Which states that the power left to allocate at the beginning
of time slot i + 1 is equal to the amount of power that was
requested and wasn’t allocated directly at time slot i.

lci,k+1 = lci,k − aci,k , 1 ≤ i ≤ n, i+ 1 ≤ k ≤ i+ T c

(C.12)
Which states that the power left to allocate at time slot k+ 1
is equal to the amount of power that was left to allocate at the
beginning of the previous time slot k and that wasn’t allocated
within time slot k.

lci,i+T c+1 = 0 , 1 ≤ i ≤ n (C.13)

Which prevents the power demand for class c from being
delayed more than the delay window T c.

In order to restrict our decisions to one billing cycle, we add
the following constraint which prevents deferring the power
demands that are at the end of the billing cycle (which we are
trying to optimize) to the following billing cycle:

lci,n+1 = 0 , n− T c ≤ i ≤ n (C.14)

This constraint can be relaxed if we are optimizing over
multiple billing cycles. Finally,

mc
i , a

c
i,j , l

c
i,k ≥ 0 (C.15)

which states that these decisions variables are non-negative
and this holds 1 ≤ i ≤ n, i ≤ j ≤ i+T c, i+ 1 ≤ k ≤ i+T c.

The formulated problem is a convex optimization problem
[13] as the objective is a convex function that we seek to
minimize, all equality constraint functions are affine, and all
non-equality constraints are convex functions. The solution of
convex problems can be found quickly and there are well-
developed tools that can be used to calculate the optimal
solution efficiently such as the CVX package [14], which is
the one used in our implementation.

Problem Formulation Generalization: Our formulation
can also capture the following additional aspects:
• Battery Life Cycles: The battery’s Depth of Discharge

(DoD) can be constrainted not to exceed a certain per-
centage (PDoD) in order to guarantee that the battery lives
for a certain number of cycles as follows:

ri ≥ (1− PDoD)Rmax, 1 < i ≤ n (C.16)

1 2 ... j j+1 ... j+w j+w+1 ... n

current 

slot

prediction windowprevious slots

Fig. 4: Temporal illustration of the prediction window.

• Varying Energy Prices: The energy price α was set to
be constant, but nothing actually prevents it from being
different from one time slot to another within the same
billing cycle (due to fluctuations in the energy market).
In fact, this variability allows our controller to use the
battery to store energy when the energy price is low so
that it can be used later when the energy price is high
in addition to the peak shaving usage. This is again done
while taking into account the battery’s specs (leakage and
conversion losses, etc.).

• Dropping Power Demands: In addition to storing en-
ergy and shifting power demands for different workload
classes, dropping the demanded powers (partially or fully)
can be added as another action that our controller can
take. This can be achieved by adding

∑
c∈C

∑n
i=1 λ

cdci
to the objective that we seek to minimize, where λc is
the cost in $/KW for dropping the demanded power for
class c and dci is the amount of power in KW that our
controller decides to drop at the ith slot for class c. An
additional constraint dci ≥ 0, 1 ≤ i ≤ n, should be
also added to indicate that the dropped power can’t be
negative, and constraint C.11 needs to be replaced by
lci,i+1 = Dc

i − aci,i − dci , 1 ≤ i ≤ n, as the dropped
power at slot i needs to be excluded from the power left
to allocate at the beginning of slot i+ 1 for class c.

V. LIMITED-HORIZON CONTROL

We discussed previously how to find the optimal control
strategy when the DC’s power demands throughout the whole
billing cycle are known. We now consider the case where we
only know predictions6 of the DC’s power demands in a short
duration in the future (referred to by the Prediction Window)
and we propose an algorithm that uses these predictions in
order to make energy storage and workload shifting decisions
at each time slot while accounting for the battery’s energy
losses and for the different workload class’s delay tolerance
and delay costs. A pseudo code of our proposed algorithm
(Algorithm1) is presented to better illustrate our algorithm and
Fig. 4 provides a temporal illustration of the slots that we will
refer to while explaining the pseudo code of our algorithm. The
pseudo code of our algorithm gets launched at the beginning
of each slot j and takes the following inputs:

• j, index of current slot for which energy storage and
workload shifting decisions need to be made.

6The predictions are calculated dynamically based on the recent demands
and the latest decisions. This can be achieved using workload predcition
techniques such as those we proposed in [8] and [9].



• ~Dj , a vector that holds the power demanded for each
class c ∈ C at the jth slot (the current slot). This vector
can be expressed as ~Dj = {Dc1

j , D
c2
j , . . . , D

c|C|
j }

• Φ, battery specs (see Section III.B).
• w, prediction window length, which represents the num-

ber of slots in the future for which the DC’s power
demands need to be predicted.

• tmax, maximum amount of total power drawn from the
grid so far up to slot j, and can be calculated7 as
max1≤k<j{tk} when j > 1 and 0 when j = 1.

As illustrated in the pseudo code, for each workload class,
our algorithm starts first by predicting the class’s power
demands in upcoming w slots (Line 2), where these predicted
power demands are referred to by D̂c

j+1, D̂
c
j+2, . . . , D̂

c
j+w.

These predicted demands can be obtained using any machine
learning technique that provides accurate predictions. The
focus of this paper is on how to use these predictions to make
energy storage and workload shifting control decisions and
not on what technique to use to obtain accurate predictions.
Our algorithm also fetches for each class the amount of power
deferred from the previous slots (Line 3), where the notation
Lc
i,j is used to refer to class c’s power demands that were

requested at time slot i and that were not provided up to the
beginning of the jth slot based on our algorithm’s decisions
when it was launched in the previous slots. Recall that for
class c the power demands that are requested at slot i must
be provided within the following i+ T c slots. Thus there are
no power demands delayed from more than j − T c previous
slots for class c as our algorithm ensures that these demanded
power gets allocated within their Delay Window.

Our algorithm then fetches rj which represents the amount
of available stored energy in the battery at the beginning
of the jth slot (basically the amount of energy left in the
battery after conversion and leakage losses). Now in order to
determine the best control actions, our algorithm solves in Line
6 an optimization problem called the Limited-Horizon Opti-
mization Problem (LHOP) that is similar to the full-horizon
optimization problem (Section IV) but with the following key
differences. First, LHOP seeks to minimize the electricity and
delay costs by considering only the predicted power demands
from slot j to slot j + w while also keeping an eye on the
maximum amount of power tmax that was drawn from the
grid in the previous slots of the billing cycle. The max power
demand in the previous slots is needed as the Peak Charge is
calculated based on the slot with the maximum power drawn
from the grid throughout the whole billing cycle. Thus LHOP
basically considers the maximum power drawn from the grid
from the the first slot in the billing cycle and up to the j +w
slots. The slots beyond j + w are not considered by LHOP

7It is also possible to set tmax initially (at j = 1) to a value that is larger
than zero and that is known to be below the average DC’s power demands.
This prevents our algorithm from shaving the short peaks that are below the
tmax value that might be encountered at the beginning of the billing cycle
and that are way below the peak encountered in the whole billing cycle. This
is not considered in our evaluations as it requires some knowledge about the
characteristics of the DC’s power demands.

as it is hard to predict the DC’s power demands for more
than w slots. The constraints (C’.1 to C’.15) in LHOP are the
equivalent of constraints (C.1 to C.15) that were explained
before for the full optimization problem with the exceptions
that the LHOP constraints consider only the decision variables
involved in the period from slot j and up to j+w and that the
control decisions need to meet the predicted power demands
rather than the actual power demands in the j + w future
slot (constraint C’.11). The last key different that distinguish
LHOP is that it has three additional constraints (C’16 to C’18)
that are included to guarantee that the leftover power demands
from the previous slots are provided within the current or
future slots and before the end of their Delay Window (i.e.,
the power demands requested at slot j − i must be provided
within j − i+ T c slots).

LHOP is a convex optimization problem [13] as the objec-
tive is a convex function that we seek to minimize, all equality
constraint functions are affine, and all non-equality constraints
are convex functions. Solving LHOP returns the best control
decisions that need to be made in the period from slot j and up
to slot j+w. Our algorithm then commits only to the control
decisions in the jth slot (Line 7) that are returned by solving
LHOP, while the control decisions in each of the following
slots will be determined later when the pseudo code of our
algorithm is launched again at the beginning of each one of
those following slots.

VI. EVALUATION

We rely on the real power prices and on the power de-
mands for Google DC that were introduced in Section II, and
we conduct comparative experiments to evaluate how much
money Google DC ends up saving in a one billing cycle when
using our peak shaving control strategy. Our evaluations are
organized into three subsections:

A. Peak Shaving through Energy Storage

In this subsection, we consider the case where the DC’s
workload is not allowed to be shifted (i.e. , T c = 0 ∀c ∈ C).
We study the savings that our controller achieves when making
only energy storage decisions when Google DC is supplied by
each of the following energy storage technologies:
• Lead-Acid (LA): this battery uses electrochemistry to

store and to discharge energy.
• Lithium-Ion (LI): relies also on electrochemistry but

uses different chemical components where the cathode is
a lithiated metal oxide and the anode is a graphite carbon.

• Ultra-Capacitors (UC): uses a double layer electro-
chemistry to store energy between the electrodes.

• Fly-Wheels (FW): is a mechanical energy storage device
that uses the momentum of a wheel/cylinder to store
energy.

• Optimal (OPT): represents an ideal battery that has
zero conversion and leakage losses and unlimited charg-
ing/discharging rate.

The first four types represent the most popular energy storage
technologies that are found in DCs [11], whereas the OPT



Algorithm 1 LimitedHorizonControl
(
j, ~Dj , Φ, w, tmax

)
1: for each c ∈ C do

2: [

Predicted Power Demands︷ ︸︸ ︷
D̂c

j+1, D̂
c
j+2, . . . , D̂

c
j+w]← predictFutureDemands( w )

3: [

Previous Leftovers︷ ︸︸ ︷
Lc

j−Tc,j , . . . , L
c
j−2,j , L

c
j−1,j ]← getPreviousLeftovers( )

4: end for
5: Rj ← getAmountOfStoredEnergy()
6: Solve Limited-Horizon Optimization Problem (LHOP):

Minimize

αξ

j+w∑
i=j

ti︸ ︷︷ ︸
Energy Charge

+βmax{ max
j≤i≤j+w

{ti}, tmax}︸ ︷︷ ︸
Peak Charge

+
∑
c∈C

Tc∑
k=1

γc
k

j+w∑
i=j−Tc

aci,i+k︸ ︷︷ ︸
Delay Charge

subject to
ti = gi + c+i , j ≤ i ≤ j + w (C’.1)

gi + c−i = mi , j ≤ i ≤ j + w (C’.2)

ri =

{
Rj , i = j

ηcc
+
i−1τ + ηl(ri−1 − c−i−1τ) , j < i ≤ j + w

(C’.3)

c−i τ ≤ ri , j ≤ i ≤ j + w (C’.4)
c−i ≤ C

−
max , j ≤ i ≤ j + w (C’.5)

c+i ≤ C
+
max , j ≤ i ≤ j + w (C’.6)

ri ≤ Rmax , j ≤ i ≤ j + w (C’.7)
mi =

∑
c∈Cm

c
i , j ≤ i ≤ j + w (C’.8)

ti, gi, c
+
i , c
−
i , ri,mi ≥ 0 , j ≤ i ≤ j + w (C’.9)

for each c ∈ C
mc

i =
∑i

k=max{i−Tc, 1} a
c
k,i , j ≤ i ≤ j + w (C’.10)

lci,i+1 =

{
Dc

i − aci,i i = j

D̂c
i − aci,i j < i ≤ j + w

(C’.11)

lci,k+1 = lci,k − aci,k , j ≤ i ≤ j + w
, i+ 1 ≤ k ≤ i+ T c (C’.12)

lci,i+Tc+1 = 0 , j ≤ i ≤ j + w (C’.13)
lci,n+1 = 0 , j + w − T c ≤ i ≤ j + w (C’.14)
mc

i , a
c
i,j , l

c
i,k ≥ 0 (C’.15)

lcj−i,j+1 = Lc
j−i,j − acj−i,j , 1 ≤ i ≤ T c (C’.16)

lcj−i,j+k = lcj−i,j+k−1 − acj−i,j+l−1, 1 ≤ i ≤ T c, 1 < k ≤
T c − i+ 1 (C’.17)

lcj−i,j−i+Tc+1 = 0 , 1 ≤ i ≤ T c (C’.18)
end for

7: Make Control Actions Specified by (tj , gj , c+j , c−j , mj , mc
j)

battery represents an unrealistic ideal battery. The specs of
these batteries are presented in Table II and are based on [11].
We also assume that there is no stored energy initially at the
beginning of the billing cycle when evaluating the different
types of batteries (i.e., Rinit = 0). These battery specs will
be used throughout the paper unless otherwise specified.

TABLE II: Specs for the considered battery types [11].

LA LI UC FW OPT

Conversion Efficiency (%) 75 85 95 95 100
Leakage Efficiency (% per day) 99.7 99.9 80 1 100
Max Charging Rate (mega Watt) 16 16 8 8 ∞

Max Discharging Rate (mega Watt) 8 8 8 8 ∞
Storage Capacity (mega Watt hour) 16 16 16 16 ∞

1) Full-Horizon Control Evaluation: Fig. 5 shows the total
electricity bill for running the Google DC for a one billing
cycle under different scenarios, where the total bill is broken
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Fig. 5: Full-horizon control monetary savings for the different
types of batteries based on Google traces.
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Fig. 6: Google DC total electricity bill for different battery
technologies that are operating by our proposed full-horizon
controller under different energy storage capacities.

down into the Energy Charge and the Peak Charge for each
scenario. The "No Peak Shaving" scenario represents the
case when the DC’s power demands are drawn only from
the grid without using any battery for peak shaving. The
other scenarios in Fig. 5 show the total electricity bill for
Google DC when different types of batteries were used to
shave the peak where each type of those batteries is operating
based on the decisions of the full-horizon controller that was
proposed in Section IV. The results clearly highlight that the
DC’s total electricity bill can be reduced significantly if our
proposed full-horizon control technique was used to control
how much energy needs to be charged/discharged over time for
the different types of batteries. Observe that the total electricity
bill is lower for the LI and LA battery types when compared to
the FW and UC as the former types have lower leakage losses
than the latter types, which allows storing larger amount of
energy to be used to shave the peak that is encountered later,
without leaking much of their stored energy over time. The
Energy Charge of the FW, UC, LI and LA batteries are slightly
higher than those of "No Peak Shaving" due to the leakage and
conversion losses which increase the amount of energy that the
DC consumes over time. However, these extra Energy Charge
leads into significant reduction in the Peak Charge which leads
in turn into significant reduction of the total electricity bill.

We vary next the energy storage capacity Rmax for each
type of battery and we report in Fig. 6 the total electricity
bill of Google DC (normalized w.r.t. No Peak Shaving total
costs) when the proposed full-horizon controller is making
charging/discharging decisions. As expected, for each battery
type the larger the energy storage capacity, the higher the
amount of power that can be shaved and the lower the total
electricity bill. Observe that increasing the energy storage
capacity for the FW energy storage device causes a negligible
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Fig. 7: Battery’s capital expenses and peak shaving savings
under different capacity for LA battery.
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Fig. 8: Difference between the capital expenses and the peak
shaving’s savings under different capacity for LA battery.

additional reductions in the electricity bill as this energy
storage technology is highly leaky. This shows that from a
peak shaving perspective and for the Google traces, an FW
energy storage device with a capacity of 4 MWH is as effective
as one with a 16 MWH capacity. The former requires less
facility space and has a lower capital costs and thus would be
a better choice when considering the energy storage capacity
of the battery that the DC should be equipped with. In fact, the
monetary savings in Fig. 6 together with the capital expenses
and the facility space limitation can be used to decide what
battery technology and what energy storage capacity the DC
should be equipped with.

4
To further illustrate the effect that the capacity of the battery

has on the capital expenses and on the peak shaving savings,
we relied on the cost estimates in [15], which state that
the capital expenses for a LA battery are 50 $/KWH/year,
and plotted in Fig. 7 the battery’s capital expenses (shown
in red solid line) per month as the battery’s capacity was
increased. We plotted then the peak shaving savings that our
full-horizon controller achieves per month as a function of
the battery’s capacity (shown in green dashed line). As could
be seen, the larger the capacity of the battery, the higher the
amount of peak that can be shaved, and the larger the monthly
electricity bill savings. Observe from Fig. 7 that the savings
that peak shaving achieves under these capacity values are
higher than the battery’s capital expenses, which shows that
the money spent on buying a battery for peak shaving will
be paid off. We plotted next in Fig. 8 the difference between
the monthly peak shaving savings and the monthly battery’s
capital expenses. Observe that based on Fig. 8, it is more
cost effective to use a battery with a capacity of 1 MWH
than a battery with a larger capacity as the increase in the
battery’s capital expenses after that point outweighs the extra

savings. Such analysis can help in deciding the capacity of the
battery that the DC should be equipped with based on the DC’s
power demands and the battery’s specification (e.g. leakage
and conversion losses, etc.). We would like to mention that
DCs are normally equipped with batteries for fault-tolerance
and so the battery’s capital expenses shown in Fig 8 in that
case are inevitable regardless of whether or not the DC is using
the battery for peak shaving. Of course using the battery for
peak shaving besides its regular use for fault tolerance would
increase slightly the inevitable capital expenses as the battery
in that case needs to be replaced more often. Finally, we would
like to mention that the results reported in Fig. 7 and 8 show
the savings that our controller achieves when using a single
knob (energy storage) for peak shaving. Our approach can
also use a second knob (workload shifting) to achieve higher
savings and this knob does not increase the capital expenses.

2) Limited-Horizon Control Evaluation: Fig. 9 reports the
total electricity bill associated with running Google DC for
a one billing cycle when different controllers are used to
make charging/discharging decisions for the different types
of batteries. More specifically, for each battery type, Figure 9
reports the electricity for each of the following controllers:

• No Peak Shaving: represents the case where all the DC’s
power demands are provided solely from the grid where
the battery is not charging4/discharging any energy.

• Full-Horizon: represents the controller proposed in Sec-
tion IV which makes the optimal control decisions for
each battery type as it has full-knowledge of the DC’s
demands within the whole billing cycle.

• Limited-Horizon (Oracle): is the control algorithm that
we proposed in Section V when operating under 100%
accurate predictions of the DC’s power demand in each
of the following four slots (i.e., w = 4).

• Limited-Horizon (Noisy): is similar to the previous case
with the exception that a random noise drawn from a
Gaussian distribution with zero mean and a standard
deviation of 200 kilo Watts is added to the predicted
power demand that are provided to our algorithm in each
time step. The added noise represents prediction errors
and can take either a positive or negative value to mimic
over or under estimation of the predicted power demands.

• Threshold: is a well-known technique [16–18] that com-
pares the DC’s demanded power at each slot against
a fixed threshold. If the demanded power is below the
threshold, then the power difference is charged into the
battery within that slot. Otherwise, the battery discharges
the difference (or whatever amount of energy less than
the difference that is stored in the battery). The charging
(discharging) power is capped s.t. it doesn’t exceed the
battery’s maximum charging (discharging) rate and s.t.
no extra energy beyond the battery’s capacity is being
charged. Tuning the threshold for each battery type is
done by evaluating different threshold values on one-day
traces where the value that yielded the least electricity
expenses is picked for evaluation.
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Fig. 9: Comparative evaluation of the different control tech-
niques for each battery type based on Google traces.

Observe from Fig. 9 that for each type of battery the Limited-
Horizon control (both Oracle and Nosy cases) had a lower
total electricity bill than the No Peak Shaving case and than
the Threshold controller. As expected, the Noisy case had
higher electricity bill than the Oracle case due to the added
prediction errors that affected slightly the decisions of our
algorithm. Obviously the total electricity bill for the Limited-
Horizon control is higher than that of the Full-Horizon control
as the latter has the advantage of knowing the DC’s power
demand throughout the whole billing cycle which allows it to
make the optimal battery control decisions. Notice that the gap
between the Full-Horizon and the Limited-Horizon controller
is small for FW when compared to the remaining battery
types. This is attributed to the fact that FW is highly leaky
(has low leakage efficiency and hence high leakage losses),
thus the amount of energy that FW stores decays quickly over
time which leaves only a small energy that can be used for
peak shaving in the future slots that are far in time. Thus
for highly leaky batteries (such as FW), knowing the future
power demands for only a short duration in the future for the
Limited-Horizon controller makes reductions in the electricity
bill that are close to the Full-Horizon (optimal) case. These
results are when the Limited-Horizon Algorithm relied only
on predictions of the DC’s power demands in the following
four slots. Recall that each slot has a duration of 15 minutes
and thus this represents the case where our algorithm knows
the predicted power demands in the next hour.

We increased next the length of the Prediction Window and
plotted in Fig. 10 the total electricity bill for Google DC (nor-
malized w.r.t. No Peak Shaving total electricity costs) when
the Limited-Horizon (Oracle) controller is making charging
and discharging decisions for each battery type. The results
clearly show that for each battery type, the larger the length
of the Prediction Window, the higher the peak power that can
be shaved, and hence the lower the total electricity bill. For a
certain length of Prediction Window, the gap between the OPT
battery and any other battery technology is attributed to the
leakage and conversion losses (as the OPT battery does not
have any leakage or conversion losses). It is worth mentioning
that for the FW energy storage device, increasing the length
of the Prediction Window leads into very small additional
reductions as this battery is highly leaky and thus only a small
percentage of the drawn energy at any time slot will remain
in the battery to use in the slots that are far in time. It is also
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Fig. 10: The electricity bill of Google DC as the length of the
Prediction Window increases for the Limited-Horizon (Oracle)
controller when operating different types of batteries.
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Fig. 11: The time that the Limited-Horizon controller took to
make decisions for different lengths of Prediction Window.

worth mentioning that for all types of batteries, in the extreme
case when the length of the Prediction Window of the Limited-
Horizon (Oracle) controller is equal to the length of the billing
cycle, then the Limited-Horizon (controller) performs exactly
as the Full-Horizon controller.

We investigated next in Fig. 11 how much time it took the
Limited-Horizon controller to solve the optimization problem
and to make charging/discharging decisions under different
Prediction Window lengths. Since an optimization problem
needs to be solved at the beginning of each time slot in order
to make the appropriate power decisions, we track for each slot
how much time it took to solve the optimization problem and
then we show bar plots for these execution time under each
Prediction Window. The measured times are calculated based
on running the Matlab code of our controller on a machine
that has a CPU frequency of 2.6 Ghz and a 62 GB RAM. The
variability for each Prediction Window in Fig. 11 is attributed
to the fact that the inputs (e.g. the power demands) vary from
an optimization problem into an other which affect the time
needed to find the problem’s optimal solution. Observe that
increasing the length of the Prediction Window does increase
the time needed to make control decisions as the optimization
problem has now larger number of variables that need to be
found. However, it took always very small amount of time (less
than a second) to solve the optimization problem in all of those
cases which is something vital for online DC management.

In order to illustrate the decisions that our controllers make,
we plot in Fig. 12 the power demands of Google DC over
time and we plot in a different color the total grid power
(the aggregation of the power provided to the DC and the
power charged into the battery) for the Full-Horizon and for
the Limited-Horizon (Oracle) controllers when operating an
LA battery. The power demanded by the DC at any point in
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Fig. 12: The power demands of Google DC and the total
power drawn from the grid by the full-horizon and the limited-
horizon (Oracle) controllers for the LA battery.

time is provided by our controllers. This means that each time
the total grid power for any of those controllers goes above the
DC’s demands then the difference is being routed to be stored
in the battery. Also each time the total grid power is below the
DC’s demands then the difference is drawn from the battery to
supply the DC’s demands. Fig. 12 clearly shows that the DC’s
peak power demand at the 21st day was shaved significantly
by each of our controllers. This reduced the Peak Charge and
hence minimized the DC’s electricity bill.

B. Peak Shaving through Workload Shifting

Recall that the jobs that are reported in Google traces are
classified into four classes: c1, c2, c3 and c4 where the class
with a lower index contains less delay-sensitive jobs. In this
subsection, we consider the case where the DC is not supplied
by a battery that can store energy for peak shaving purposes
(i.e., Rmax = 0) but where the power demands of some of the
jobs belonging to certain classes are allowed to be delayed
for a certain duration. Throughout the paper, the costs for
delaying the demanded power is made linearly proportional to
the number of slots for which the requested power demands
were delayed for each class. More specifically, γck = kλc

where γck is the cost for delaying 1 KW of the power demands
of class c for k time slots and λc is the cost for delaying 1
KW of the power demands of class c for one time slot. We
evaluate next both the Full-Horizon and the Limited-Horizon
controllers when making workload shifting decisions.

1) Full-Horizon Control Evaluation: We consider first the
case where only the power demands of the jobs belonging
to classes c1 and c2 (the least delay-sensitive jobs) can be
delayed to be provided within a Delay Window of length T c1

slots and T c2 slots respectively and with costs λc1 = 0.01
$/KW and λc2 = 0.02 $/KW respectively. In this experiment,
we consider the case where: T c1 = T c2 (i.e. , both classes
have the same Delay Window length). We then increase the
length of the Delay Window for those two classes and we
plot in Fig. 13 the total expenses of Google DC (normalized
w.r.t. "No Peak Shaving" expenses) when our proposed Full-
Horizon controller is making workload shifting decisions. For
each case, the total expenses are broken down into the Energy
Charge, the Peak Charge and the Delay Charge. Observe that
for the case when the Delay Window has a zero length, there
is no Delay Charge as our controller is basically forced to
provide the requested power demands directly with no delay
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Fig. 13: Google DC’s expenses when the Full-Horizon con-
troller is making workload shifting decisions for different
Delay Window length.

No Peak Shaving FH LH (Oracle) LH (Noisy)
0

20

40

60

80

100

To
ta

l E
le

ct
ric

ity
 B

ill
 (%

)

 

 

Energy Charge

Peak Charge

Delay Charge

Fig. 14: Google DC’s total expenses when only the power
demands for the low and non delay-sensitive jobs are allowed
to be delayed.

which resulted in total expenses that are the same as the "No
Peak Shaving" case. Observe that as the length of the Delay
Window increases, the Peak Charge decreases and so does the
DC’s total expenses as our controller gains larger ability to
delay the requested power demands over longer periods, which
increases the amount of power that can be shaved. Notice that
the Energy Charge for the different cases is the same as in all
those cases the energy consumption (in KWH) was identical
as our controller provides all the requested power demands
(either directly or after some delay).

2) Limited-Horizon Control Evaluation: We consider the
case where classes c1 and c2 are allowed to be delayed but
when each one of those classes has a different Delay Window
length where T c1 = 3 slots and T c1 = 1 slot. We show in
Fig. 14 Google DC’s total expenses (normalized w.r.t. No Peak
Shaving) and broken down into the Energy, Peak and Delay
charge components for the Full-Horizon (FH) controller as
well as for the Limited-Horizon (Oracle) and the Limited-
Horizon (Noisy) controllers when knowing predictions of
the future power demands in the following hour. Observe
that the LH (Oracle) controller had a total expenses that
are only 3% larger than the FH controller. This shows that
knowing the future power demands for a short duration of
one hour in the future achieves very close reductions to those
of knowing the power demands throughout the whole billing
cycle. As expected, the LH (Noisy) controller had slightly
higher total expenses than the LH (Oracle) controller due to
the prediction errors which affected the decisions made by
this controller. Fig. 15 further illustrates how the Peak Charge
was reduced by the Full-Horizon and the Limited-Horizon
(Oracle) controller where we show how the power demands
for the four classes were allocated over time for the "No
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(a) No Peak Shaving.
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(b) Full-Horizon Workload Shifting.
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(c) Limited-Horizon (Oracle) Workload Shifting.

Fig. 15: Breakdown of Google power consumption for the
different job classes.

Peak Shaving" case and for the Full-Horizon and the Limited-
Horizon (Oracle) controllers. Observe that the Full-Horizon
and Limited-Horizon controllers avoided the peak at the 21st

day by delaying the power demands of the Non delay-sensitive
and low delay-sensitive classes and spreading them over the
following slots. This reduced the Peak Charge and lead into
significant reductions in the the DC’s total expenses.

C. Peak Shaving through Energy Storage & Workload Shifting

1) Full-Horizon Control Evaluation: We evaluate first in
Fig. 16 our Full-Horizon controller where we compare Google
DC’s total expenses when making only Workload Shifting
decisions (referred to by WS), when making only Energy
Storage decisions (referred to by ES), and when making both
Energy Storage and Workload Shifting decisions (referred
to by ES+WS). The results clearly show that our controller
makes the most reductions in the total expenses when making
both Energy Storage and Workload Shifting decisions as our
controller stores energy during the low power periods (the
valleys) that are before the peak power demand and then delays
some of the power demands within the peak periods to a latter
time that has a low demand. Observe that the Delay Charge
for the (ES+WS) case is lower than the (WS) as using the
battery to store energy for peak shaving purposes reduces the
time needed to delay the workload in order to shave the peak
which in turn reduces the Delay Charge.
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Fig. 16: Google DC’s total expenses when our Full-Horizon
controller is making only Workload Shifting, only Energy Stor-
age and both Energy Storage & Workload Shifting decisions.
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Fig. 17: Google DC’s total expenses (normalized w.r.t. "No
Peak Shaving" expenses) when our Limited-Horizon controller
is making only Workload Shifting, only Energy Storage and
both Energy Storage & Workload Shifting decisions.

2) Limited-Horizon Control Evaluation: In our final exper-
iment, we evaluate in Fig. 17 our Limited Horizon controller
when making both Energy Storage and Workload Shifting
decisions (referred to by ES+WS), when making only Energy
Storage (ES), and when making only Workload Shifting (WS)
decisions. The results clearly show that by controlling the two
knobs: storing energy and workload shifting, our controller
was able to achieve more reductions in the expenses than the
remaining cases.

The results in Fig. 16 and Fig. 17 are when the DC is
supplied by an LA battery that has the following specs:
C+

max = C−max = 8MW , Rmax = 8MWH and leakage and
conversion efficiency as specified in Table II. Only the non
delay-sensitive jobs (class c1) and the low delay-sensitive jobs
(class c2) were allowed to be delayed within these experiments
where T c1 = 3 slots, T c2 = 1 slot, λc1 = 0.02 $/KW
and λc2 = 0.04 $/KW. The evaluations in Fig. 17 for the
Limited-Horizon controller are when knowing one day ahead
predictions of the future power demands.
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Fig. 18: Requested power in our example.
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Fig. 19: Power drawn from grid under different controllers.
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Fig. 20: Power drawn from grid under different controllers.

D. Comparison Against a Simple Combining Technique

The example provided in this subsection illustrates that
using a simple controller that combines both workload shifting
and storing energy would lead into suboptimal decisions. We
consider the case where the DC’s battery is optimal and where
there are two types of workloads: i) Non-Delayable and ii)
Delayable for the next time slot with no delay charge. Fig.
18 illustrates the power demands of the Non-Delayable and
Delayable workloads over the few time slots that respresent
our billing cycle in our example. We consider a combining
technique that compares the aggregate power demands of the
DC against a fixed threshold (10 KW) at each time slot. If
the demands are below the threshold, then the difference is
charged into the battery. Whereas if the demands are above
the threshold, then the battery is first used to provide the
difference. If no enough energy is available in the battery to
provide the whole difference, then workload shifting is used
to shave the remaining amount that is above the threshold.
We illustrate in Fig. 19 the power drawn from the grid to
satisfy the aggregate power demands of our example under:
a) No Peak Shaving, b) the previously described combining
technique, and c) under our limited-horizon controller that
knows the DC’s power demand in the next two slots. Observe
that the combining technique increased the peak by (10%)
compared to No Peak Shaving as it delays the workload when
it meets a high demand (without considering if there will be
a higher demand in the following time slot) and then finds
itself forced to meet the deadline leading into a higher peak.
The combining technique also continues to charge energy into
the battery whenever the demand is below the threshold which
increases the energy charge. Our controller on the other hand
reduced the peak by (30%) compared to No Peak Shaving.

E. Comparison Against Uncoordinated Combining Technique

We consider in this example the case where the DC’s
battery is optimal and where all the power demands can be
delayed to the next slot with no charge. The solid blue line

in Fig. 20 shows the DC’s power demands in our example
without peak shaving. The red line represents the case when
applying both workoad shifting and energy storage to shave the
peak, but without coordination. This means that the workload
shifting controller is unaware of the decisions made by the
energy storage controller and vice versa. However, at each
point in time, the energy storage controller and the workload
shifting controller know accurate predictions of the DC’s
power demands in the next two slots. Each of these two
controller makes the optimal peak shaving decisions separately
by solving an optimization problem. Observe that for this case,
the peak gets reduced by 25% compared to ’No Peak Shaving’.
Finally, the green dashed line shows the drawn power when
our controller is making both energy storage and workload
shifting decisions in a coordinated fashion (i.e., the decisions
made to store energy affect those made to shift the workload
and vice versa). Observe that the peak gets reduced in this case
by 50% compared to ’No Peak Shaving’, which is double the
reductions achieved by the uncoordinated case.

VII. RELATED WORK

A. Energy Charge Minimization Techniques

Energy-aware scheduling [5, 6], Virtual Machine (VM) mi-
gration [7] and server over-booking [8] are some of the
techniques that were proposed to minimize the DC’s electricity
bill. All of these techniques reduce the Energy Charge com-
ponent of the electricity bill by using fewer number of ON
servers. The main limitation of these techniques [5–8] is that
unlike our work they completely ignore the Peak Charge.

B. Energy Storage Peak Shaving Techniques

Reinforcement learning was used in [19] to make battery
charging/discharging decisions based only on the DC’s current
power demand and the amount of stored energy. The main
limitation of this technique is that it requires tuning some
parameters (e.g., learning rate) empirically, and discretizes
the input and output spaces into a finite set, leading to less
accurate decisions. Markov Decision Process (MDP) was also
used to derive peak sharing control strategies [20]. Unlike
our work, this technique does not target minimizing Peak
Charges. Threshold-based techniques (e.g., [16, 18]) aimed to
operate the DC at a fixed power by charging the difference
between a fixed threshold and the DC’s power demands into
the battery or by discharging from the battery the difference
between the DC’s power demand and the threshold. Bounds
on the performance of this technique were derived in [17]
using the concept of arrival curves from Network Calculus.
Although simple, these approaches are threshold sensitive. The
authors in [21, 22] applied the Threshold technique on multi-
hierarchical levels of a DC that has a distributed UPS topology
where each server is attached to an independent battery. The
work in [23] analyzed the different architectures and battery
technologies that can be used for such a distributed UPS
topology. Dynamic Programming (DP) was also proposed in
[24] to find the optimal control strategy for a battery with
no losses under full-knowledge of the future power demands.



Unlike the DP approach, our proposed full-horizon controller
solves a well-formulated convex optimization problem that
considers the battery’s losses and power constraints. Liu et
al. investigated in [25] the benefits obtained from integrating
hybrid energy storage technologies into DCs and proposed
an efficient management scheme for a DC equipped with
both ultra capacitors and conventional UPS systems. The
management scheme in [25] is actually complementary to our
work as it can be used in the case of multiple energy storage
technologies to decide the percentage of charge/discharge for
each energy storage technology while our work can run on
top of that scheme to decide the total amount of power that
needs to be charged/discharged by all the DC equipped energy
storage technologies in addition to the amount of workload
that needs to be delayed (shifted) to avoid the peak penalties.
Finally, a key distinction of our controller from all these
existing techniques is that it considers workload shifting as
an additional control knob to achieve further peak shavings.

C. Workload Modulation Peak Shaving Techniques

The Peak Charge was reduced in [26, 27] by dropping some
of the DC’s requested or scheduled jobs within periods with
high power demands. Clients in these cases clearly experience
service disruptions as their dropped jobs are required to
be resubmitted and to start again from scratch. The work
in [28, 29] explored redirecting/migrating jobs from the DC
with high peak power demands into other DCs that have
lower demands in order to reduce the Peak Charge. The
authors in [30] capped the power consumed by the DC’s
servers in addition to performing inter DC migrations. The
migration approaches [28–30] are complementary to our work
as they can be applied on top of our controller to balance the
workload among multiple DCs. The authors in [31] considered
using both local power generation and workload shifting to
reduce the peak charges. However, the main limitation of
their workload shifting algorithm is that it is non-adaptive
as once decisions are made at the beginning of each period,
they can’t be changed within that period no matter how the
workload fluctuates. This makes the algorithm’s solution sub
optimal. Another key difference that distinguishes our work
from the work in [31] is the fact that we consider storing
energy as another knob to shave the peak. The work in [32]
considered delaying and dropping jobs for peak shaving. Our
paper differs from [32] in that we consider the case where
the DC’s workload is divided into multiple classes where each
class has a different delay tolerance and a different delay cost.
Another key difference from [32] is that we control two knobs
simultaneously workload shifting and energy storage. To the
best of our knowledge, our proposed peak shaving controller
is the first that adjusts both of these knobs. In order to shave
the peak demands, Zheng et al. [33] considered using Thermal
Energy Storage (TES) tanks to make iced water during low
electricity price periods so that it can be used later to reduce
the power spent by the cooling infrastructure during peak
power demand periods. Unlike the work in [33], our work is
not limited only to DCs equipped with TES tanks. The authors

in [34] considered the specific case where the DC is equipped
with fuel cells and suggested a controller that uses both energy
storage devices and power capping to address the fact that fuel
cells react slowly to power surges. Unlike [34], our controller
is not specific to fuel cells. Another key difference from [33]
and [34] is that we use both energy storage and workload
shifting to shave the DC’s peak charges.

VIII. CONCLUSION AND FUTURE WORK

We propose peak shaving strategies that minimize the DC’s
electricity bill by making smart energy storage and work-
load shifting decisions. Our proposed strategies solve a well-
formulated convex optimization problem that considers: real
battery’s specs such as leakage and conversion losses, maxi-
mum charging/discharging rate and storage capacity, heteroge-
neous workload classes, each having different delay tolerance
and delay charge. Using real Google traces, we show that our
controllers achieve promising reductions in DCs’ electricity
bills. For future work, we plan to develop accurate workload
prediction techniques and to further study other factors in our
control strategy such as the battery’s lifetime.
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