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Abstract

Spectrum sensing research has mostly been focusing on narrowband access, and not until recently have researchers

started looking at wideband spectrum. Broadly speaking, wideband spectrum sensing approaches can be categorized

into two classes: Nyquist-rate and sub-Nyquist-rate sampling approaches. Nyquist-rate approaches have major prac-

tical issues that question their suitability for realtime applications; this is mainly because their high-rate sampling

requirement calls for complex hardware and signal processing algorithms that incur significant delays. Sub-Nyquist-

rate approaches, on the other hand, are more appealing due totheir less stringent sampling-rate requirement. Although

various concepts have been investigated to ensure sub-Nyquist rates, compressive sampling theory is definitely one

concept that has attracted so much interest. This paper explains and illustrates how compressive sampling has been

leveraged to improve wideband spectrum sensing by enablingspectrum occupancy recovery with sub-Nyquist sampling

rates. The paper also introduces new ideas with great potential for further wideband spectrum sensing enhancements,

and identifies key future research challenges and directions that remain to be investigated.

I. I NTRODUCTION

Spectrum sensing has been the focus of lots of research due toits vital role in promoting dynamic spectrum

access. The literature focus has, however, mostly been on narrowband access, and not until recently has wideband

spectrum access attracted some momentum, merely due to recent high demands for spectrum resources coupled

with the emergence of IoT and 5G technologies, forcing regulatory agencies like FCC to open up new band use

in higher frequencies [1]. Although these new regulations and rules bring new opportunities for spectrum access to

meet new demands, they also present new spectrum sensing challenges.

Conventional approaches for wideband spectrum sensing consist of first using analog-to-digital converters (ADC)

to digitize the wideband signal and then apply digital signal processing (DSP) techniques to locate spectrum

vacancy. One simple approach is frequency sweeping, which essentially divides wideband frequency into multiple

narrowbands, and then uses narrowband sensing approaches to sweep through all narrowbands to locate spectrum

availability. One major issue with this approach is sweeping delay, which can present a great limitation, especially

for realtime applications. Another approach is to use multiple filtering hardware blocks, one for each narrowband,

to allow parallel sensing across all narrowbands. Though addresses the delay issue, this approach can be very costly

from a hardware viewpoint. Wavelet techniques have also been proposed for performing wideband sensing, which

use power spectrum density analysis to detect irregularities that can then be used to locate spectrum availability. A



2

more natural approach is to sample the time-domain signal occupying the entire wideband at Nyquist (or above)

rates and then use FFT methods to determine frequency occupancy across the entire spectrum. Although seems

more natural, the issue with these Nyquist-rate sampling approaches is that they require complex hardware and

ADC circuitry that have to operate at high sampling rates, aswell as sophisticated DSP algorithms that can incur

significant delays, making these approaches unpractical when applied to wideband spectrum sensing.

Because of these aforementioned issues, many works have focused on leveraging compressive sampling theory

to take advantage of the signal sparsity in the frequency domain to develop wideband spectrum sensing solutions

that require sampling rates lower than Nyquist rates [2, 3].In this paper, we focus on these compressive sampling

based spectrum sensing approaches. We first begin by explaining and illustrating how compressive sampling has

been leveraged to enable wideband spectrum occupancy recovery at sub-Nyquist sampling rates (Section II). We

then propose new techniques that exploit occupancy heterogeneity in wideband access (Section III) and cooperative

approaches that exploit machine learning (Section IV) to provide further enhancements to spectrum sensing recovery

efficiency. We also identify and present key challenges and future research directions that remain to be investigated

(Section V). We want to mention that the paper is tutorial in nature and is by no means intended to provide a

survey on the topic; it rather starts from key works in the literature that played a vital role in motivating the use

of the compressive sampling theory in the context of wideband spectrum sensing [2], as well as on the authors’

own work on the subject to bring the readers’ attention to some potentials that remain to be exploited and to some

possible ways of exploiting them [4, 5].

II. COMPRESSEDWIDEBAND SPECTRUM SENSING

Consider a wideband system withn non-overlapping narrowbands, and a secondary user (SU ) receiving primary

users’ (PU s) signals that are occupying the entire wideband spectrum.Our goal here is for theSU to know/acquire

spectrum occupancy of each of then narrowbands through spectral analysis of its received signal, r(t).

A. Uncompressed spectrum occupancy information recovery

From Nyquist/Shannon sampling theory, in order to reconstruct r(t) without aliasing, samples with at least

twice the maximum wideband frequency,fmax, must be taken. Let us consider a sensing window1 [0,LT0] with

T0 = 1/(2fmax), whereL here represents the minimum number of samples needed to guarantee that the signal

is sampled at or above the Nyquist rate. The sample vector is the discrete vectorr[l] whoseL elements are

r[l] = r(t)|t=lT0
, l = 0, 1, . . . ,L − 1. One obvious spectrum occupancy recovery approach would consist of

performing a discrete Fourier transform (DFT) on the samplevector to compute the energy level present in each

of the narrowbands, and then use these computed energy values to decide on narrowbands’ availabilities. More

specifically, the received signal occupying narrowbandb, b = 1, 2, . . . ,L, can be represented in the frequency

domain by its DFT to be calculated usingr[l]; i.e., Rb = 1

L

∑
L−1

l=0
r[l]e−j2πbl/L. Now for each narrowbandb,

one can repeat this processM times over different intervals, compute the sum statisticsof the received energy

1Throughout, we assume that the window is chosen small enoughthat bands’ occupancy statuses remain unchanged during such a period.
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on that narrowband (i.e.,
∑M

t=1
|Rb[t]|2), and compare it against some threshold to decide whether narrowbandb

is available. Note that the larger theL, the longer the sensing period and hence the greater the number of taken

samples, but also the greater the number of sampled frequencies (i.e., the better the resolution). Throughout, for

normality and simplicity, we considerL = n; i.e., the number of sampled frequencies is set to the numberof

narrowbands.

As mentioned earlier, the challenge with this uncompressedsignal recovery approach is that it requires high

sampling rates, thus calling for complex ADC hardware and signal processing algorithms. This prompted researchers

to look for compressed approaches as alternative solutions.

B. Compressed spectrum occupancy information recovery

Various measurement studies reveal that the wideband spectrum has relatively low occupancy [6], thereby allowing

to leverage compressive sampling to recover spectrum occupancy information with sub-Nyquist sampling rates [7].

Briefly said, compressive sampling theory allows to reconstruct signals (or vectors) that aresparse through sampling

rates that are (much) lower than Nyquist rates, where, formally, a vectorx ∈ R
n is said to bek-sparse if it has

(with or without a basis change) at mostk non-zero elements; i.e.,supp(x) := ‖x‖ℓ0 = |{i : x[i] 6= 0}| ≤ k. In

our wideband sensing application case, lettingx be then× 1 vector representing the occupancy information of the

n narrowbands (with0 being vacant), the sparsityk of x refers to the number of occupied narrowbands. Because

of this sparsity, compressive sampling comes then handy andallows to recover occupancy information captured via

the length-n vectorx with only m ≪ n measurements [8]. Throughout,y will denote the length-m vector of these

m measurements.

1) Compressed spectrum sensing: Recall that the discrete vectorr whose elements are the samples of the received

signalr(t) at t = lT0, l = 0, 1, . . . , n−1, can be expressed in terms of then×1 inverse-Fourier basis column vectors

{F̂i}
n−1

i=0
asr =

∑n−1

i=0
F̂ix[i] or in matrix notation asr = F̂x, wherex is again then× 1 vector representing the

occupancy information of then narrowbands during the corresponding sensing period, andF̂ is then× n matrix

whose columns are{F̂i}
n−1

i=0
. Note that although eitherx or r suffices for uniquely representing the Nyquist-rate

samples of the received signal, only the frequency-domain representationx is sparse. That is, usingk to again refer

to the sparsity level,r can then be viewed as a linear combination of onlyk ≪ n columns of the basis matrix̂F . It

is this sparsity structure that allows for the use of compressive sampling to recoverx with only m ≪ n samples as

opposed to alln samples. Letting them×n matrix Φ represent then-to-m reduction matrix withm length-n rows

{φj}
m−1

j=0
, one can write the length-m vectory of thesem measurements asy = Φr, or alternatively,y = Ψx with

Ψ = ΦF̂ by replacingr by F̂x. Here each measurementyi = 〈φi, r〉 is nothing but a linear combination of then

samples. First, note that recoveringx by solving the systemy = Ψx giveny would be an ill-posed problem hadx

not been sparse, since there would be more unknowns than equations. Becausex is k-sparse, it is then possible to

recover it from onlym measurements (i.e.,y) provided thatΨ possesses therestricted isometry property (RIP) [9],

which essentially means that every set ofk of fewer columns ofΨ behaves approximately like an orthonormal

system. Therefore, one fundamental question that has attracted significant research attention is how to construct the

reduction matrixΦ such thatΨ possesses the RIP? It has been shown that a Gaussian matrixΦ whose elements
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Φi,j are each drawn from an i.i.d. Gaussian random variable with zero mean and1/n variance ensures, with an

overwhelming probability, that the matrixΨ = ΦF̂ has the RIP and that the vectorx can be recovered with just

m = O
(
k log(n/k)

)
measurements [10].

2) Spectrum recovery approaches: When considering a noise-free environment, one can recoverx by simply

finding z that minimizes‖z‖ℓ0 subject toy = Ψz. However, solving such a combinatorial problem is computa-

tionally expensive, and as a result, heuristic approaches (e.g., BP [9] and OMP [11]) have been proposed as an

alternative solution. For instance, it has been shown that this combinatorial problem can equivalently be formulated

as a convex optimization problem (and hence can be solved viaclassical linear programming) by simply minimizing

the ℓ1-norm of z instead of itsℓ0-norm; this is widely known in the literature as the Basic Pursuit (BP) [9].

In practice, them measurements (i.e.,y) from which we intend to recover our spectrum occupancy information

vector x are often not noise free. Let us be more specific by considering a faded and noisy communication

environment, in which, the discrete signalr[l], l = 0, 1, . . . , n−1, sampled at theSU ’s front-end, can be expressed

asr[l] = h[l] ∗ s[l] +w[l], whereh[l] is the channel impulse between primary transmitters and theSU , s[l] is the

PU transmitted signal,w[l] is an Additive White Gaussian Noise withw[l] ∼ N(0, σ2), and∗ is the convolution

operator. Now performing a discrete Fourier Transform on the expression of the received discrete signalr yields

R = HS +W = x+W , whereH , S, andW are the Fourier transforms ofh[l], s[l], andw[l], respectively, and

then performing the inverse Fourier transform on the obtained equation yieldsr = F̂R = F̂x+ F̂W . The vector

x here contains faded versions ofPU s’ signals sent at the different narrowbands. Now given thatthe measurement

vectory = Φr, we can then writey = ΦF̂x + ΦF̂W , or more compactly,y = Ψx + η with η = ΨW , where

againΨ = ΦF̂ andΦ is then-to-m reduction matrix that reduces the number of measurements/taken samples from

n down to onlym. Unlike in the case of the noise-free (ideal) environment, in this noisy (realistic) environment,

not only do we have fewer samples of the signal, but also thesefew observations are not accurate. Fortunately,

compressive sampling theory comes handy and can help recover x even in this imperfect setting. Clearly, the

recovered vector cannot be exact now due to the imperfectionof the collected measurements. However, many

recovery approaches with various bounds on the error have been developed for this specific scenario. Theℓ1-

minimization approach [12], commonly known as LASSO, and greedy pursuits like OMP [11], CoSaMP [13] and

AS-SaMP [14] are good representatives of such approaches. For instance, LASSO [12] finds, among all feasible

signals, the sparsest one with a bounded error by solving thefollowing ℓ1-minimization problem (PLASSO):

PLASSO : minimize
z

‖z‖ℓ1 subject to ‖Ψz − y‖ℓ2 ≤ ǫ (1)

whereǫ ≥ ‖η‖ℓ2 is a pre-defined parameter.

3) Hardware implementation: Recently, there have also been some efforts aimed at designing new hardware

architectures suitable for compressed wideband spectrum sensing (e.g., [15]), with an overall focus on balancing

among scanning time, energy consumption and hardware complexity/cost. For illustration, Fig. 1 shows a high-level

implementation capturing the key components of these architectures. First, the received wideband RF signalr(t) is

amplified using a low noise amplifier (LNA) and fed tom parallel branches, where at each branch,r(t) is mixed

with a unique pseudo-random (PN) sequence (e.g., of±1). The mixing step at each branch essentially modulates
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Fig. 1. Compressed wideband spectrum sensing architecture.
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Fig. 2. Spectrum bands occupied by applications with different occupancies. Grey bands are occupied by primary users and white bands are

vacant. (a) average occupancies of the different spectrum blocks. (b) one possible allocation at some time slot.

the signalr(t) with a n-length random signalϕi(t), resulting in a signalr(t)ϕi(t) that is nothing but a linear

combination of shifted copies of frequency-domain signalsoccupying each band of the wideband spectrum. In

other words, the mixing operation spreads the entire spectrum so that the low-pass filtered (LPF) output of each

branch is a narrow band copy of the signal that contains energy from all the other bands. Connecting this with the

theory we discussed previously, each PN sequence can be viewed as one row of the sensing matrix, and hence, it

is important that the PN sequences are uncorrelated to ensure reliable recovery. After low-pass filtering, sampling

is then performed at each branchi at a rate (much lower than Nyquist rate) determined by the width of the narrow

band, resulting in an output sequence,yi[n]. Again, here the frequency-domain version of each sequenceyi[n] is

a combination of the shifted versions of signals occupying the different bands. Finally, a DSP algorithm is used to

recover the signal and provide the occupancy of every band.

III. W EIGHTED COMPRESSEDWIDEBAND SPECTRUMSENSING

In practice, applications of similar types (cellular, satellite, TV, etc.) are often assigned spectrum bands within

the same (or nearby) frequency block. Also, different application types may show different occupancy patterns and

characteristics. These two facts lead to an important observation (also supported via measurements [6]): different
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frequency blocks exhibit different occupancy statistics (see Fig. 2). Throughout, we refer to this variability in

spectrum bands’ occupancies across the different blocks asblock-like spectrum occupancy structure.

The proposed wLASSO: In this section, we present an approach [4] that exploits this block-like structure to

improve the recovery efficiency, in terms of error bounds andnumber of required measurements, of the spectrum

occupancy information vectorx. To ease the illustrations, we assume that then narrowbands are grouped into

g disjoint contiguous blocks,Gi, i = 1, ..., g, with Gi

⋂
Gj = ∅ for i 6= j, with each block,Gi, consisting ofni

contiguous bands. For simplicity, we model the state of eachbandi, Hi, asHi ∼ Bernoulli(pi) with parameter

pi ∈ [0, 1] wherepi is the probability that bandi is occupied by somePU . Let k̄j =
∑

i∈Gj
pi be the average number

of bands occupied within blockj (assuming independency across band occupancies). The block-like structure of

spectrum occupancy behavior dictates thatk̄j varies from one block to another; when necessary, blocks with similar

sparsity levels are merged together and assigned a sparsitylevel that corresponds to their average. These per-block

spectrum occupancy averages can be directly estimated via measurements or provided by spectrum operators [6].

Our proposed recovery approach, referred to asweighted LASSO (wLASSO), incorporates and exploits the sparsity

variability observed across the different frequency blocks to allow for a more efficient solution search. Referring

to PLASSO (Equation (1)) again for illustration, let’s write the vector variablez as z = [zT
1
, zT

2
, . . . , zT

g ]
T where

zi is theni × 1 vector corresponding to blocki for i ∈ {1, ..., g}, and assign for each blocki a weightωi such

that ωi > ωj when k̄i < k̄j for all blocks i, j. Essentially, the weights are designed in such a way that a block

with higher sparsity level is assigned a smaller weight; forinstance, settingωi = (1/k̄i)/
∑g

j=1
(1/k̄j) meets such

a design requirement. The proposedwLASSO is then:

PwLASSO : minimize
z

g
∑

i=1

ωi‖zi‖ℓ1 subject to ‖Ψz − y‖ℓ2 ≤ ǫ (2)

Intuitively, by assigning smaller weights to blocks with higher sparsity levels,wLASSO ensures that the search for

a sparse solution vector, among all feasible vectors, is aimed towards lesser sparse blocks, thereby(i) reducing

recovery errors and/or(ii) requiring lesser numbers of measurements [4].

Performance analysis of wLASSO: Figs. 3 and 4 show error performances achieved under proposed wLASSO,

LASSO [12], OMP [11], CoSaMP [13] and AS-SaMP [14] for randomBernoulli and Circulant sensing matrices, and

Table I provides their complexity analysis. Three observations can be made from these results: One,wLASSO incurs

the smallest errors because it encourages the search to takeplace in the portions of the spectrum with more occupied

bands. Therefore, with the same number of measurements,wLASSO yields accuracy higher than LASSO, and

does so without compromising its computational complexity. This is because the difference between them is that

wLASSO assigns different weights to different blocks, whereas LASSO assigns equal weights to all blocks, and

hence, solving these two algorithms take the same amount of time. However, this gain comes at the cost of needing

to know the average of occupancy of each block in advance. Butwhen compared to OMP, CoSaMP and AS-SaMP,

wLASSO’s error gain comes also at a higher computational complexity. Two, the random sensing matrix always

incurs lesser errors regardless of the recovery approach being used. In essence, to achieve a robust recovery, the

rows of the sensing matrix should have low cross-correlation, which is achieved more with a fully random matrix.

Three, the error gains ofwLASSO are maintained over LASSO, CoSaMP and AS-SaMP but not over OMP when the
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number of measurements is high. However, as can be recalled from Fig. 1, having a large number of measurements

is not of interest since it requires more branches, and hence, a more costly hardware.

Hardware implementation of wLASSO: As described in Section II-B3,wLASSO can also be implemented by

first mixing the amplified wideband RF signalr(t) with m different PN sequences of±1, sampling each of the

TABLE I

PERFORMANCE COMPARISON AMONG RECOVERY APPROACHES

Approach Complexity Limitations Strengths

OMP [11] O(mnk) No guarantees for noisy and compressible signals Fast

CoSaMP [13] O(mn itr) No guarantees for noisy and compressible signals Fast (slower than OMP) but better performance

AS-SaMP [14] O(mn itr) No guarantees for noisy and compressible signals Faster than CoSaMP but slower than OMP

LASSO [12] O(m2n3) Slow convergence for highn andm Provable guarantees for stable recovery

wLASSO [4] O(m2n3) Slow convergence for highn andm, Provable guarantees for stable recovery

requires some a priori knowledge for weights’ design
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m low-pass filtered signals, and then digitally solving the weighted optimization at the DSP level to recover the

occupancy information. Another approach of implementingwLASSO is to implement the weighted compression

at the RF front-end instead of being done at the DSP end. For this, observe thatwLASSO, formulated in Eq. (2),

could equivalently also be reformulated as to minimize‖z‖ℓ1 subject to‖ΨW−1z − y‖ℓ2 ≤ ǫ whereW =

diag(ω1, · · · , ω1
︸ ︷︷ ︸

n1

, ω2, · · · , ω2
︸ ︷︷ ︸

n2

, . . . , ωg, · · · , ωg
︸ ︷︷ ︸

ng

). The new sensing matrixW−1 essentially magnifies the columns of

the sensing matrixΨ that correspond to high average sparsity levels (low weights) and belittles the columns that

correspond to low average sparsity levels.

IV. COOPERATIVE AND ADAPTIVE COMPRESSEDWIDEBAND SPECTRUM SENSING

In this section, we focus on three practical issues. One, bands’ occupancies are time varying. That is, not only does

spectrum occupancy vary from one frequency block to another, but also over time. In other words, the block sparsity

levels k̄js are not fixed. It is therefore important to devise adaptive approaches that can provide accurate estimates

of these levels. Being able to have accurate estimates of sparsity levels is vital so that the number of measurements

needed for the recovery can be determined accurately; remember over-sampling (using more measurements than

needed) incurs greater overheads, whereas under-samplingleads to inaccurate recovery. Two, recall that the number,

m, of hardware branches needed by aSU device to performwLASSO depends on the sparsity level,k̄j , of each

block j. Sincek̄j varies over time, then so doesm. On the other hand, the number of hardware branches a receive

can have can only be fixed and is often way smaller thanm. Therefore, there is a need for adaptive approaches that

address the limited number of hardware branches as well as the variability of m. Three, because anSU ’s ability

to detect aPU ’s signal depends on its distance from thePU (among other things), anSU ’s signal recovery may

be erroneous. This problem—aka the hidden terminal problem—needs also to be carefully addressed.

In this section, we present two approaches that address the three aforementioned issues. Specifically, we rely on

prediction to overcome the first issue, and on cooperation toovercome the second and third issues.

A. Spectrum occupancy prediction

One way to overcome the sparsity level time-variability issue is to incorporate and rely on prediction models to

track and provide accurate estimates of these occupancy levels. Fig. 5 illustrates how the performance of the weighted

compressed sensing approach behaves with and without prediction when considering two regression models: batch

gradient descent and linear support vector regression [5].The figure shows that prediction leads to a more accurate

recovery (low miss detection rate of occupied spectrum bands), as these regression schemes allow to provide more

accurate numbers of the required measurements. Due to spacelimitation, here we skipped the simulation/evaluation

setup details; these details, as well as more result insights and prediction analysis, can be found in [5].

B. Cooperative wideband spectrum sensing

User cooperation can be leveraged to address the hidden terminal problem, as well as the time-variability ofm

and the limitation in the number of hardware branches. To address the hidden terminal problem, one can first have
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eachSU take and reportm local measurements to a fusion center (FC). Then, FC, after recovering the occupancy

information by applyingwLASSO on each of theseSU s’ local measurements, uses a voting mechanism to decide

on whether the bands are occupied. Alternatively, eachSU can applywLASSO locally and send the occupancy

vector instead of sending the measurements. In this case, FCcan run the voting and decide on the spectrum band

availability without needing to applywLASSO on each measurement set. This cooperative sensing can be (and is

often) used as a way for addressing the hidden terminal problem. More details on this can be found in [5].

Now for addressing the time-variability ofm and the constrained number of hardware branches, our approach first

uses prediction techniques (e.g, those described in Section IV-A) to estimatem, and then have eachSU perform one

sensing scan using whatever (limited) number of branches ithas and send its measurement vector to FC. Note that an

SU can choose to perform multiple (sequential) sensing scans via its hardware, leading to more measurements (but

also to more delay). Hence, the measurement vector size depends on theSU ’s number of branches and number of

performed scans. When the number of combined measurements received by FC reachesm, FC applieswLASSO to

recover the spectrum occupancy information.

V. OPEN RESEARCHCHALLENGES

Although, as explained in this paper, compressive samplingshows great potential for improving wideband

spectrum sensing, there still remains key challenges that,when addressed, further enhancements can be achieved:

• Signal type identification.Most spectrum sensing literature focused on detecting whether bands are occupied or

not, but not so much on identifying what types of signals/transmitters are occupying them. Signal identification

research has mainly focused on RF fingerprinting, which basically tries to extract features (e.g., modulation

type) that are intrinsic to the transmitted signals and/or device manufacturing imperfections, and use these

features to discriminate among the transmitters. The problem is that most of these fingerprinting techniques

can only discriminate among devices that are identical (maybe produced by different manufacturers) and that

operate using one type of communication protocol (e.g. WiFi). With the rapid emergence of IoT, multiple types

of wireless protocols will emerge and possibly coexist, thereby calling for more sophisticated discriminatory
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approaches. Being able to identify and discriminate among different types of devices operating using different

protocols will be vital to spectrum access enforcement. We expect that machine learning will play a key role

in helping develop automated algorithms that allow to identify key features and classify signals.

• Wideband spectrum databases.As done for the TV bands, there has recently also been a consensus for the

need of databases that serve widebands. However, unlike thecase of TV white space databases, building such

databases presents new requirements and challenges, specific to the next-generation spectrum access systems

at hand. For instance, the massive numbers of IoT devices that are expected to coexist and need spectrum

resources, though give rise to obvious resource bottleneckchallenges, can surely be leveraged to improve

spectrum sensing reliability and overhead. This, for example, can be done through the use of collaborative

filtering, a theory that has already been successfully adopted in domains like recommendation systems, and

can surely be exploited to build such databases.

• Adaptive hardware. As discussed in Section II-B3, there have already been proposed new hardware architec-

tures suitable for compressed wideband sensing, with a focus on reducing sensing time and energy consumption

while keeping hardware cost at minimum. One key challenge with these existing architectures is that they do

not adapt to signals’ sparsity levels. This is because the number of hardware branches can only be fixed and

is often way smaller thanm. Besides, this numberm changes over time, as it depends on the time-varying

spectrum occupancy. Therefore, although we discussed in Section IV-B some high-level cooperative approaches

for dealing with such a problem, there remains a need for new solutions at the hardware level that can adapt

to sparsity levels in real time so that reliable recovery is guaranteed when actual sparsity levels vary.
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