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Abstract

Spectrum sensing research has mostly been focusing orwfimd access, and not until recently have researchers
started looking at wideband spectrum. Broadly speakindebénd spectrum sensing approaches can be categorized
into two classes: Nyquist-rate and sub-Nyquist-rate semgmpproaches. Nyquist-rate approaches have major prac-
tical issues that question their suitability for realtimgpbcations; this is mainly because their high-rate sangpli
requirement calls for complex hardware and signal prongssigorithms that incur significant delays. Sub-Nyquist-
rate approaches, on the other hand, are more appealing tharttess stringent sampling-rate requirement. Although
various concepts have been investigated to ensure subidiygtes, compressive sampling theory is definitely one
concept that has attracted so much interest. This papeaiagphnd illustrates how compressive sampling has been
leveraged to improve wideband spectrum sensing by enafiegtrum occupancy recovery with sub-Nyquist sampling
rates. The paper also introduces new ideas with great paltémt further wideband spectrum sensing enhancements,
and identifies key future research challenges and directioat remain to be investigated.

I. INTRODUCTION

Spectrum sensing has been the focus of lots of research dige ¥dal role in promoting dynamic spectrum
access. The literature focus has, however, mostly been wawtzand access, and not until recently has wideband
spectrum access attracted some momentum, merely due tot tigh demands for spectrum resources coupled
with the emergence of IoT and 5G technologies, forcing r&guy agencies like FCC to open up new band use
in higher frequencies [1]. Although these new regulatiomd eules bring new opportunities for spectrum access to
meet new demands, they also present new spectrum sensiltenges.

Conventional approaches for wideband spectrum sensingjstaf first using analog-to-digital converters (ADC)
to digitize the wideband signal and then apply digital sigpecessing (DSP) techniques to locate spectrum
vacancy. One simple approach is frequency sweeping, whasngially divides wideband frequency into multiple
narrowbands, and then uses narrowband sensing approackegep through all narrowbands to locate spectrum
availability. One major issue with this approach is swegpielay, which can present a great limitation, especially
for realtime applications. Another approach is to use mldftfiltering hardware blocks, one for each narrowband,
to allow parallel sensing across all narrowbands. Thoughesses the delay issue, this approach can be very costly
from a hardware viewpoint. Wavelet techniques have also Ipeeposed for performing wideband sensing, which

use power spectrum density analysis to detect irregudarttiat can then be used to locate spectrum availability. A



more natural approach is to sample the time-domain signaimying the entire wideband at Nyquist (or above)
rates and then use FFT methods to determine frequency aumyaaross the entire spectrum. Although seems
more natural, the issue with these Nyquist-rate samplimyagehes is that they require complex hardware and
ADC circuitry that have to operate at high sampling rateswal as sophisticated DSP algorithms that can incur
significant delays, making these approaches unpracticahvelpplied to wideband spectrum sensing.

Because of these aforementioned issues, many works hauseidon leveraging compressive sampling theory
to take advantage of the signal sparsity in the frequencyailotio develop wideband spectrum sensing solutions
that require sampling rates lower than Nyquist rates [2iB}his paper, we focus on these compressive sampling
based spectrum sensing approaches. We first begin by exjaind illustrating how compressive sampling has
been leveraged to enable wideband spectrum occupancyergcat/ sub-Nyquist sampling rates (Section II). We
then propose new techniques that exploit occupancy hetasity in wideband access (Section Ill) and cooperative
approaches that exploit machine learning (Section V) twige further enhancements to spectrum sensing recovery
efficiency. We also identify and present key challenges ataré research directions that remain to be investigated
(Section V). We want to mention that the paper is tutorial atune and is by no means intended to provide a
survey on the topic; it rather starts from key works in therbture that played a vital role in motivating the use
of the compressive sampling theory in the context of widebspectrum sensing [2], as well as on the authors’
own work on the subject to bring the readers’ attention toes@utentials that remain to be exploited and to some

possible ways of exploiting them [4, 5].

Il. COMPRESSEDWIDEBAND SPECTRUM SENSING

Consider a wideband system withnon-overlapping narrowbands, and a secondary usgj feceiving primary
users’ (PUs) signals that are occupying the entire wideband spect@umgoal here is for th& U to know/acquire

spectrum occupancy of each of thenarrowbands through spectral analysis of its receivedaigtit).

A. Uncompressed spectrum occupancy information recovery

From Nyquist/Shannon sampling theory, in order to recaiestr(¢) without aliasing, samples with at least
twice the maximum wideband frequeng,...., must be taken. Let us consider a sensing windfwZLTp] with
To = 1/(2fmaz), Where L here represents the minimum number of samples needed tarjearthat the signal
is sampled at or above the Nyquist rate. The sample vectdneisdiscrete vector[l] whose L elements are
r[l] = r()|t=im,! = 0,1,...,L — 1. One obvious spectrum occupancy recovery approach wouldistoof
performing a discrete Fourier transform (DFT) on the sanveletor to compute the energy level present in each
of the narrowbands, and then use these computed energysvalugecide on narrowbands’ availabilities. More
specifically, the received signal occupying narrowband = 1,2,..., L, can be represented in the frequency
domain by its DFT to be calculated usingl]; i.e., R, = L 37 ' r[i]le=727/L. Now for each narrowband,

one can repeat this proced¢ times over different intervals, compute the sum statistitshe received energy

1Throughout, we assume that the window is chosen small enthagtbands’ occupancy statuses remain unchanged duritigasperiod.



on that narrowband (i.eZi‘i1 |Rp[t]|?), and compare it against some threshold to decide whettreowiaandb
is available. Note that the larger the the longer the sensing period and hence the greater the erunfiltaken
samples, but also the greater the number of sampled fregpse(ie., the better the resolution). Throughout, for
normality and simplicity, we considek = n; i.e., the number of sampled frequencies is set to the nuraber
narrowbands.

As mentioned earlier, the challenge with this uncompressgdal recovery approach is that it requires high
sampling rates, thus calling for complex ADC hardware agdali processing algorithms. This prompted researchers

to look for compressed approaches as alternative solutions

B. Compressed spectrum occupancy information recovery

Various measurement studies reveal that the widebandrepebgs relatively low occupancy [6], thereby allowing
to leverage compressive sampling to recover spectrum acaypinformation with sub-Nyquist sampling rates [7].
Briefly said, compressive sampling theory allows to recatstsignals (or vectors) that asparse through sampling
rates that are (much) lower than Nyquist rates, where, fliyma vectorz € R™ is said to bek-sparse if it has
(with or without a basis change) at mdstnon-zero elements; i.esupp(x) := ||z|l¢, = [{i : x[i] # 0} < k. In
our wideband sensing application case, lettinge then x 1 vector representing the occupancy information of the
n narrowbands (with) being vacant), the sparsity of = refers to the number of occupied narrowbands. Because
of this sparsity, compressive sampling comes then handybmds to recover occupancy information captured via
the lengthn vectorx with only m < n measurements [8]. Throughout,will denote the lengthn vector of these
m measurements.

1) Compressed spectrumsensing: Recall that the discrete vecteiwhose elements are the samples of the received
signalr(t) att = 1Tp,1 =0,1,...,n—1, can be expressed in terms of the 1 inverse-Fourier basis column vectors
{F)n) asr = Z;:Ol FE;x[4] or in matrix notation ag: = EF'a, wherex is again then x 1 vector representing the
occupancy information of the narrowbands during the corresponding sensing period,faigithe n x n matrix
whose columns aréﬁi}?gol. Note that although either or r suffices for uniquely representing the Nyquist-rate
samples of the received signal, only the frequency-donepnasentation: is sparse. That is, usingto again refer
to the sparsity levelr can then be viewed as a linear combination of dakg n columns of the basis matrik. It
is this sparsity structure that allows for the use of comgivessampling to recovet with only m < n samples as
opposed to alh samples. Letting the: x n matrix ® represent the-to-m reduction matrix withm lengths rows
{9, ;.”:‘01, one can write the lengths vectory of thesem measurements ag= ®r, or alternativelyy = U with
¥ = &F by replacingr by Fz. Here each measuremept= (¢;, r) is nothing but a linear combination of the
samples. First, note that recoveriady solving the systeny = ¥z giveny would be an ill-posed problem ha
not been sparse, since there would be more unknowns thati@tpidecause: is k-sparse, it is then possible to
recover it from onlym measurements (i.ey) provided thatl possesses thestricted isometry property (RIP) [9],
which essentially means that every setkobf fewer columns of¥ behaves approximately like an orthonormal
system. Therefore, one fundamental question that hastkaignificant research attention is how to construct the

reduction matrix® such that¥ possesses the RIP? It has been shown that a Gaussian Matitose elements



®, ; are each drawn from an i.i.d. Gaussian random variable watb mean and /n variance ensures, with an
overwhelming probability, that the matri¥ = &£ has the RIP and that the vectorcan be recovered with just
m = O(klog(n/k)) measurements [10].

2) Spectrum recovery approaches. When considering a noise-free environment, one can recevey simply
finding z that minimizes||z||,, subject toy = ¥z. However, solving such a combinatorial problem is computa-
tionally expensive, and as a result, heuristic approacbgs, (BP [9] and OMP [11]) have been proposed as an
alternative solution. For instance, it has been shown thiatctombinatorial problem can equivalently be formulated
as a convex optimization problem (and hence can be solvetlagsical linear programming) by simply minimizing
the ¢1-norm of z instead of itsfy-norm; this is widely known in the literature as the Basic Siitr (BP) [9].

In practice, then measurements (i.ey) from which we intend to recover our spectrum occupancyringtion
vector x are often not noise free. Let us be more specific by consigesirfaded and noisy communication
environment, in which, the discrete signdl], I = 0,1,...,n—1, sampled at th&U’s front-end, can be expressed
asr[l] = h[l] * s[l] + w]l], whereh[l] is the channel impulse between primary transmitters andfiigs]] is the
PU transmitted signakw|(] is an Additive White Gaussian Noise with([l] ~ N(0,0?), andx is the convolution
operator. Now performing a discrete Fourier Transform am dkpression of the received discrete signalields
R=HS+W =x+ W, whereH, S, andW are the Fourier transforms @f[/], s[l], andw]], respectively, and
then performing the inverse Fourier transform on the okthiequation yields: = F'R = Fx + FW. The vector
x here contains faded versions BU/s’ signals sent at the different narrowbands. Now given thatmeasurement
vectory = ®r, we can then writay = ®Fx + ®FW, or more compactlyy = ¥z + n with n = ¥W, where
again¥ = ®F and® is then-to-m reduction matrix that reduces the number of measuremakésitsamples from
n down to onlym. Unlike in the case of the noise-free (ideal) environmemtthis noisy (realistic) environment,
not only do we have fewer samples of the signal, but also tfeseobservations are not accurate. Fortunately,
compressive sampling theory comes handy and can help neaowwen in this imperfect setting. Clearly, the
recovered vector cannot be exact now due to the imperfedtfathhe collected measurements. However, many
recovery approaches with various bounds on the error hage developed for this specific scenario. The
minimization approach [12], commonly known as LASSO, aneegly pursuits like OMP [11], CoSaMP [13] and
AS-SaMP [14] are good representatives of such approacleesnstance, LASSO [12] finds, among all feasible

signals, the sparsest one with a bounded error by solvindolfeving ¢;-minimization problem £?.xsso):
Pusso:  Mminimizel|z]l,, subjectto || Uz —yllp, <€ 1)
z

wheree > ||n||¢, is a pre-defined parameter.

3) Hardware implementation: Recently, there have also been some efforts aimed at degigrew hardware
architectures suitable for compressed wideband spectamsirgy (e.g., [15]), with an overall focus on balancing
among scanning time, energy consumption and hardware eaitygtost. For illustration, Fig. 1 shows a high-level
implementation capturing the key components of these ttures. First, the received wideband RF sigr@) is
amplified using a low noise amplifier (LNA) and fed to parallel branches, where at each branett) is mixed

with a unique pseudo-random (PN) sequence (e.g£1)f The mixing step at each branch essentially modulates
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Fig. 2. Spectrum bands occupied by applications with difieroccupancies. Grey bands are occupied by primary usdrsvhite bands are
vacant. (a) average occupancies of the different spectiookd (b) one possible allocation at some time slot.

the signalr(t) with a n-length random signab;(¢), resulting in a signak(t)y;(t) that is nothing but a linear
combination of shifted copies of frequency-domain sigrasupying each band of the wideband spectrum. In
other words, the mixing operation spreads the entire specto that the low-pass filtered (LPF) output of each
branch is a narrow band copy of the signal that contains grfeogn all the other bands. Connecting this with the
theory we discussed previously, each PN sequence can bed/i@svone row of the sensing matrix, and hence, it
is important that the PN sequences are uncorrelated to enslisble recovery. After low-pass filtering, sampling
is then performed at each brancht a rate (much lower than Nyquist rate) determined by thehaad the narrow
band, resulting in an output sequenggp]. Again, here the frequency-domain version of each sequgiiagis

a combination of the shifted versions of signals occupyhmdifferent bands. Finally, a DSP algorithm is used to

recover the signal and provide the occupancy of every band.

Il. WEIGHTED COMPRESSEDWIDEBAND SPECTRUM SENSING

In practice, applications of similar types (cellular, dits TV, etc.) are often assigned spectrum bands within
the same (or nearby) frequency block. Also, different aggion types may show different occupancy patterns and

characteristics. These two facts lead to an important @ben (also supported via measurements [6]): different



frequency blocks exhibit different occupancy statistiseg( Fig. 2). Throughout, we refer to this variability in
spectrum bands’ occupancies across the different blocksoak-like spectrum occupancy structure.

The proposed WLASSQO: In this section, we present an approach [4] that exploits Hiock-like structure to
improve the recovery efficiency, in terms of error bounds anthber of required measurements, of the spectrum
occupancy information vectar. To ease the illustrations, we assume that thearrowbands are grouped into
g disjoint contiguous blocksg;,i = 1, ..., g, with G;(G; = 0 for i # j, with each blockg;, consisting ofrn;
contiguous bands. For simplicity, we model the state of daatd:, #;, as#, ~ Bernoulli(p;) with parameter
pi € [0, 1] wherep; is the probability that bandlis occupied by som@U. Letk; = Ziegj p; be the average number
of bands occupied within block (assuming independency across band occupancies). Thie-lldecstructure of
spectrum occupancy behavior dictates thavaries from one block to another; when necessary, blocKs suiilar
sparsity levels are merged together and assigned a splnsifythat corresponds to their average. These per-block
spectrum occupancy averages can be directly estimated edegsumements or provided by spectrum operators [6].
Our proposed recovery approach, referred tavaighted LASSO (WLASSO), incorporates and exploits the sparsity
variability observed across the different frequency btk allow for a more efficient solution search. Referring
to Pusso (Equation (1)) again for illustration, let's write the vectvariablez asz = [z], 23 ,...,2]]" where
z; Is then; x 1 vector corresponding to blockfor i € {1, ..., ¢}, and assign for each blocka weightw; such
thatw; > w; whenk; < k; for all blocksi,j. Essentially, the weights are designed in such a way thabekbl
with higher sparsity level is assigned a smaller weight;ifistance, setting; = (1/1%0/2?21(1//%]-) meets such
a design requirement. The proposedASSO is then:

Purasso minizmizezg: willzille, subjectto ||z — 1y, <€ (2)
=1
Intuitively, by assigning smaller weights to blocks wittgher sparsity levelsp. ASSO ensures that the search for
a sparse solution vector, among all feasible vectors, ieditowards lesser sparse blocks, therehyreducing
recovery errors and/qii) requiring lesser numbers of measurements [4].

Performance analysis of WLASSQO Figs. 3 and 4 show error performances achieved under prdpds&SSO,
LASSO [12], OMP [11], CoSaMP [13] and AS-SaMP [14] for randBernoulli and Circulant sensing matrices, and
Table | provides their complexity analysis. Three obséovetcan be made from these results: OMeASSOincurs
the smallest errors because it encourages the search tpléadeein the portions of the spectrum with more occupied
bands. Therefore, with the same number of measuremeh8SSO yields accuracy higher than LASSO, and
does so without compromising its computational complexityis is because the difference between them is that
WLASSO assigns different weights to different blocks, whereas E8Sassigns equal weights to all blocks, and
hence, solving these two algorithms take the same amouithef However, this gain comes at the cost of needing
to know the average of occupancy of each block in advancewBeh compared to OMP, CoSaMP and AS-SaMP,
WLASSOs error gain comes also at a higher computational compleXivo, the random sensing matrix always
incurs lesser errors regardless of the recovery approaidig lised. In essence, to achieve a robust recovery, the
rows of the sensing matrix should have low cross-corratatichich is achieved more with a fully random matrix.
Three, the error gains efLASSOare maintained over LASSO, CoSaMP and AS-SaMP but not ovel @fen the
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number of measurements is high. However, as can be recatiedFig. 1, having a large number of measurements

is not of interest since it requires more branches, and henogore costly hardware.

Hardware implementation of WLASSO. As described in Section [I-B3M.ASSO can also be implemented by

first mixing the amplified wideband RF signalt) with m different PN sequences af1, sampling each of the

TABLE |
PERFORMANCE COMPARISON AMONG RECOVERY

APPROACHES

ce

Approach Complexity | Limitations Strengths

OMP [11] O(mnk) No guarantees for noisy and compressible signals| Fast

CoSaMP [13] | O(mn itr) No guarantees for noisy and compressible signals| Fast (slower than OMP) but better performan

AS-SaMP [14] | O(mmn itr) No guarantees for noisy and compressible signals| Faster than CoSaMP but slower than OMP

LASSO [12] O(m?2n3) Slow convergence for high andm Provable guarantees for stable recovery

WLASSO [4] O(m?n3) Slow convergence for high andm, Provable guarantees for stable recovery
requires some a priori knowledge for weights’ design




m low-pass filtered signals, and then digitally solving theighéed optimization at the DSP level to recover the
occupancy information. Another approach of implementmMgASSO is to implement the weighted compression
at the RF front-end instead of being done at the DSP end. ®rdbserve thavLASSO, formulated in Eq. (2),
could equivalently also be reformulated as to minimigzg|,, subject to|[¥W 1z — yl|l,, < € where W =

diagwy, -+ ,wi,ws, -+ ,Wa,...,Wg, - ,wy). The New sensing matrik’ ! essentially magnifies the columns of

ni n2 Ng

the sensing matrix that correspond to high average sparsity levels (low wejgand belittles the columns that

correspond to low average sparsity levels.

IV. COOPERATIVE AND ADAPTIVE COMPRESSEDWIDEBAND SPECTRUM SENSING

In this section, we focus on three practical issues. OngJ$i@Tcupancies are time varying. That is, not only does
spectrum occupancy vary from one frequency block to anptheralso over time. In other words, the block sparsity
levelsk;s are not fixed. It is therefore important to devise adaptjyer@aches that can provide accurate estimates
of these levels. Being able to have accurate estimates ofigpkevels is vital so that the number of measurements
needed for the recovery can be determined accurately; réereaver-sampling (using more measurements than
needed) incurs greater overheads, whereas under-sartgaifgyto inaccurate recovery. Two, recall that the number,
m, of hardware branches needed by device to performm.ASSO depends on the sparsity levél;, of each
block j. Sincek; varies over time, then so does. On the other hand, the number of hardware branches a receive
can have can only be fixed and is often way smaller thaTherefore, there is a need for adaptive approaches that
address the limited number of hardware branches as welleasatiability of m. Three, because afiU’s ability
to detect aPU’s signal depends on its distance from tA& (among other things), afU’s signal recovery may
be erroneous. This problem—aka the hidden terminal problaeeds also to be carefully addressed.

In this section, we present two approaches that addres$ithe aforementioned issues. Specifically, we rely on

prediction to overcome the first issue, and on cooperatiaovéscome the second and third issues.

A. Spectrum occupancy prediction

One way to overcome the sparsity level time-variabilityuesss to incorporate and rely on prediction models to
track and provide accurate estimates of these occupanelgldig. 5 illustrates how the performance of the weighted
compressed sensing approach behaves with and withoutpoedivhen considering two regression models: batch
gradient descent and linear support vector regressiom fig.figure shows that prediction leads to a more accurate
recovery (low miss detection rate of occupied spectrum bgras these regression schemes allow to provide more
accurate numbers of the required measurements. Due to pégtedion, here we skipped the simulation/evaluation

setup details; these details, as well as more result irsigindl prediction analysis, can be found in [5].

B. Cooperative wideband spectrum sensing

User cooperation can be leveraged to address the hiddemé&tnpnoblem, as well as the time-variability of

and the limitation in the number of hardware branches. Toesidthe hidden terminal problem, one can first have
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eachSU take and reportn local measurements to a fusion center (FC). Then, FC, aftmvering the occupancy
information by applyingM.ASSO on each of thes&Us’ local measurements, uses a voting mechanism to decide
on whether the bands are occupied. Alternatively, edthcan applywLASSO locally and send the occupancy
vector instead of sending the measurements. In this caseaRCun the voting and decide on the spectrum band
availability without needing to applydl. ASSO on each measurement set. This cooperative sensing can dhés(an
often) used as a way for addressing the hidden terminal @nebMore details on this can be found in [5].

Now for addressing the time-variability @ and the constrained number of hardware branches, our agpfiost
uses prediction techniques (e.g, those described in $dstid) to estimatem, and then have eachiU perform one
sensing scan using whatever (limited) number of branchHessitand send its measurement vector to FC. Note that an
SU can choose to perform multiple (sequential) sensing scengsvhardware, leading to more measurements (but
also to more delay). Hence, the measurement vector sizendsps theSU’s number of branches and number of

performed scans. When the number of combined measurenezaised by FC reaches, FC appliesM.ASSO to

recover the spectrum occupancy information.

V. OPEN RESEARCHCHALLENGES

Although, as explained in this paper, compressive sampdingws great potential for improving wideband
spectrum sensing, there still remains key challenges #ian addressed, further enhancements can be achieved:
« Signal type identification. Most spectrum sensing literature focused on detectinghvendiands are occupied or
not, but not so much on identifying what types of signals#raitters are occupying them. Signal identification
research has mainly focused on RF fingerprinting, whichdadlgi tries to extract features (e.g., modulation
type) that are intrinsic to the transmitted signals andfevick manufacturing imperfections, and use these
features to discriminate among the transmitters. The prokis that most of these fingerprinting techniques
can only discriminate among devices that are identical fegyroduced by different manufacturers) and that
operate using one type of communication protocol (e.g. YWiKith the rapid emergence of 10T, multiple types

of wireless protocols will emerge and possibly coexistrebg calling for more sophisticated discriminatory
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approaches. Being able to identify and discriminate amaffigrent types of devices operating using different
protocols will be vital to spectrum access enforcement. Weeet that machine learning will play a key role
in helping develop automated algorithms that allow to idgrkey features and classify signals.

« Wideband spectrum databasesAs done for the TV bands, there has recently also been a cemsdor the
need of databases that serve widebands. However, unlikeaeeof TV white space databases, building such
databases presents new requirements and challengedicsfzetiie next-generation spectrum access systems
at hand. For instance, the massive numbers of 10T devicdsatkaexpected to coexist and need spectrum
resources, though give rise to obvious resource bottleisbakenges, can surely be leveraged to improve
spectrum sensing reliability and overhead. This, for edampan be done through the use of collaborative
filtering, a theory that has already been successfully @byt domains like recommendation systems, and
can surely be exploited to build such databases.

« Adaptive hardware. As discussed in Section 1I-B3, there have already been perpaew hardware architec-
tures suitable for compressed wideband sensing, with esfooueducing sensing time and energy consumption
while keeping hardware cost at minimum. One key challengh thiese existing architectures is that they do
not adapt to signals’ sparsity levels. This is because tmaben of hardware branches can only be fixed and
is often way smaller tham:. Besides, this numbern. changes over time, as it depends on the time-varying
spectrum occupancy. Therefore, although we discussedctin8dV-B some high-level cooperative approaches
for dealing with such a problem, there remains a need for r@dutisns at the hardware level that can adapt

to sparsity levels in real time so that reliable recoveryuamnteed when actual sparsity levels vary.
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