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sensing approaches require a number of measurements that is
much smaller than what traditional non-CS-based appr@ache

= , _ require [9]. Despite the ability of these CS-based appresich
variability of spectrum occupancy and the hidden terminal . ; N .
problem. First, we prove that the wideband spectrum occupany to overcome the high sampling rate_ Il_mltatl_on, the_re remain
information can almost surely be recovered with a reduced @ number of key challenges that limit their applicability in
number of spectrum measurements. Second, we propose non- practice. These challenges are:
uniform sensing matrix design that exploits the heterogengy
in the wideband spectrum access to further improve the spec-

Abstract—We propose a distributed compressive sampling
technique for cooperative wideband spectrum sensing thate-
quires lesser numbers of measurements while overcoming tiea

o Limited receiver hardware: The number of measurements

trum sensing recovery accuracy. Using simulations, we comin
our theoretic results and show that cooperation leads to hig
detection probability, even with each secondary user takig
only a small number of measurements. We also show that it
is sufficient to consider a subset of close-by secondary useto
obtain comparable performances.

Index Terms—Heterogeneous wideband access; distributed
compressive sampling; cooperative spectrum sensing.

that receiver hardware designs are able to perform is

practically way smaller than the number of measurements

required by the CS-based sensing approaches. Therefore,
multiple sequential sensing scans are often required to

enable CS-based spectrum occupancy recovery, which
leads to excessive recovery delays, making these CS-
based approaches unsuitable for realtime applications.

o Uncertain and time-varying spectrum occupancy: The
number of measurements required by the CS-based sens-
ing approaches depends on the number of occupied bands
(i.e., sparsity level). However, the sparsity level is pfte
unknown in advance and changes over time, making it
more challenging for CS-based approaches to achieve
accurate and robust recovery without excessive overhead.

o Measurement inconsistency across the different SUs:

Due to impairments of the wireless channel, different

secondary userssys) may observe different spectrum

occupancy, leading to inconsistent measurements across
the users. This poses a challenge when using CS-based
approaches for cooperative occupancy recovery.

I. INTRODUCTION

Dynamic spectrum access (DSA) emerges as a key tech-
nology for overcoming spectrum shortage problems [1]. Due
to its great potential, DSA has already found its way to
standardization—e.g., IEEE 802.22 [2] for enabling oppor-
tunistic access in the TV bands and 3GPP’s Licensed-Adsiste
Access (LAA) and LTE-U [3] for enabling spectrum access
in the unlicensed 5 GHz band. Spectrum sensing is vital to
enabling successful DSA, and as a result, has been studied
thoroughly in the literature. Most of the sensing technique
development effort, however, has been focused on narrow
band access, and not until recently, has the focus beeedhift
towards wideband spectrum access [4-6]. This paper combines user cooperation with compressive

Performing wideband spectrum sensing (WSS) througbampling to propose a practical WSS technique that over-
traditional methods has been shown ineffective, by inogrri comes these three aforementioned challenges. In addition,
excessive delays, costly hardware, and/or high energy coanlike most previous approaches in which the entire widdban
sumption; for instance, sequential sensing approachesreeq is considered as one single block with a fixed, global sparsit
cheap hardware, but incur high sensing delays, wheredseyel, our work considers a more realistimn-homogeneous
parallel sensing approaches overcome delay issues, huiteeq WSS. In practice indeed, the wideband spectrum occupancy is
more hardware [7]. Frequency-domain analysis methods, aatherheterogeneous, with different frequency blocks exhibit-
the other hand, require sampling rates that are excessivahy different occupancy behaviors and statistics [10-TBis
high for the case of wideband, which can be feasible onlys mainly because applications of similar types (cellulay,
through complex hardware circuitry and digital processingtc.) are often assigned spectrum bands within the same (or
algorithms. More insights into the limitations of traditi@ nearby) frequency block, and different application typesvs
sensing methods when applied to WSS can be found in [7]different occupancy patterns, resulting in a non-homogese

Motivated by the sparsity feature inherent to spectrumwvideband spectrum occupancy. Unlike previous works, our
occupancy and in an effort to address the high sampling rafgoposed technique exploits the heterogeneity informatio
limitation, researchers have resorted to exploiting casgive wideband spectrum occupancy to provide further improve-
sampling (CS) theory to make WSS possible at reasonabieent of the spectrum recovery efficiency. To this end, the
sampling rates (e.g. [4,5,8]). In essence, these CS-basethin contributions of this paper are:



o We propose a distributed, cooperative CS-based sensii. (2) represents the faded version of Hus’ signals being
technique for wideband access in faded environmentsent on the different bands. Sineg is independent oh,
and prove that the proposed technique recovers the oE{x) = 0. The vectorr; is nearly sparse with energy levels
cupancy information with fewer spectrum measurementsn the unoccupied bands equaliﬁgwfc) = No.

o« We show that the number of required measurements
can be reduced even further while maintaining a high [1l. COMPRESSIVESAMPLING-BASED SENSING:
recovery accuracy by exploiting user closeness. CURRENT APPROACHES AND THEIRLIMITATIONS

« We design efficient sensing matrices that capture and
leverage prior knowledge about the spectrum occupangy,
heterogeneity to improve the occupancy recovery accuy
racy of the CS-based sensing approaches.

Recall that the number of samples needed to recover the
cupancy information through classical frequency-domai
alysis methods can be excessively large, especially when
the spectrum is wideband, making such methods unpractical.
The rest of this paper is organized as follows. Section g overcome this issue, compressive sampling (CS) theory
describes the system model. Section Il presents curreat CRas peen leveraged to take advantage of the sparsity nature
based sensing approaches along with their challenges. Seg-the spectrum occupancy vectorto reduce the number of

tion IV presents the proposed techniques. Section V presenkquired samples [9]. More specifically, the signal resglti
the numerical evaluations. Section VI concludes the paper. from applying CS theory can be written as [5]:

1. WIDEBAND SPECTRUM SENSING MODEL y = &F Yx+wjs)=¥x+1, 3)

We consider a heterogeneous WSS system Witkquency
bands and denote the support of the occupied bands bye ~ Wherey € R" is the measurement vectdt; * is the inverse
assume that the wideband spectrum accommodates multigliscrete Fourier transform (asis sparse in the Fourier basis),
different types of user applications, where applicatiohthe ¢ is the M x N sensing matrix assumed to be full rank, i.e.
same type are allocated frequency bands within the samf@nk(2) = M, andM = O(Klog(N/K) [9], with K being the
block. That is, thel narrow bands are grouped ingadisjoint sparsity level of the entire wideband. The coefficientséof
contiguous blocks, with each blocky;, consisting ofy; — are drawn from a Bernoulli distributioﬁ%} and the sensing
contiguous bands, being assigned to one application typaoiser is equal to¥F ~*w . From a hardware perspective, the
For simplicity, we model the state of each bahdising a number of measuremenis= O(Klog(N/K) corresponds to
Bernoulli(p;) with parameterp; € [0,1] where p; is the the number of hardware branches eathdevice needs to
probability that band: is occupied by some primary user have to be able to perform the CS-based sensing, with each
(PU). We assume everpu can only occupy one band. Let branch using a pseudo-random sequence mixer corresponding
Kj = >,cq, pi be the average number of bands occupiedo a raw of¢ [7, 8].
within block j (assuming independence across band occupan-
cies). As observed via real measurement studies [10-1&], th. CS-Based Wdeband Spectrum Sensing

band occupancy statistics (e.g;) vary from one block to  Broadly speaking, there are two classes of CS-based ap-
another; that is, the spectrum occupancy in wideband acceggaches that can be used to recover the spectrum occupancy
exhibits ablock-like occupancy behavior where the spectrum yectorx from the measurement vectgr(Eq. (3)). These are
occupancy can vary significantly from one block to another.(;) heuristic approaches, such as Basis Pursuit (BP) [13] and

We also consider that the WSS system biasUs that are  Orthogonal Matching Pursuit (OMP) [14], which are fast and
able and willing to perform the sensing task. The time-domaieasy to implement, but may not be very accurate, Gyl

signalr(t) received by eacU can be expressed as convex relaxation approaches which allow for more robudt an
Neig accurate recovery, but require more computation. One widel
r(t) = Z hi(t) @ si(t) + w(t), (1)  known approach of the latter class is LASSO [9, 15], which

i—1 recovers the occupancy vectoby solving

whereh;(t) is the channel impulse response betweenpiige
and thesu, s;(t) is the primary user’s signal (with powe),
w(t) is an Additive White Gaussian Noise with mearand  where ¢« is a pre-defined error threshold parameter.
varianceNNo, @ is the convolution operator, andl, is the  w_ASSO (or weighted LASSO) [16] is another convex re-

number of activePUs (for simplicity Ny;, is assumed to be |axation approach which exploits the spectrum occupancy

PLasso mzin Izlle, st ||¥z —ylle, <€ (4)

equal to the number of occupied bands). . variability observed across the different frequency bt
The discrete Fourier transform of the received signd)  allow for a more efficient solution search, thereby requgjrin
can be expressed as lesser numbers of measurements and/or incurring smaller
rr=hpsp+wp=x+wy, @) errors when compared to LASSO [16]. Formally, by referring

to Puisso (EQ. (4)), re-writing the vector variable asz =
whereh;, sy andw; are the Fourier transforms @f(t), s(t) [z ,z3,...,2;]" wherez; is theN; x 1 vector corresponding
andw(t). Here, we assume th&l(s(¢)) = 0. The vectorx in  to blocki for ¢ = 1,2,..., g, and assigning for each bloak



a weightw; such thatv; > w; whenk; < K; for all blocks IV. THE PROPOSEDWSS TECHNIQUE

i, j, WLASSO recoversx by solving In this work, we propose a cooperative, distributed com-

& pressed sensing technique for wideband spectrum accdss tha
Puasso : MIN ZWiHZinl st [[#z=ylle <€ () overcomes the three aforementioned challenges. In adgitio
=1 our proposed technique allows exploiting any prior knowl-

Here, the idea is to choose the weights in such a way that&jge about the spectrum occupancy statistics to improve the
block with a higher sparsity level is assigned a smaller Weig recovery accuracy further.

and one possible way of meeting this requirement is by ggttin
w; = (1/}'(1)/2?:1(1/?{3-) for each blocki. A. The Proposed Spectrum Recovery Approach

B. Challenges with Current CS-Based Sensing Approaches Although, due to fading, eacsU observes a different spec-

Recall that the number of measurements needed for tfIM occupancy vectat, mostsuUs observe the same support
CS-based sensing approaches to successfully recovery ffethe (néarly) sparse occupancy vector. Hence, to be able to
occupancy ist = O(K log(N/K)) [7, 8], which depends on the detegt th_e support, we propose to comp.ute, for esary, thg
total number of bandsy, and the sparsity level of spectrum contribution¢; , of every column ofSU j's sensing matr|2x,
occupancyk. This gives rise to the following two challenges. ¥, t0y; on each band; i.e..&; , = (v ¢in)” = T jn)

. Challenge 1: Hardware limitation. The number of for n =1.N. For this, we define the sample megnas

hardware branches needed to enable the CS-based recov- 12 13

ery can be high and unpractical. For example, even when == E Ein == E (y:, 0 n)2 forn=1..N (6)
. . - J ‘ J .] ‘ J )

the number of occupied bands is as smallfas= 6, j=1 j=1

the number of needed branches for a total number of Oncec, is computed, the indices corresponding to the

bands\" = 50 can be as high as = 16 [7]. In practice, . highest values among thestatistics are selected iteratively.
however, the number of branches that reasonable recelv\u;-{)?e refer to this technique aect! UM ocCUPANCY recover
designs have is typically in the order of 4 to 8 [17], que & pancy Y-

a number that is much smaller than the number o'thhoth inspired by the approach proposed in [19], our

measurementsy, required by the CS-based approachesproposed recovery approach differs in the following aspect

Therefore, hardware presents a major limitation on thl.n our work, (i) the signal occupying each band is not
o P ! %aussian, but rather follows a mixed Rayleigh and Gaussian
applicability of such CS-based approaches.

. Challenge 2: Uncertain and time-varying sparsity.The distribution in the occupied bands that depends on therdista

second challenge that these CS-based approaches agetween eaclBU and the activePU, and Gaussian with mean

o) : : :
face is that the number of occupied bands (i.e., the spar- and variancell, in the unoccupied bands (nearly sparse

sity level) is time-varying. Most CS-based approachesSIQr‘al); (7i) the sensing matrices are non-uniform Bernoulli,

. . - 1.
however, assume that the sparsity le¥elis fixed, often Where elements in columh have mear) and variance,;

done by setting it to the overall average occupancy 0‘?md (7i1) the sensing m_atrices_contain a very small number
the spectrum [4, 18]. This time variability of the sparsityOf measurements, making their columns highly correlated

of the wideband occupancy makes existing approachégrthogonality between columns is hard to meet). Algorithm
either inaccurate or incur high overhead presents our proposed iterative approach for recovermgcth

In general, from a practical viewpoint, cooperative s . cupied support. Recall that we are only interested in dietgct

; . the support rather than actual signal values in every band.
sensing approaches are more effective than non-cooperativ

approaches, since they are designed to provide spectrum _ _
availability information not just to on&U, but to multiple _Algorithm 1: Spectrum occupancy recovery

SuUs, often located in different geographic locations. Clgarl 'b”pl?t “Yp Y Tio=y,pd=1Jd k=1
1 begin

having eaclsu perform the CS-based sensing task on its own, while [z, ille, > elly;lley. 5 = 1.3 do

can be costly and redundant, as it might suffice for siéo  , - :’argmaxnej{m} LS ety )2
perform sensing and share it with oth&lis, thereby saving Q=0 U {n}

SUs’ energy and computation resources. Despite all the knowg Tjk =Tjh—1— %7%'6)%%

benefits of cooperation, there is another major challenge th R e

needs to be addressed to enable cooperative CS-basedysensin
o Challenge 3: Inconsistent observationsln practice,

differentSUs may observe different spectrum occupancy
due to wireless channel impairments (e.g., fading, multi- Now that we presented an algorithm, which leverages
path, etc.), leading to inconsistent measurements acrossoperation to recover the occupied support of a wideband
the different users. This presents a challenge when gpectrum from only a small number of measurementssper
comes to enabling and designing cooperative CS-basede turn our focus, in the next section, to study its correzdne
spectrum sensing approaches. This problem captures tker this, we prove that the proposed algorithm does indeed,
hidden terminal problem as a special case. with an overwhelming probability, recover the true supgort

return




B. Correctness of the Proposed Spectrum Recovery Approach

provide the complete proofs as well as the proof of the lemma

The following theorem states that by considering a largéue to space limitation.

number ofSUs, 2 can almost surely be recovered from only
a small number of measurements 88 leading to a high Lemma 1. Let ¢y,

detection probability.

Theorem 1. Consider J SUs, and let the measurement matrix
¥; of SU j contain independent Bernoulli elements, with

be the n** column of the sensing matrix
W whose elements are Bernoulli with zero mean and variance
%. Then, we have the following results.

M

2 J—
column i's elements being set to {f—jl}. The vector x is E((n, ¥)") = w2w? ®
nearly sparse such that x, isi.i.d. Gaussian with zero mean M(3M — 2
and variance Ny if ¢ ¢  and zero mean and variance E((thn,e)") = % (9)
E(z?) > No, if £ € Q. With M > 1 measurements per SU, “nWy
Algorithm 1 recovers ) with a probability approaching one M2
as J — oo. E((n, W>2<¢’na ¢p>2) = wiw2w? (10)
n*p

Remark 1. Observe that our proposed sensing matrix is by . ) M3
design chosen to non-uniformly distributed; this is done so E([[¢ell™ (¥n,e)”) = o (11)
that to allow the exploitation of any prior knowledge abd t n=t
spectrum occupancy statistics to improve recovery acgurac E(| H4) _ M_2 (12)
This will be shown later in Section IV-D. (Ilve oWl
Proof. The proof is based on Kolmogorov's Strong Law of M4

: : E(||le|®) = 13
Large Numbers (SLLN) [20], following the same line of (Hleel™) = w_? (13)

argument as in [19]. The main idea is to show tl§atin

an occupied band: when J increases is sufficiently high  First, we need to show that both the means and the
compared to when the bandis not occupied. Due to space variances of¢;,, for n = 1.N are finite. It is sufficient
limitation, some of the details in the proof are omitted.tg see that(22) and E(z?) are finite (upper bounded by
However, we prOVide all that is required to guide the readeﬂhe transmit powerp and p2) since in practicepUs are
to the complete proof. B sending with finite powers. Moreover, >, Y2r&in) s finite

SLLN [20] states that the sample mean= % S X of / J
n independent random variables,, X», - - -, X,,, with finite
expectationsl{(X,) < oco for n > 1) converges almost surely
to E(X,,); i.e., P(lim,, o X, = E(X,)) = 1, and that SLLN
holds if one of the following conditions is satisfied:

1) Xy, X, -+, X,, are identically distributed.

2) Var[X,] <ooand) V%QX"] < oo for all n.

= 1 : :

(upper bounded bynaxVar(&;,,) > _ ) which according to
J — j

Jj=1
Kolmogorov’s theorem is sufficient to prove thgt almost
surely converges to the mean given by Proposition 1. Fipally
we havel ijl & converge toE(¢;,,) for n = 1.N. To
finish the proof, we only need to show that the two means
are sufficiently different. Even with uniform distributicior

Considerings,,, = (y,,.,)° first we need to prove that ; , . C
theses; h%%g finit<eyje7>:pjéréiations Then, sing pare not the sensing matrix, we still have a clear distinction betwee
ah P : ' in the two cases. This distinction is more important with non-

identically distributed (due to the presence of fading) hage i . . . .
, uniform sensing matrix. For the sake of illustration, wewgho
to prove the second part of Kolmogorov's theorem. Thergfore

we start by computing the mean and variancé of for every in Fig. 1 the ratio between the two means: when banig
i . ) X .
bandn to show that both are finite. Without loss of generality,occuPIEd and when bandis not occupied for different SNRs

we will assume that the fird#t bands are the ones that areand different values af. .

occupied and the rest are not (contain only noise). The means

and variances are given by the following proposition.

&

Proposition 1. Consider the n** band. The mean of &in iS

w

-

K N

Ratio of the means of &, (dB)

]E(I?)M + Z NOM + N0M2 |f n ¢ Q 30;--;-:;‘::‘::_.@ 006 ©0-0-0 ©-0-0 ©-0-© Q-i—:;:—;;
W22 0202 wh 291 oM = 101
(=1 £7n lzlﬁl £%n n ——M =30
E(¢jn) = " 7) LI N N
], K N 5 5 5
E(x? )M i ZE(xf)M i Z NoM itn e 0 Sensing SNR (dB)
— n
4 2,,2 2,27
“n = Y é:K+1w€wn Fig. 1. The ratio betweef(¢,) whenn is an occupied band and when
L#n it is not as a function of the sensing SNR and for a differentnber of

and the variance of ¢, ,,, Var(;), is given by Eq. (14).

measurements in dBY = 256, K = 29, weights in the occupied bands
win = 1/K, weights in the unoccupied bands.: = 1, No = —120dBm.

To prove Proposition 1, we use the definitions of mean
and variance and the following Lemma. However, we did not
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C. Exploiting User Closeness

T T
—o—LASS0
..@. wLASSO ||
= =Sensing

While the previous result brings forth the power of cooper-
ation for overcoming the hardware limitation along with the
hidden terminal problem, a large numbersafs is needed to
do so. In this section, we show that by exploiting the clossne
betweensus, the number of requiregiUs can be significantly
reduced. To illustrate this further, consider tvgds with
measurement vectoss, = ¥1x; + 7, andy, = ¥axo + 1.
When the received signals at tis&s are quite similar, say

square error

Y
W,
-.“.._.._.3._.=._...‘._.:._.._.-_-4

Normalized mean
o
()
wt

10 15 20

25 30 35 40
Sensing SNR (dB)

xo = x1 + 0%, ¥, can be rewritten ag, = ¥ox; + 12 + ¥20x.
This is equivalent to having ongU takes twice the number
of measurements, i.ey. = [y yI]7, ¥. ol o7,
andn = [nf' 7T + (320%)T]T. With a higher number

Fig. 2. Recovery performance under nonuniform sensingixnatid weighted
recovery using same parameters as in [18]=(256, M = 27)

average sparsity levels. By doing so, the sensing energy is

of measurements, conventional recovery approaches such@ga, allocated, and more importantly, the error achikvab
LASSO [13] and OMP [14] can be used. Clearly, as the tWQ,nqer Algorithm 1 is reduced. Fig. 2 shows the equivalence

received signals at th&Us start to differ, it corresponds to the i tarms of performance between the two formulations. To

case of having higher noise variance, which yields a worsgngre fair comparison under the two scenarios, the elament
recovery. This approach will be evaluated in Section V. in the sensing matrix have varianc§ with 3 = N
' MY o)

To avoid confusion, we set; = w;/+/B. The figure élso
So far we discussed how cooperation could be exploiteshows that the new formulation is more robust to noisez(bette
to overcome the hardware limitation and the hidden terperformance at low sensing SNR, with SNR defineéﬂ—“’ﬁ%).
minal problem. We now propose an efficient design of
the sensing matrices that leverages prior knowledge about
the spectrum occupancy to improve the recovery accu- Consider a primary system operating over a wideband
racy. We show that capturing and exploiting the heteroconsisting of N = 128 bands grouped intg = 4 blocks with
geneity in spectrum occupancy, which is inherent to wideedual sizes. The average probabilities of occupancy in each
band spectrum access, in the sensing matrix can inde&pck are as followsk; = p; x32, Ky = px32, K3 = p3x 32,
yield a comparable performance gain #,.s50. Recalling X4 = pax32, wherep; = p3 = 0.1 andp, = py = 0.001. The
P.asso given in Eq. (5) and lettingp = Wz wherew =  PUs are randomly deployed in a cell and for simplicity, we
diag(ws, -+ w1, Wa, ++ ,Wa, ++ ,We, W), Parasso COUlD  ASSUME that the number of acti®és are equal to the number
of occupied bands. We assume Bilis are transmitting with
constant poweP = 10 W, and the received signal in each
band is affected by a Rayleigh distributed channel impulse
response with meah/d*/2. We also consider Gaussian noise,
with each band experiencing Gaussian signal with zero mean
The new matrixW—! magnifies the columns of the sensingand varianceVy = —120dBm.
matrix ¥ that correspond to high average sparsity levels (low In Fig. 3, we plot the detection probability as a function of
weights), and diminishes the columns that correspond to lothe number of cooperatirgys, J. First, we observe that as the

D. Non-uniform Sensing Matrix Design

V. PERFORMANCEEVALUATION RESULTS

Ny No
also be reformulated as

Ng

gwaensing : nyn Hp||g1 s.t. H‘I’Wﬁlp — yng <€ (15)



number of cooperatingUs increases, a high detection prob-
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This is mainly because as increases§;,, converges to its
expectationE(¢; ,,), and hence, a better distinction between
the bands is achieved. Second, we also observe that for a fixgg
J, a high detection probability is achieved when e&this

talking a higher number of measurements. 2]

(3]

(4

Detection prob.

.
20 40 60 80 100 120
Number of SUs.

140 160 180 200

(5]

Fig. 3. The detection probability fat = 8 and N = 128. 6]
To overcome the need for high numbers sifs, we in-

vestigate the effect of considering only a subset of closety
by SUs when performing detection using OMP and LASSO,
and compare that to the previous approach. Fig. 4 shows that
when considering close-I8Us (65Us), the achieved detection g
probability is close to the one achieved with a high number of
SUs, which confirms our observation. Second, our propose
approaches outperform sequential sensing approach mopos
in [17], mainly because of their ability to overcome the redd [10]
terminal problem.

9

(11]

0.8

[12]

I Proposed J
I Scquential OMP
[]Sequential LASSO
I Close-by OMP
[ Close-by LASSO

Detection prob.

(23]

0.2

[14]

Fig. 4. The detection probability fat = 8 andN = 128.

[15]

VI. CONCLUSIONS [16]

We leverage user cooperation to overcome receiver hard-
ware limitations as well as time variability of band occupan [17]
during wideband spectrum sensing. We show that cooperation
overcomes these issues by enabling distributed compeessiv
sampling-based spectrum sensing, and does so by requirin
smaller numbers of measurements by each user only. Also, Wg
consider heterogenous wideband spectrum access envinbnme
and design efficient non-uniform sensing matrices suitédyle
such an environment. Finally, we show that when the impa&g]
of fading is not so significant (for instance by considering
close-bysus), comparable performance can still be achievet?0]
from a smaller number afUs.
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