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Abstract—We propose a distributed compressive sampling
technique for cooperative wideband spectrum sensing that re-
quires lesser numbers of measurements while overcoming time-
variability of spectrum occupancy and the hidden terminal
problem. First, we prove that the wideband spectrum occupancy
information can almost surely be recovered with a reduced
number of spectrum measurements. Second, we propose non-
uniform sensing matrix design that exploits the heterogeneity
in the wideband spectrum access to further improve the spec-
trum sensing recovery accuracy. Using simulations, we confirm
our theoretic results and show that cooperation leads to high
detection probability, even with each secondary user taking
only a small number of measurements. We also show that it
is sufficient to consider a subset of close-by secondary users to
obtain comparable performances.

Index Terms—Heterogeneous wideband access; distributed
compressive sampling; cooperative spectrum sensing.

I. I NTRODUCTION

Dynamic spectrum access (DSA) emerges as a key tech-
nology for overcoming spectrum shortage problems [1]. Due
to its great potential, DSA has already found its way to
standardization—e.g., IEEE 802.22 [2] for enabling oppor-
tunistic access in the TV bands and 3GPP’s Licensed-Assisted
Access (LAA) and LTE-U [3] for enabling spectrum access
in the unlicensed 5 GHz band. Spectrum sensing is vital to
enabling successful DSA, and as a result, has been studied
thoroughly in the literature. Most of the sensing technique
development effort, however, has been focused on narrow
band access, and not until recently, has the focus been shifted
towards wideband spectrum access [4–6].

Performing wideband spectrum sensing (WSS) through
traditional methods has been shown ineffective, by incurring
excessive delays, costly hardware, and/or high energy con-
sumption; for instance, sequential sensing approaches require
cheap hardware, but incur high sensing delays, whereas,
parallel sensing approaches overcome delay issues, but require
more hardware [7]. Frequency-domain analysis methods, on
the other hand, require sampling rates that are excessively
high for the case of wideband, which can be feasible only
through complex hardware circuitry and digital processing
algorithms. More insights into the limitations of traditional
sensing methods when applied to WSS can be found in [7].

Motivated by the sparsity feature inherent to spectrum
occupancy and in an effort to address the high sampling rate
limitation, researchers have resorted to exploiting compressive
sampling (CS) theory to make WSS possible at reasonable
sampling rates (e.g. [4, 5, 8]). In essence, these CS-based

sensing approaches require a number of measurements that is
much smaller than what traditional non-CS-based approaches
require [9]. Despite the ability of these CS-based approaches
to overcome the high sampling rate limitation, there remains
a number of key challenges that limit their applicability in
practice. These challenges are:

• Limited receiver hardware: The number of measurements
that receiver hardware designs are able to perform is
practically way smaller than the number of measurements
required by the CS-based sensing approaches. Therefore,
multiple sequential sensing scans are often required to
enable CS-based spectrum occupancy recovery, which
leads to excessive recovery delays, making these CS-
based approaches unsuitable for realtime applications.

• Uncertain and time-varying spectrum occupancy: The
number of measurements required by the CS-based sens-
ing approaches depends on the number of occupied bands
(i.e., sparsity level). However, the sparsity level is often
unknown in advance and changes over time, making it
more challenging for CS-based approaches to achieve
accurate and robust recovery without excessive overhead.

• Measurement inconsistency across the different SUs:
Due to impairments of the wireless channel, different
secondary users (SUs) may observe different spectrum
occupancy, leading to inconsistent measurements across
the users. This poses a challenge when using CS-based
approaches for cooperative occupancy recovery.

This paper combines user cooperation with compressive
sampling to propose a practical WSS technique that over-
comes these three aforementioned challenges. In addition,
unlike most previous approaches in which the entire wideband
is considered as one single block with a fixed, global sparsity
level, our work considers a more realistic,non-homogeneous
WSS. In practice indeed, the wideband spectrum occupancy is
ratherheterogeneous, with different frequency blocks exhibit-
ing different occupancy behaviors and statistics [10–12].This
is mainly because applications of similar types (cellular,TV,
etc.) are often assigned spectrum bands within the same (or
nearby) frequency block, and different application types show
different occupancy patterns, resulting in a non-homogeneous
wideband spectrum occupancy. Unlike previous works, our
proposed technique exploits the heterogeneity information in
wideband spectrum occupancy to provide further improve-
ment of the spectrum recovery efficiency. To this end, the
main contributions of this paper are:



• We propose a distributed, cooperative CS-based sensing
technique for wideband access in faded environments,
and prove that the proposed technique recovers the oc-
cupancy information with fewer spectrum measurements.

• We show that the number of required measurements
can be reduced even further while maintaining a high
recovery accuracy by exploiting user closeness.

• We design efficient sensing matrices that capture and
leverage prior knowledge about the spectrum occupancy
heterogeneity to improve the occupancy recovery accu-
racy of the CS-based sensing approaches.

The rest of this paper is organized as follows. Section II
describes the system model. Section III presents current CS-
based sensing approaches along with their challenges. Sec-
tion IV presents the proposed techniques. Section V presents
the numerical evaluations. Section VI concludes the paper.

II. W IDEBAND SPECTRUMSENSING MODEL

We consider a heterogeneous WSS system withN frequency
bands and denote the support of the occupied bands byΩ. We
assume that the wideband spectrum accommodates multiple
different types of user applications, where applications of the
same type are allocated frequency bands within the same
block. That is, theN narrow bands are grouped intog disjoint
contiguous blocks, with each block,Gi, consisting of Ni
contiguous bands, being assigned to one application type.
For simplicity, we model the state of each bandi using a
Bernoulli(pi) with parameterpi ∈ [0, 1] where pi is the
probability that bandi is occupied by some primary user
(PU). We assume everyPU can only occupy one band. Let
K̄j =

∑

i∈Gj pi be the average number of bands occupied
within block j (assuming independence across band occupan-
cies). As observed via real measurement studies [10–12], the
band occupancy statistics (e.g.,K̄j) vary from one block to
another; that is, the spectrum occupancy in wideband access
exhibits ablock-like occupancy behavior where the spectrum
occupancy can vary significantly from one block to another.

We also consider that the WSS system hasJ SUs that are
able and willing to perform the sensing task. The time-domain
signalr(t) received by eachSU can be expressed as

r(t) =

Nsig∑

i=1

hi(t)⊗ si(t) + w(t), (1)

wherehi(t) is the channel impulse response between thePUs
and theSU, si(t) is the primary user’s signal (with powerP),
w(t) is an Additive White Gaussian Noise with mean0 and
varianceNN0, ⊗ is the convolution operator, andNsig is the
number of activePUs (for simplicity Nsig is assumed to be
equal to the number of occupied bands).

The discrete Fourier transform of the received signalr(t)
can be expressed as

rf = hfsf +wf = x+wf , (2)

wherehf , sf andwf are the Fourier transforms ofh(t), s(t)
andw(t). Here, we assume thatE(s(t)) = 0. The vectorx in

Eq. (2) represents the faded version of thePUs’ signals being
sent on the different bands. Sincesf is independent ofhf ,
E(x) = 0. The vectorrf is nearly sparse with energy levels
in the unoccupied bands equalingE(w2

f ) = N0.

III. C OMPRESSIVESAMPLING-BASED SENSING:
CURRENT APPROACHES AND THEIRL IMITATIONS

Recall that the number of samples needed to recover the
occupancy information through classical frequency-domain
analysis methods can be excessively large, especially when
the spectrum is wideband, making such methods unpractical.
To overcome this issue, compressive sampling (CS) theory
has been leveraged to take advantage of the sparsity nature
of the spectrum occupancy vectorx to reduce the number of
required samples [9]. More specifically, the signal resulting
from applying CS theory can be written as [5]:

y = ΦF−1(x+wf ) = Ψx+ η, (3)

wherey ∈ R
M is the measurement vector,F−1 is the inverse

discrete Fourier transform (asx is sparse in the Fourier basis),
Φ is the M × N sensing matrix assumed to be full rank, i.e.
rank(Φ) = M, and M = O(K log(N/K) [9], with K being the
sparsity level of the entire wideband. The coefficients ofΦ

are drawn from a Bernoulli distribution{±1√
M
} and the sensing

noiseη is equal toΦF−1wf . From a hardware perspective, the
number of measurementsM = O(K log(N/K) corresponds to
the number of hardware branches eachSU device needs to
have to be able to perform the CS-based sensing, with each
branch using a pseudo-random sequence mixer corresponding
to a raw ofΦ [7, 8].

A. CS-Based Wideband Spectrum Sensing

Broadly speaking, there are two classes of CS-based ap-
proaches that can be used to recover the spectrum occupancy
vectorx from the measurement vectory (Eq. (3)). These are
(i) heuristic approaches, such as Basis Pursuit (BP) [13] and
Orthogonal Matching Pursuit (OMP) [14], which are fast and
easy to implement, but may not be very accurate, and(ii)
convex relaxation approaches which allow for more robust and
accurate recovery, but require more computation. One widely
known approach of the latter class is LASSO [9, 15], which
recovers the occupancy vectorx by solving

PLASSO : min
z

‖z‖ℓ1 s.t. ‖Ψz− y‖ℓ2 ≤ ǫ (4)

where ǫ is a pre-defined error threshold parameter.
wLASSO (or weighted LASSO) [16] is another convex re-
laxation approach which exploits the spectrum occupancy
variability observed across the different frequency blocks to
allow for a more efficient solution search, thereby requiring
lesser numbers of measurements and/or incurring smaller
errors when compared to LASSO [16]. Formally, by referring
to PLASSO (Eq. (4)), re-writing the vector variablez as z =
[zT1 , z

T
2 , . . . , z

T
g ]

T wherezi is theNi×1 vector corresponding
to block i for i = 1, 2, . . . , g, and assigning for each blocki



a weightωi such thatωi > ωj when K̄i < K̄j for all blocks
i, j, wLASSO recoversx by solving

PwLASSO : min
z

g
∑

i=1

ωi‖zi‖ℓ1 s.t. ‖Ψz− y‖ℓ2 ≤ ǫ (5)

Here, the idea is to choose the weights in such a way that a
block with a higher sparsity level is assigned a smaller weight,
and one possible way of meeting this requirement is by setting
ωi = (1/K̄i)/

∑g

j=1
(1/K̄j) for each blocki.

B. Challenges with Current CS-Based Sensing Approaches

Recall that the number of measurements needed for the
CS-based sensing approaches to successfully recovery the
occupancy isM = O(K log(N/K)) [7, 8], which depends on the
total number of bands,N, and the sparsity level of spectrum
occupancy,K. This gives rise to the following two challenges.

• Challenge 1: Hardware limitation. The number of
hardware branches needed to enable the CS-based recov-
ery can be high and unpractical. For example, even when
the number of occupied bands is as small asK = 6,
the number of needed branches for a total number of
bandsN = 50 can be as high asM = 16 [7]. In practice,
however, the number of branches that reasonable receiver
designs have is typically in the order of 4 to 8 [17],
a number that is much smaller than the number of
measurements,M, required by the CS-based approaches.
Therefore, hardware presents a major limitation on the
applicability of such CS-based approaches.

• Challenge 2: Uncertain and time-varying sparsity.The
second challenge that these CS-based approaches also
face is that the number of occupied bands (i.e., the spar-
sity level) is time-varying. Most CS-based approaches,
however, assume that the sparsity level,K, is fixed, often
done by setting it to the overall average occupancy of
the spectrum [4, 18]. This time variability of the sparsity
of the wideband occupancy makes existing approaches
either inaccurate or incur high overhead.

In general, from a practical viewpoint, cooperative spectrum
sensing approaches are more effective than non-cooperative
approaches, since they are designed to provide spectrum
availability information not just to oneSU, but to multiple
SUs, often located in different geographic locations. Clearly,
having eachSU perform the CS-based sensing task on its own
can be costly and redundant, as it might suffice for oneSU to
perform sensing and share it with otherSUs, thereby saving
SUs’ energy and computation resources. Despite all the known
benefits of cooperation, there is another major challenge that
needs to be addressed to enable cooperative CS-based sensing.

• Challenge 3: Inconsistent observations.In practice,
differentSUs may observe different spectrum occupancy
due to wireless channel impairments (e.g., fading, multi-
path, etc.), leading to inconsistent measurements across
the different users. This presents a challenge when it
comes to enabling and designing cooperative CS-based
spectrum sensing approaches. This problem captures the
hidden terminal problem as a special case.

IV. T HE PROPOSEDWSS TECHNIQUE

In this work, we propose a cooperative, distributed com-
pressed sensing technique for wideband spectrum access that
overcomes the three aforementioned challenges. In addition,
our proposed technique allows exploiting any prior knowl-
edge about the spectrum occupancy statistics to improve the
recovery accuracy further.

A. The Proposed Spectrum Recovery Approach

Although, due to fading, eachSU observes a different spec-
trum occupancy vectorx, mostSUs observe the same support
of the (nearly) sparse occupancy vector. Hence, to be able to
detect the support, we propose to compute, for everySU j, the
contributionξj,n of every column ofSU j’s sensing matrix,
Ψj , to yj on each bandn; i.e., ξj,n = 〈yj , ψj,n〉2 = (yTj ψj,n)

2

for n = 1..N. For this, we define the sample meanξn as

ξn =
1

J

J∑

j=1

ξj,n =
1

J

J∑

j=1

〈yj , ψj,n〉2 for n = 1..N (6)

Onceξn is computed, the indices corresponding to theK

highest values among theN statistics are selected iteratively.
We refer to this technique asspectrum occupancy recovery.
Although inspired by the approach proposed in [19], our
proposed recovery approach differs in the following aspects:
in our work, (i) the signal occupying each band is not
Gaussian, but rather follows a mixed Rayleigh and Gaussian
distribution in the occupied bands that depends on the distance
between eachSU and the activePU, and Gaussian with mean
0 and varianceN0 in the unoccupied bands (nearly sparse
signal); (ii) the sensing matrices are non-uniform Bernoulli,
where elements in columni have mean0 and variance1

ω2
i

;
and (iii) the sensing matrices contain a very small number
of measurementsM, making their columns highly correlated
(orthogonality between columns is hard to meet). Algorithm1
presents our proposed iterative approach for recovering the oc-
cupied support. Recall that we are only interested in detecting
the support rather than actual signal values in every band.

Algorithm 1: Spectrum occupancy recovery
Input : yj , Ψj , rj,0 = yj , j = 1..J, k = 1

1 begin
2 while ‖rj,k‖ℓ2 ≥ ǫ‖yj‖ℓ2 , j = 1..N do
3 nk = argmaxn∈{1..N}

1

J

∑J
j=1

|〈rj,k−1, ψj,n〉|
2

4 Ω = Ω
⋃

{nk}

5 rj,k = rj,k−1 −
〈rj,k−1,ψj,nk

〉

‖ψj,nk
‖2
ℓ2

ψj,nk

6 k = k + 1

7 return Ω

Now that we presented an algorithm, which leverages
cooperation to recover the occupied support of a wideband
spectrum from only a small number of measurements perSU,
we turn our focus, in the next section, to study its correctness.
For this, we prove that the proposed algorithm does indeed,
with an overwhelming probability, recover the true supportΩ.



B. Correctness of the Proposed Spectrum Recovery Approach

The following theorem states that by considering a large
number ofSUs, Ω can almost surely be recovered from only
a small number of measurements perSU, leading to a high
detection probability.

Theorem 1. Consider J SUs, and let the measurement matrix
Ψj of SU j contain independent Bernoulli elements, with
column i’s elements being set to {±1

ωi
}. The vector x is

nearly sparse such that xℓ is i.i.d. Gaussian with zero mean
and variance N0 if ℓ /∈ Ω and zero mean and variance
E(x2ℓ ) > N0, if ℓ ∈ Ω. With M > 1 measurements per SU,
Algorithm 1 recovers Ω with a probability approaching one
as J → ∞.

Remark 1. Observe that our proposed sensing matrix is by
design chosen to non-uniformly distributed; this is done so
that to allow the exploitation of any prior knowledge about the
spectrum occupancy statistics to improve recovery accuracy.
This will be shown later in Section IV-D.

Proof. The proof is based on Kolmogorov’s Strong Law of
Large Numbers (SLLN) [20], following the same line of
argument as in [19]. The main idea is to show thatξn in
an occupied bandn when J increases is sufficiently high
compared to when the bandn is not occupied. Due to space
limitation, some of the details in the proof are omitted.
However, we provide all that is required to guide the reader
to the complete proof.

SLLN [20] states that the sample meanX̄n = 1
n

∑n
i=1 Xi of

n independent random variables,X1, X2, · · · , Xn, with finite
expectations (E(Xn) <∞ for n ≥ 1) converges almost surely
to E(Xn); i.e., P(limn→∞ X̄n = E(Xn)) = 1, and that SLLN
holds if one of the following conditions is satisfied:

1) X1, X2, · · · , Xn are identically distributed.
2) Var[Xn] <∞ and

∑∞
n=1

Var[Xn]
n2 <∞ for all n.

Consideringξj,n = 〈yj ,ψj,n〉2, first we need to prove that
theseξj,n have finite expectations. Then, sinceξj,n are not
identically distributed (due to the presence of fading), wehave
to prove the second part of Kolmogorov’s theorem. Therefore,
we start by computing the mean and variance ofξj,n for every
bandn to show that both are finite. Without loss of generality,
we will assume that the firstK bands are the ones that are
occupied and the rest are not (contain only noise). The means
and variances are given by the following proposition.

Proposition 1. Consider the nth band. The mean of ξj,n is

E(ξj,n) =







K∑

ℓ=1

E(x2ℓ )M

ω2
ℓω

2
n

+

N∑

ℓ=K+1
ℓ 6=n

N0M

ω2
ℓω

2
n

+
N0M

2

ω4
n

, if n /∈ Ω

E(x2n)M
2

ω4
n

+

K∑

ℓ=1
ℓ 6=n

E(x2ℓ )M

ω2
ℓω

2
n

+

N∑

ℓ=K+1

N0M

ω2
ℓω

2
n

, if n ∈ Ω

(7)

and the variance of ξj,n, Var(ξj,n), is given by Eq. (14).

To prove Proposition 1, we use the definitions of mean
and variance and the following Lemma. However, we did not

provide the complete proofs as well as the proof of the lemma
due to space limitation.

Lemma 1. Let ψn be the nth column of the sensing matrix
Ψ whose elements are Bernoulli with zero mean and variance
1
ω2
n

. Then, we have the following results.

E(〈ψn, ψℓ〉2) =
M

ω2
nω

2
ℓ

(8)

E(〈ψn, ψℓ〉4) =
M(3M− 2)

ω4
nω

4
ℓ

(9)

E(〈ψn, ψℓ〉2〈ψn, ψp〉2) =
M2

ω4
nω

2
pω

2
ℓ

(10)

E(‖ψℓ‖4〈ψn, ψℓ〉2) =
M3

ω2
nω

6
ℓ

(11)

E(‖ψℓ‖4) =
M2

ω4
ℓ

(12)

E(‖ψℓ‖8) =
M4

ω8
ℓ

(13)

First, we need to show that both the means and the
variances ofξj,n for n = 1..N are finite. It is sufficient
to see thatE(x2ℓ ) and E(x4ℓ ) are finite (upper bounded by
the transmit powerP and P2) since in practicePUs are
sending with finite powers. Moreover,

∑∞
j=1

Var(ξj,n)
j2 is finite

(upper bounded bymax
j

Var(ξj,n)

∞∑

j=1

1

j2
) which according to

Kolmogorov’s theorem is sufficient to prove thatξn almost
surely converges to the mean given by Proposition 1. Finally,
we have 1

J

∑J

j=1 ξj,n converge toE(ξj,n) for n = 1..N. To
finish the proof, we only need to show that the two means
are sufficiently different. Even with uniform distributionfor
the sensing matrix, we still have a clear distinction between
the two cases. This distinction is more important with non-
uniform sensing matrix. For the sake of illustration, we show
in Fig. 1 the ratio between the two means: when bandn is
occupied and when bandn is not occupied for different SNRs
and different values ofM. �

Fig. 1. The ratio betweenE(ξn) when n is an occupied band and when
it is not as a function of the sensing SNR and for a different number of
measurements in dB.N = 256, K = 29, weights in the occupied bands
ωin = 1/K, weights in the unoccupied bandsωout = 1, N0 = −120dBm.



Var(ξj,n) =







K∑

ℓ=1

E(x4ℓ )M(3M− 2)

ω4
ℓω

4
n

+ 2

K∑

ℓ=1

K∑

m=1
m 6=ℓ

E(x2ℓ )E(x
2
m)

ω2
ℓω

2
mω

4
n

+ 6

[
K∑

ℓ=1

E(x2ℓ )M

ω2
ℓω

2
n

][
N∑

ℓ=K+1
ℓ 6=n

N0M

ω2
ℓω

2
n

+
N0M

2

ω4
n

]

+

N∑

ℓ=K+1
ℓ 6=n

N0
2M(3M− 2)

ω4
ℓω

4
n

+ 2

N∑

ℓ=K+1
ℓ 6=n

N∑

m=K+1
m 6=ℓ
m 6=n

N0
2M2

ω2
ℓω

2
mω

4
n

+ 6
N0M

2

ω4
n

[
N∑

ℓ=K+1
ℓ 6=n

N0M

ω2
nω

2
ℓ

+
N0M

2

ωn

]

+
N0

2M4

ω8
n

, if n /∈ Ω

K∑

ℓ=1
ℓ 6=n

E(x4ℓ )M(3M− 2)

ω4
nω

4
ℓ

+ 2

K∑

ℓ=1
ℓ 6=n

K∑

p=1
p6=ℓ
p6=n

E(x2p)E(x
2
ℓ )M

2

ω4
nω

4
ℓω

2
p

+ 6

[
K∑

ℓ=1
ℓ 6=n

E(x2ℓ )M

ω2
nω

2
ℓ

+
E(x2ℓ )M

2

ω4
n

][
N∑

ℓ=K+1

E(x2ℓ )M

ω2
nω

2
ℓ

]

+4

K∑

ℓ=1
ℓ 6=n

E(x2p)E(x
2
ℓ )M

3

ω6
nω

2
ℓ

+
E(x4n)

ω8
n

+

N∑

ℓ=K+1

E(x4ℓ )M(3M− 2)

ω4
nω

4
ℓ

+ 2

N∑

ℓ=K+1

N∑

p=K+1
p6=ℓ

E(x2ℓ )E(x
2
p)M

2

ω4
nω

2
pω

2
ℓ

, if n ∈ Ω

(14)

C. Exploiting User Closeness

While the previous result brings forth the power of cooper-
ation for overcoming the hardware limitation along with the
hidden terminal problem, a large number ofSUs is needed to
do so. In this section, we show that by exploiting the closeness
betweenSUs, the number of requiredSUs can be significantly
reduced. To illustrate this further, consider twoSUs with
measurement vectorsy1 = Ψ1x1 + η1 and y2 = Ψ2x2 + η2.
When the received signals at theSUs are quite similar, say
x2 = x1 + δx, y2 can be rewritten asy2 = Ψ2x1 + η2 + Ψ2δx.
This is equivalent to having oneSU takes twice the number
of measurements, i.e.,yc = [yT1 yT2 ]

T , Ψc = [ΨT1 ΨT2 ]
T ,

and η = [ηT1 ηT2 + (Ψ2δx)
T ]T . With a higher number

of measurements, conventional recovery approaches such as
LASSO [13] and OMP [14] can be used. Clearly, as the two
received signals at theSUs start to differ, it corresponds to the
case of having higher noise variance, which yields a worse
recovery. This approach will be evaluated in Section V.

D. Non-uniform Sensing Matrix Design

So far we discussed how cooperation could be exploited
to overcome the hardware limitation and the hidden ter-
minal problem. We now propose an efficient design of
the sensing matrices that leverages prior knowledge about
the spectrum occupancy to improve the recovery accu-
racy. We show that capturing and exploiting the hetero-
geneity in spectrum occupancy, which is inherent to wide-
band spectrum access, in the sensing matrix can indeed
yield a comparable performance gain toPwLASSO. Recalling
PwLASSO given in Eq. (5) and lettingp = Wz where W =
diag(ω1, · · · , ω1

︸ ︷︷ ︸

N1

, ω2, · · · , ω2
︸ ︷︷ ︸

N2

, · · · , ωg, · · · , ωg
︸ ︷︷ ︸

Ng

), PwLASSO could

also be reformulated as

PwSensing : min
p

‖p‖ℓ1 s.t. ‖ΨW−1p− y‖ℓ2 ≤ ǫ (15)

The new matrixW−1 magnifies the columns of the sensing
matrix Ψ that correspond to high average sparsity levels (low
weights), and diminishes the columns that correspond to low

Fig. 2. Recovery performance under nonuniform sensing matrix and weighted
recovery using same parameters as in [16]. (N = 256, M = 27)

average sparsity levels. By doing so, the sensing energy is
better allocated, and more importantly, the error achievable
under Algorithm 1 is reduced. Fig. 2 shows the equivalence
in terms of performance between the two formulations. To
ensure fair comparison under the two scenarios, the elements
in the sensing matrixΨ have varianceβ

M
, with β = N

(M
∑

N
j=1

1

ω2
j

)
.

To avoid confusion, we setωi = ωi/
√
β. The figure also

shows that the new formulation is more robust to noise (better
performance at low sensing SNR, with SNR defined as‖Ψx‖2

‖η‖2 ).

V. PERFORMANCEEVALUATION RESULTS

Consider a primary system operating over a wideband
consisting ofN = 128 bands grouped intog = 4 blocks with
equal sizes. The average probabilities of occupancy in each
block are as follows:̄K1 = p1×32, K̄2 = p2×32, K̄3 = p3×32,
K̄4 = p4×32, wherep1 = p3 = 0.1 andp2 = p4 = 0.001. The
PUs are randomly deployed in a cell and for simplicity, we
assume that the number of activePUs are equal to the number
of occupied bands. We assume allPUs are transmitting with
constant powerP = 10 W, and the received signal in each
band is affected by a Rayleigh distributed channel impulse
response with mean1/dα/2. We also consider Gaussian noise,
with each band experiencing Gaussian signal with zero mean
and varianceN0 = −120dBm.

In Fig. 3, we plot the detection probability as a function of
the number of cooperatingSUs,J. First, we observe that as the



number of cooperatingSUs increases, a high detection prob-
ability is achieved regardless of the number of measurements
eachSU is taking, thus confirming our main theorem result.
This is mainly because asJ increases,ξj,n converges to its
expectationE(ξj,n), and hence, a better distinction between
the bands is achieved. Second, we also observe that for a fixed
J, a high detection probability is achieved when eachSU is
talking a higher number of measurements.

Fig. 3. The detection probability forM = 8 andN = 128.

To overcome the need for high numbers ofSUs, we in-
vestigate the effect of considering only a subset of close-
by SUs when performing detection using OMP and LASSO,
and compare that to the previous approach. Fig. 4 shows that
when considering close-bySUs (6SUs), the achieved detection
probability is close to the one achieved with a high number of
SUs, which confirms our observation. Second, our proposed
approaches outperform sequential sensing approach proposed
in [17], mainly because of their ability to overcome the hidden
terminal problem.

Fig. 4. The detection probability forM = 8 andN = 128.

VI. CONCLUSIONS

We leverage user cooperation to overcome receiver hard-
ware limitations as well as time variability of band occupancy
during wideband spectrum sensing. We show that cooperation
overcomes these issues by enabling distributed compressive
sampling-based spectrum sensing, and does so by requiring
smaller numbers of measurements by each user only. Also, we
consider heterogenous wideband spectrum access environment
and design efficient non-uniform sensing matrices suitablefor
such an environment. Finally, we show that when the impact
of fading is not so significant (for instance by considering
close-bySUs), comparable performance can still be achieved
from a smaller number ofSUs.
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