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Abstract

The emergence of internet of things (IoT) is driving a rapid growth in the use of wireless devices around the world. In addition,

5G, through its support for large numbers of devices, is expected to unleash the full potential of IoT globally. The growing number

of wireless devices and the massive traffic stemming from the emergence of these technologies will result in a dramatic increase of

the demand for spectrum resources. Dynamic spectrum sharing, enabled through the cognitive radio network technology, emerges

as a key solution for coping with these rising spectrum demands. One important approach that is currently being adopted as a

potential solution for promoting dynamic spectrum sharing is the deployment and reliance on white space geo-location spectrum

databases for locating spectrum availability in the TV white space. Despite the great benefits these databases offer in terms of

their ability to help locating spectrum opportunities for secondary usage, they suffer from location privacy issues, as users need

to reveal their location in the process of querying these databases for spectrum availability. Knowing that their whereabouts

may be exposed, users can be discouraged from querying the databases, thereby hindering the adoption and deployment of this

technology in future generation networks. In this article, we focus on the location privacy problem in database-driven dynamic

spectrum access. Specifically, we present and compare key approaches that aim to protect the location information of secondary

users in database-driven spectrum sharing and discuss some key research challenges that remain unaddressed.

I. INTRODUCTION

Geo-location white space databases have risen to become the de facto approach, as recently promoted by FCC (federal

communications commission), to enable SU s to identify idle spectrum bands (also known as spectrum holes or white spaces).

In this approach, SU s query a certified geo-location spectrum database by including their location information, and the database

is expected to return a list of available channels in SU s’ vicinity along with other transmission parameters.

In the TV band, ten entities, including Google and Microsoft, were designated by FCC as TV spectrum database administrators

that are required to abide by PAWS (protocol to access white space) standard [1] which sets guidelines and operational

requirements for all the entities in TV white space database-driven CRN s. As stipulated by PAWS, SU s may be served by

several spectrum databases that are required to synchronize their records and provide exactly the same spectrum availability

information, in any region, in response to SU s’ queries. Simply put, SU s can access the same copy of the spectrum database

through multiple, distinct TV white space administrators.

There also exists standards now in the 802 family, developed to regulate the utilization of specific spectrum bands, mainly

in the TV band space, using database-driven CRN s. IEEE 802.22, for instance, aims to harness database-driven CRN s to



enable spectrum sharing for wide-area regional networks in the TV bands. We expect also that database-driven CRN s will be

deployed in 5G to meet its tremendous data rate and spectrum requirements.

A. Location Privacy Issue in Database-Driven CRN s

Despite their great benefits in improving spectrum utilization efficiency, database-driven CRN s face serious privacy

challenges especially in terms of protecting SU s’ location privacy. This is mainly due to the fact that SU s have to share their

location with the database to have accurate spectrum availability information. Most users will refuse to expose their location

as their whereabouts could be used for malicious purposes and eventually to gain more sensitive information especially in the

presence of malicious service providers. In fact, the location information can easily reveal an individual’s shopping patterns,

religious beliefs, or even health condition, especially when combined with publicly available data. Because of this, we envision

that the public’s acceptance of this paradigm will greatly depend on the security guarantees that CRN s will offer regarding

these privacy risks. It is, therefore, paramount to design privacy-preserving mechanisms that protect SU s’ location privacy

while allowing them to harness the benefits of database-driven CRN s.

Such privacy-preserving mechanisms would have great benefits for both SU s and PU s. Indeed, they would promote dynamic

spectrum sharing by encouraging SU s to trust the spectrum databases which would increase spectrum utilization efficiency

and enable SU s to harness more frequency resources. This would also lead to the PU s having less harmful interference from

SU s concerned about their location privacy and not willing to rely on geo-location spectrum databases to check for spectrum

opportunities. However, providing location privacy guarantees to SU s cannot be achieved without a cost. In fact, this will

introduce additional computation, communications, and storage overheads, which can lead to additional delay experienced by

SU s when querying the spectrum database, causing them to obtain an outdated spectrum availability information in the extreme

case. This, in turn, may lead to the use of occupied primary channels and causing harmful interference to PU s. Therefore,

privacy-preserving mechanisms for database-driven CRN s must be designed carefully so as to guarantee SU s’ privacy without

compromising databases’ service quality.

B. Related Work

The location privacy issue in database-driven CRN s has only recently started to gain some interest from the research

community despite its importance. Broadly speaking, there are mainly two lines of privacy-preserving technologies that were

adopted by existing works in this context: (i) k-anonymity [2] and (ii) single-server private information retrieval (PIR) [3]. In

k-anonymity-based approaches, an SU includes k − 1 additional locations in its query to make its location indistinguishable

from these additional locations. Zhang et al. [4] use this concept in their privacy-preserving approach, by generating k − 1

properly selected dummy locations. Their protocol requires a tradeoff between some spectrum utility and high location privacy

level, meaning that achieving the latter results in a decrease in the former. Clearly, the privacy level in such approaches depends

on the value of k. Small values of k may compromise privacy while large values can incur high overheads.

Single-server PIR-based approaches [5], on the other hand, which seem to have attracted more focus, are a special type of

PIR technology, which essentially allows a user to retrieve a record from a database while hiding the identity of the record



from the database. They are designed to ensure privacy against a computationally bounded server that has to solve a certain

computationally hard problem (e.g. discrete logarithm), depending on the underlying cryptosystem, to learn the identity of

the record of interest. A PIR-based approach in the context of CRN s aims to hide the record that an SU is interested in

from the spectrum database, as this record is typically associated with the user’s location as depicted in Figure 1, which gives

a simplified high-level overview of how single-server PIR-based approaches work. An SU needs to provide the index i of

the record that it is interested in, usually through an inverted-index like mechanism. Generally, using this index of interest,

SU constructs a vector whose size is equal to the number of elements in the database. All entries of this vector are equal to the

identity element of the plaintext space except for the ith entry, which contains a non-identity element. In Figure 1, the identity

element with respect to addition is 0. The elements of this vector are encrypted, typically using an additive homomorphic

cryptosystem. This vector of ciphertexts is then multiplied with records of the database and the results are aggregated together

thanks to the homomorphic properties of the ciphertexts. The aggregated ciphertext is then returned to SU , who can decrypt it

and retrieve the record of interest without revealing the location information. The only information that the spectrum database

can learn is the vector of ciphertexts sent by SU .

Troja et al. [6] leverage PIR protocols to preserve the location privacy of mobile SU s. They make an SU send a series

of several PIR queries to the database to learn spectrum availability in and around its current location. SU s gradually build

a trajectory-specific spectrum knowledge cache as they move and can privately share this knowledge with other SU s within

their communication range with whom they form groups and interact in a peer-to-peer manner.

Gao et al. [7] also adapt PIR in their protocol, which enables an SU to hide its location coordinates within other locations

and uses some irreversible mathematical transformation to blind this information in such a way that only the SU is able to

revert it, before sending it to the database. The database multiplies this blinded query with the spectrum availability matrix

and returns the result to SU , which will be able to recover the record of interest by relying on the secure parameters used to

transform the original query. Despite the wide-spread usage of single-server PIR protocols in the context of database-driven

CRN s, these protocols incur very large overhead as they involve highly costly cryptographic operations, such as modular

multiplication over large moduli, that need to be executed over the entire database for every query coming from SU s [5], [8].

Some existing approaches [9] have also adopted a new concept termed ε-geoindistinguishability [10], which is derived

from the well-known concept of differential privacy to suit LBS (location-based services) applications. This is because

differential privacy cannot be used as it is to provide location privacy for database-driven CRN s since it is designed for

statistical databases (databases that contain private user data). More specifically, differential privacy aims to allow queries

to access statistical/aggregate information (e.g., average, sum, etc.) about the data held in the entire database, but without

revealing any information about the individual data records themselves. It formalizes the idea that a query should not disclose

whether a user’s record is present in a database, nor does it disclose any information about the record itself. The basic

idea behind ε-geoindistinguishability consists of adding controlled random noise to SU s’ locations to obfuscate them. The

problem with this approach is that it may compromise the accuracy of the spectrum availability information. Moreover, the

ε-geoindistinguishability-based approach protects an SU ’s location only within a radius r with a privacy level that depends on



r which results in lower privacy guarantees than PIR-based approaches in general. Note that the work in [9] targets a different

goal, protecting bilateral location privacy of both PU s and SU s.

It is worth noting that PIR, on the other hand, is designed for databases that contain data records that are not private (not

owned by some specific users), in that data can be accessed by any (legitimate) users as it is the case for database-driven

CRN s. PIR aims to prevent the database owner from learning the identity of the record that is being queried by the user.

The common feature among these approaches is that they only consider one spectrum database, whereas in the case of the

CRN paradigm, there exists, by design requirement, multiple databases that all concurrently serve SU s. The ability to query

multiple databases at no database duplication cost is very unique and inherent to the database-driven CRN paradigm, and can

thus be leveraged to design highly efficient privacy-preservation mechanisms. The focus of this paper is on filling this research

gap by presenting a new class of approaches that leverage multiple spectrum databases to protect SU s’ location privacy. To

the best of our knowledge, we are the first to harness the natural existence of multiple spectrum databases to employ multi-

server PIR technology [11]. Thanks to this, our approach departs from existing protocols by offering information-theoretic

privacy as opposed to existing approaches which can only offer computational privacy at best. In addition, unlike the ε-

geoindistinguishability-based technique, our multi-server-based approach does not introduce noise, but instead relies on secret

sharing to divide the query among multiple databases. Moreover, our adaptation of multi-server PIR brings great performance

benefits, making our approach significantly outperform the state-of-the-art location privacy-preservation methods.

Next, we first begin by presenting our proposed approach to address the location privacy issue in database-driven CRN s.

Then, we discuss the different challenges that we envision to be the most prominent to database-driven CRN s.

II. MULTI-SERVER PIR FOR LOCATION PRIVACY PRESERVATION IN DATABASE-DRIVEN CRN S

As mentioned earlier, multiple TV spectrum band databases exist by system design requirement, each operated by a different

service provider. This FCC requirement, though set for market competitiveness and service reliability reasons, creates the

opportunity to make use of multi-server PIR approaches (also known as information-theoretic PIR) for developing efficient

privacy-preserving schemes. Multi-server PIR protocols guarantee optimal privacy against computationally unbounded servers,

qualified as information-theoretic privacy [12]. However, they require duplication of the database at least two non-colluding

servers to achieve this privacy level. To prevent leaking any information about the identity of the record of interest to the user,

information-theoretic PIR protocols decompose the user’s query into several subqueries instead of encrypting it as it is, as in

the case of single-server PIR, resulting in much better performances in terms of both computation and communication. Each of

these subqueries is processed by a different database and the results are then combined by SU as illustrated in Figure 2. On top

of providing stronger privacy guarantees when compared to their single-server PIR counterparts, multi-server PIR protocols

are also more efficient (in terms of communications/computation overheads), when the database duplication requirement comes

at no cost as in the case of CRN s. Table I summarizes the differentiating aspects of both single-server and multi-server PIRs.

The fact that database-driven CRN s meet the database duplication requirement at no cost allows us to harness the benefits

of multi-server PIR to achieve information-theoretic privacy without compromising protocol efficiency. We summarize the



major components of our multi-server PIR-based scheme in Figure 2 and present its steps in the next section.

A. Multi-Server PIR-Based Location Privacy Preservation

In this section, we use the first and simplest multi-server PIR protocol [12] to illustrate the concepts and benefits that

multi-server PIR brings to database-driven CRN s. Let us consider a CRN system with ` synchronized databases operated by

different service providers but all share the same content, modeled as an n-bit binary matrix, D , and having r records each

of size b bits. Each record of the database is indexed using a unique combination of location information, a channel number,

and a timestamp. We assume that SU s and the databases agree on an inverted index technique to enable SU s to associate

their location information and channel of interest at a specific time to an index k corresponding to the record of interest in the

database. This index is used by SU s to privately query the databases about spectrum opportunities in their vicinity.

Based on the obtained index, SU constructs a standard basis vector ek of size r , whose elements are equal to 0 except

the k th element which is equal to 1. The product of ek with D yields the k th record of the database. Since k is associated

with its location information, SU cannot simply send ek to the databases. Instead, SU decomposes this vector into several

subqueries, with each being sent to a different database to prevent leaking any information about it. For this, SU picks `− 1

r -bit binary strings ρ1, · · · ,ρ`−1 uniformly at random, computes ρ` by XORing the previously generated binary strings with

ek , and distributes these ` binary strings among the ` databases as illustrated in Figure 3.

Once it receives a bitstring from SU , DB i multiplies it with D and sends the result Ri to SU . SU collects all results from

the ` databases and XOR them, yielding exactly the k th record that SU queried thanks to the properties of XOR.

Thanks to its reliance on simple XOR operations only, this approach is very efficient in terms of computation compared to

existing single-server-based approaches. We have validated this experimentally using GENI [13] cloud platform by deploying

6 virtual machines sharing the same content, emulating spectrum databases as in a real system. These virtual machines are

deployed in different GENI aggregates located in Stanford, New York, Chicago, Kentucky, Utah, and Washington to count for

the networking delay. As access to real spectrum database data was not possible, we generated for our experiment a random

data matrix for modeling the database’s content, with a fixed block size of 560 kB and a variable number of records. The block

size is estimated based on the public raw data provided by FCC [14] and used by service providers to populate their spectrum

databases. It takes into consideration SU ’s query generation time, network delay, database’s query processing time, and SU ’s

reply decoding time. We use an Internet connection of 80Mbps on the download and 30Mbps on the upload in our experiment.

A laptop plays the role of a SU by querying the virtual machines representing the databases. We have deployed the multi-

server PIR approach discussed in this paper along with the best existing single-server PIR protocol [8], [11], which was not

used in the context of CRN s, in our testbed. We also compare our location privacy-preserving approach to the state-of-the-art

protocols [6], [7], which are based on single-server PIR. Note that in our comparison we consider only PIR-based approaches

since they offer stronger privacy guarantees than their k-anonymity and ε-geoindistinguashibility-based approaches and also

because some of these works aims at a different privacy objective. We illustrate the measured performances of the different

protocols in terms of query end-to-end delay in Figure 4, and communication overhead in Figure 5; more detailed results can be



found in [11]. The end-to-end delay measures the total delay from when SU generates its query until it receives all responses

and extracts the record. As shown in Figure 4, our multi-server PIR-based approach outperforms existing approaches in terms

of total delay, especially as the number of records in the database increases. This further proves the benefit of using multi-server

information-theoretic PIR in database-driven CRN s over classical approaches. Note also that most of this overhead is incurred

by the spectrum databases, leaving only a small number of XOR operations to be performed by SU , which makes the approach

more suitable for devices with constrained resources like IoTs.

As explained earlier, each query sent to each of the ` databases is of size r bits. As each database performs XOR operations

of some of its rows to generate a response, the size of each response is similar to that of one row of the database, that is b bits.

Therefore, the total communications overhead incurred every time an SU queries the databases would be (r + b) · `, which is

still better than state-of-the-art techniques; this has also been confirmed via our experimental results as depicted in Figure 5.

In addition, our approach offers information-theoretic privacy as opposed to the weaker computational privacy offered by

existing single-server-based approaches. It can also handle collusion of up to `−1 databases without revealing any information

about ek of SU (i.e. its location). Only if ` databases collude that it will be possible to retrieve the location of SU by XORing

the bitstrings that they received from SU . This is unlikely to happen in a real-life scenario, where service providers operating

these spectrum databases are competing companies that have no or little interest in colluding.

B. Robustness to Database Failures

Despite its great benefits in terms of efficiency and privacy, the presented multi-server PIR approach is not robust to database

failures, since if one (or more) of the ` databases fail to respond, SU will not be able to recover the record. The approach

is not robust against Byzantine failures either, because if one (or more) database returns an erroneous result (maliciously or

unintentionally), SU will reconstruct a wrong result, leading to inaccurate spectrum availability information, which can trigger

harmful interference to incumbent users. Also, SU will not be able to identify which one of the databases misbehaved so

as to not rely on it for future queries. We have addressed these issues in the work presented in [11], which proposes an

improved version of the multi-server PIR approach discussed above that still provides information-theoretic privacy while

ensuring robustness against these aforementioned database failures.

III. OPEN RESEARCH CHALLENGES

Despite the efforts made so far to protect SU s’ location privacy in database-driven CRN s, there remains challenges that

need to be addressed, which we highlight next.

A. Private collection of SU s’ usage data

Most of the existing location privacy preservation efforts for database-driven CRN s have focused on hiding SU s’ information

when querying the databases. However, after querying the spectrum database, there is an optional but important notification

phase in which SU may notify the database about its operational parameters (e.g., band to be used, transmit power level,

etc). Conveying such information could be beneficial in helping the database manage the spectrum resources more efficiently.



However, such information could also be easily linked to SU s’ location. Now, it is true that this notification phase is optional

in the PAWS standard, as it is not concerned, at this point, with the interference and coexistence among SU s. However, some

applications may have more stringent requirements about their QoS and the interference among SU s, and may, thereby, require

SU s’ spectrum usage information to ensure better coexistence between them. Thus, there is a significant need for understanding

how and what spectrum usage data should be collected and analyzed to assess spectrum utilization without an infringement

on SU ’s privacy. However, privately updating the database with the usage information could be cumbersome, and standard

privacy enhancing techniques may not be used off-the-shelf in this context.

B. Partial replication of database content

The multi-server PIR-based approach presented in this paper is efficient and provides information-theoretic privacy by

exploiting the fact that database-driven CRN s involve multiple service providers by design. However, one aspect that needs

to be improved is the communication overhead incurred by this approach. One potential solution could be to rely on coding

techniques used in distributed storage systems to store the spectrum availability information in a way that each service provider

will have a combination of different stripes of the data while ensuring redundancy but also robustness against failures. This

way, each spectrum database will have to handle less data which could boost the performance and lower the communication

overhead. Privacy implications of such a design must also be studied carefully. Partial replication could be also suitable for

database-driven CRN s in 5G, where each cell could be managed by a base station that has its own spectrum database covering

only that cell. In this scenario, partial replication-based PIR schemes could be very useful. A global database can even oversee

these spectrum databases at the base station level.

C. Coexistence and interference among SU s

The PAWS protocol, in its current version, does not handle interference avoidance and coexistence among SU s. It is,

however, expected to evolve and include such attributes in the future. From a privacy-preserving perspective, attributing the

task of dealing with these issues to the spectrum database itself could be tricky as they both involve exchanging information

that is highly correlated to SU s’ location [5]. With this in mind, designing an approach to address contention over spectrum

resources and coexistence among SU s by only involving SU s themselves in a distributed way would be attractive from a

privacy perspective. One potential way to achieve this goal could be to rely on distributed consensus mechanisms augmented

with blockchain technology [15] to enable SU s to share the availability information among each other and privately agree on

how to organize their use of the spectrum without having to interact with the service providers. This could be thought of as

a hybrid approach in managing the spectrum resources combining the use of spectrum databases to privately learn spectrum

availability and the use of a secure distributed mechanism to handle coexistence among SU s. Blockchain can be used as an

infrastructure for SU s to coordinate their use of the spectrum and to commit to their intended transmission parameters. Each

record in the databases can also include a smart contract, a self-executing script running on top of the blockchain, to enforce

permissible transmission parameters and how a certain channel can be shared in a specific location. Permissioned SU s can



even rely on advanced cryptographic techniques to preserve their privacy by anonymously participating in the blockchain while

privately proving their membership to the system.

D. Multi-SU coordinated queries

The overhead that a privacy preserving mechanism begets on the spectrum database could be reduced if SU s’ queries are

minimized. This is motivated by the fact that in some situations, several SU s will seek spectrum availability in the same

area, thus, they will send the same queries. This repeated work from the database side could be minimized by exploiting SU s

proximity for instance. Indeed, a distributed clustering mechanism could be run among SU s to create groups based on location,

and only a group representative can query the spectrum database and share spectrum availability with its group members. Such

a mechanism will also minimize SU s’ interaction with the database, reducing the exposure of their private information. Another

way that is worth investigating to amortize the overhead is to batch SU s’ queries, especially if there is a large number of

SU s querying the database concurrently at a given time. Though promising and beneficial especially to spectrum databases,

batching SU s’ queries may not be desirable in applications with stringent latency requirements. Therefore, the optimization

technique may depend on the application and its requirements.

E. Protecting the privacy of PU s

Database-driven spectrum sharing may pose privacy issues to PU s as well. Seemingly innocuous queries from SU s can

reveal a great deal of sensitive information about a PU including its location, antenna parameters, transmitter identity, and

times of operation. For instance, a malicious SU can request spectrum availability information beyond what it needs, such as

information pertaining to a geographical area that it has no intention to be in. This might not be problematic in commercial

systems, such as TV spectrum. However, when it comes to federal government systems, including public safety or military

systems, such information may be considered very sensitive. In some countries, collecting and analyzing spectrum usage

data from military systems is even regarded as a felony. Military PU s may decline to share their location or capabilities

with a spectrum database unless there is a mechanism to provide availability information to SU s without disclosing sensitive

information about PU s, which is still an open research area. This has become even more urgent after the calls made by FCC

to share the 3.5 GHz band, initially intended for incumbent federal users, including military systems, with non-federal users

via a dynamic spectrum access system similar to that of the TV white space.

F. Spectrum access policy enforcement.

While it is paramount to protect SU s’ location information, it is also necessary to ensure that these SU s comply with the

rules mandated by the spectrum databases. For instance, a SU must not use a channel that is occupied by a PU . SU ’s transmit

power must not exceed the threshold provided by the database, so as to avoid harming PU s or other SU s. A rogue SU that

does not obey these rules would be difficult to detect especially if a privacy-preserving mechanism is in place. Therefore, the

goal of a privacy-preserving mechanism should be to protect SU s privacy while preventing them from misbehaving.



IV. CONCLUSION

In this paper, we present existing and new techniques that are designed to protect the location privacy of SU s in database-

driven CRN s. We describe techniques that harness the key observation that, by design, database-driven CRN s contain

multiple synchronized spectrum databases sharing the same content and operated by different service providers. Based on

this observation, we leverage multi-server PIR as a more viable and realistic alternative to efficiently provide information-

theoretic location privacy to SU s. We also discuss privacy and security challenges that still need to be addressed to promote

the adoption of the CRN technology in future generation networks.
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Figure 1: Single-server PIR-based location privacy-preserving approach



TABLE I: Comparison between single-server and multi-server PIRs

Single-server PIR Multi-server PIR

Computation overhead High Low

Communication overhead High Low

Database replication Not needed Required

Privacy level Not optimal (Computational privacy only) Optimal (Information-theoretic privacy)



Query Splitting

Combining Replies

PIR Query Generation
Secondary User

k 
Inverted Index

   SU's Location

   index k

1

0

1

0

Database Content

Spectrum Database

location1 

location2 

locationk 

locationn 

k

1

2

n

1

2

k

n

Su
bq

ue
ry

0

0

1

1

Database Content

Spectrum Database

PIR Reply 

location1 

location2 

locationk 

locationn 

k

1

2

n

1

2

k

n

Su
bq

ue
ry

1

1

0

1

Database Content

Spectrum Database

location1 

location2 

locationk 

locationn 

k

1

2

n

1

2

k

n

Su
bq

ue
ry

PIR Reply Decoding

PIR Computation

PIR Reply 

PIR Computation

PIR Reply 

PIR Computation

Figure 2: Multi-server PIR-based location privacy-preserving approach



Figure 3: Main steps of multi-server PIR-based location privacy using Chor’s PIR
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Figure 4: Query end-to-end delays under multi-server PIR and single-server PIR.
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Figure 5: Communication overheads under multi-server PIR and single-server PIR: b = 560 B.


