
1

Exploiting Task Elasticity and Price Heterogeneity
for Maximizing Cloud Computing Profits

Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani† and Ammar Rayes‡
Oregon State University, Corvallis, OR 97331, dabbaghm,hamdaoub@onid.orst.edu

† Qatar University, mguizani@ieee.org
‡ Cisco Systems, San Jose, CA 95134, ‡ rayes@cisco.com

Abstract—This paper exploits cloud task elasticity and price
heterogeneity to propose an online resource management frame-
work that maximizes cloud profits while minimizing energy
expenses. This is done by reducing the duration during which
servers need to be left ON and maximizing the monetary revenues
when the charging cost for some of the elastic tasks depends
on how fast these tasks complete, while meeting all resource
requirements. Comparative studies conducted using Google data
traces show the effectiveness of our proposed framework in terms
of improving resource utilization, reducing energy expenses, and
increasing cloud profits.

Index Terms—Resource allocation, VM placement, cloud com-
puting, energy efficiency, cloud pricing.

I. INTRODUCTION

Maximizing profits while meeting clients’ requirements is
what cloud providers aim for. Large electricity bills are being
paid by cloud providers [1], merely due to a poor management
of cloud resources [2–4], resulting in having servers stay
unnecessarily ON for long periods while being under-utilized
[5]. Therefore, to minimize the cloud’s consumed energy, one
needs to reduce the number of ON servers, increase the servers
utilization and reduce the duration for which servers are left
ON while meeting clients’ demands.

A cloud center is made up of a huge number of servers
called physical machines (PMs) that are grouped into multiple
management units called clusters. Cloud clients may, at any
time, submit a VM request to the cloud, specifying the amount
of computing resources they need to perform a certain task.

Prior cloud resource management schemes focused on han-
dling task requests of the form (wreq

i , treqi) where wreq
i is

task i’s requested amount of CPU resources and treqi is the
duration for which these resources are needed. Such requests
are referred to by inelastic task requests as they require a
fixed amount of CPU resource during their whole execution
time and as increasing their allocated resources at any time
would not decrease their execution times. We define the
requested computing volume vreqi for an inelastic task i as
vreqi = wreq

i × treqi .
A cloud task request could also be elastic in that the amount

of its allocated resources can be increased (or decreased)
during its execution time, and doing so results in reducing
(or prolonging) its execution time. An example of such tasks
would be any task with thread parallelism where the number
of allocated threads (CPU resources) determines how fast
the task completes. An elastic task request i is defined by

(vreqi , wmax
i , tmax

i) where vreqi is the requested computing vol-
ume, wmax

i is the maximum amount of CPU resources that can
be allocated to the task, depending primarily on its maximum
amount of parallelism, and tmax

i is a duration period by which
the task should complete. Note that the least duration needed
to complete such a request is tmin

i = vreqi /wmax
i , which

corresponds to allocating the maximal amount of resources
wmax

i all the time. Thus, tmax
i must be strictly larger than

tmin
i for such a request to be feasible and elastic.

Two service models arise for handling elastic tasks:
i) Best-Effort Model: clients are only interested in getting their
task completed within a specified period tmax, and are charged
a fixed cost based on their task’s volume.
ii) Delay-Sensitive Model: not only does the task’s deadline
have to be met, but also clients are willing to pay more to get
their task completed earlier.

0 1 2 3 4 5 6
0

0.5

1

Time (Hour)

P
M

 C
a

p
a

ci
ty

T2 (50%)

T1 (50%)

Gained Idle Time

(a) Allocation with minimal expenses.

0 1 2 3 4 5 6

0.25

1

Time (Hour)

P
M

 C
a

p
a

ci
ty

T1 (75%)

T2 (25%)

(b) Allocation with maximal revenue.

Fig. 1: Two feasible allocations for the illustrative example.

The elasticity among the tasks brings further management
capabilities. Exploiting these capabilities requires develop-
ing efficient scheduling techniques that decide: i) where to
place the heterogeneous tasks, and ii) how much resources
to allocate for each elastic task. The latter decision has a
significant impact on the cloud’s monetary profits. This point
can be illustrated by considering a simplified example where
the cloud receives two elastic task requests, T1 and T2, each
requesting a volume of vreq = 1.5, each can be allocated
at most wmax = 75% of the PM’s capacity, and each must
complete within tmax = 6 hours. Assume that both tasks
were assigned to the same PM which has a unit capacity.
There are numerous feasible ways to allocate resources for

2

T1 and T2, and we are seeking those that maximize the cloud
profits. From an expense point of view, the allocation in Fig.
1(a) meets the tasks requirements with the least cost among
all possible allocations as it keeps the PM ON for the least
time (3 hours only), after which the PM is turned to sleep
to save energy. Of course finding the allocation with the
least expenses is harder than this simplified example in real
cases when many tasks (elastic and inelastic) with different
computing demands are cohosted on the same PM. Things
become further challenging when some of the hosted tasks are
delay-sensitive as the resource allocation not only impacts the
energy expenses but also determines the collected revenues.
By returning to our example and considering only T1 to be
a delay-sensitive task, observe that although the allocation
in Fig.1(a) have lower costs than that in Fig.1(b), the latter
allocation has higher revenues than the former case as T1
completes as fast as possible charging the client the highest
cost. Thus the allocation in Fig.1(b) will be more profitable
than that in Fig.1(a) only if the extra revenue collected for
completing T1 earlier outweighs the energy cost resulting from
keeping the machine on for the entire 6 hours (as opposed
to 3 hours only). This makes managing cloud resources in a
profitable way a challenging task.

In this paper, we exploit the elasticity and the varying
charging costs among the submitted tasks and propose an
online resource allocation framework that aims at maximizing
the cloud’s profits. To the best of our knowledge, this is
the first work that exploits both of those aspects. Our main
contributions are in proposing a framework that:

1) places the submitted elastic and inelastic tasks in a way
that avoids turning new PMs ON while also reducing the
PMs’ uptimes (i.e., the duration for which PMs need to
be kept ON to serve the hosted tasks).

2) decides what amount of resources should be assigned
initially to the elastic tasks while guaranteeing that their
deadlines will be met.

3) tunes the amount of allocated resources for the elastic
tasks over time by solving a convex optimization problem
whose objective is to maximize the cloud’s profits.

The remainder is organized as follows. Section II reviews
prior work. Section III presents our proposed framework.
Section IV proposes charging models for the elastic services.
Section V describes the optimization problem solved by our
framework to tune the allocations over time. Section VI eval-
uates our framework on real Google traces. Finally, Section
VII concludes the paper and Section VIII provides directions
for future work.

II. RELATED WORK

Prior resource management techniques focused on increas-
ing the cloud profits by reducing the cloud center’s electricity
bills, and can be broadly divided into two categories:

A. Cluster Placement Techniques

These techniques decide what cluster among the clusters
that are distributed in different geographical locations should
serve the submitted task requests such that the cloud center’s

energy expenses are decreased. The work in [6] exploited the
temporal and spatial variations in electricity prices among the
different clusters’ locations and directed the received requests
to the cluster with the least power prices. The challenge here
is that the electricity price exhibits significant fluctuations
from a location to another over time as it is highly demand
driven. Greedy heuristics [7], game-theoretical models [2], and
power price estimation schemes [8] are some of the techniques
that were proposed to address that challenge. The amount
of generated renewable energy in each cluster’s location was
also considered as a selection factor in [9] where requests
were directed to the cluster with the highest reliance on green
sources of energy in order to cut down both electricity costs
and carbon emissions. Prediction techniques as in [10] were
needed for such green selections to be effective as the amount
of generated renewable energy is highly weather dependent.
Quality of service requirements were also considered in [11,
12] when making cluster selections, where tasks were con-
strained to be placed within a certain distance from their clients
in order to guarantee bounds on the client’s response time. The
interested reader is referred to [13] for a complete overview
on cluster selection techniques. In this paper, we consider
the case where a cluster is selected to serve each submitted
request using one of the previously discussed techniques [2, 6–
13]. We propose a complementary management framework for
allocating task resources with the aim of reducing the cluster’s
energy consumption and increasing the monetary revenues
while meeting all clients computing demands.

B. PM Placement Techniques

These techniques aim at reducing the cluster’s energy
consumption by assigning efficiently the tasks to the PMs
within the cluster. The problem of finding efficient initial
PM placements for the newly submitted tasks is treated as
the classical online Bin Packing (BP) optimization problem
[14, 15], which views the cluster’s PMs as bins with certain
capacities (CPU capacities), and tasks as objects with certain
sizes (CPU demands) that arrive over time, where the objective
is to pack these objects in as few bins as possible. Such
tight packing leads into great energy savings as it allows
many redundant PMs to be switched to sleep. The online
nature of the BP problem and the fact that finding the optimal
solution for the offline version of that problem is NP-hard
[16] encouraged using heuristics to make efficient initial PM
placements. The Best Fit (BF) heuristic [17] is one of the
widely used heuristics for initial PM placement in cloud
centers. Enhancements over this heuristic were proposed to,
for e.g., reduce communication costs [18, 19] and account for
task completion times [20].

Dynamic consolidation (DC) techniques [21] improve those
initial placements by using VM migration to perform pe-
riodic intra cluster VM-PM remappings, with the objective
of packing the hosted VMs more tightly as some of the
cluster’s PMs become highly underutilized due to the release
of some of the tasks overtime. The main drawback of dynamic
consolidation is that VM migration does not come for free
in terms of energy consumption and performance degradation

3

VM Placement

PM1

Resource

Managmnt

PM2

Resource

Managmnt

PMn

Resource

Managmnt
...

...

Requests

Fig. 2: Proposed Resource Allocation Framework.

[22]. To limit those negative effects of VM migration, several
management schemes were proposed to decide what VMs to
migrate and to which PMs in the cluster with the aim of re-
ducing the migration energy overhead [23] or the experienced
performance degradation [24]. For a complete taxonomy of
prior techniques on energy efficiency in cloud centers, we refer
the reader to our prior work [25].

All the techniques discussed in this category handled the
case when the submitted tasks are all inelastic. To the best
of our knowledge, this is the first paper that proposes a
resource management framework for the case when the cluster
workload is a mix of elastic and inelastic, and where the
charging cost for some of the elastic tasks is dependent on
how fast the tasks complete. Our proposed framework places
the heterogeneous submitted tasks in a way that minimizes
significantly the consumed energy with the key difference from
prior placement techniques [17–19] that both the number of
ON PMs and the duration for which PMs are left ON are
reduced, leading to significant energy savings. Our framework
then tunes the amount of allocated resources for the elastic
tasks over time with the goal of increasing the profit by
balancing between increasing the revenues and reducing the
energy expenses while meeting all tasks demands. Unlike the
dynamic consolidation techniques [21–24] which relied on
VM migration to pack the workload more tightly to reduce
the consumed energy, our framework exploits the elasticity
among the submitted tasks and tunes the allocated resources
for the hosted tasks in a way that reduces the duration for
which PMs are left ON, allowing them to be turned to sleep
quickly to save energy.

III. THE PROPOSED FRAMEWORK

As illustrated in Fig. 2, our proposed resource allocation
framework has a two-level control structure as it is made up
of a front end VM Placement module connected to all the PMs
in the cloud cluster and an autonomous Resource Management
module dedicated to each PM in the cluster. We explain next
each one of these control modules:

A. VM Placement Module

Upon receiving a task request (elastic or inelastic), this
module creates a VM for the submitted task and decides what
PM in the cluster the created VM should be assigned to. These
placement decisions are made depending on the current states
of the PMs in the cluster and on two task-related quantities: the
amount of CPU resources assigned initially to the created VM,

and the time after which the VM is expected to be released. In
the case of an inelastic task, these two quantities are directly
specified by the client to be wreq

i and treqi respectively. On the
other hand, there is flexibility in these quantities if the task
is elastic as they are only bounded above by wmax

i and tmax
i

respectively. Thus, the module needs to decide the quantity
of resources that should be assigned initially to the elastic
task in order to make efficient PM placement. Our module
allocates wmin

i = vreqi /tmax
i amount of resources to the elastic

task initially. This represents the least amount of resources
needed so that the task is accomplished exactly in the client’s
maximum tolerable period tmax

i . The intuition behind this
choice is the following. If we allocate less than wmin

i initially,
then at some point in time we need to increase these resources
so that the task terminates within tmax

i . However, the PM’s
capacity constraint and the constraints from the remaining
hosted VMs may prevent us from doing that and thus we may
risk to miss the task’s deadline. Thus at least wmin

i amount
of resources should be allocated initially to avoid that. On
the other hand, if an amount of resources larger than wmin

i

is assigned to the VM, then there may be no ON PM with
enough slack to fit that VM and we will be forced to switch
a new PM from sleep to fit this VM. This switch has a high
energy overhead [26, 27] and also increases the number of
ON PMs which leads to high energy consumption. This costly
switch will be unnecessary if an ON PM with a slack of only
wmin

i is already available in the cluster. Thus wmin
i is initially

allocated to the elastic task in order to guarantee meeting its
deadline while also saving energy. It is worth mentioning that
these are only initial assignments for the elastic tasks and
will be later tuned in order to maximize the cloud profits
as will be explained later. Having determined the amount
of resources to be allocated initially to the submitted task’s
VM and when the VM is expected to be released, we now
explain the PM preference criteria that is adapted for efficient
placement selection. Based on our preference criteria, the PMs
in the cluster are divided into the following disjoint groups:

1) Group 1: contains all the PMs that are currently ON and
that have an uptime larger than the VM’s release time.

2) Group 2: contains the remaining ON PMs (the ones with
an uptime smaller than the VM’s release time).

3) Group 3: contains all the PMs in the sleep state.

The module tries first to place the new task’s VM in one of the
PMs of Group 1. These PMs are mostly favored as their uptime
will not be increased after placing the new VM. If multiple
PMs of Group 1 can fit the VM, then the one with the least
CPU slack is chosen. The intuition behind this preference is to
leave larger slacks on the remaining ON PMs so that VMs with
larger CPU demands can be supported by these PMs in the
future without needing to wake new PMs from sleep. If non of
the PMs in Group 1 have enough space to fit the VM, then the
PMs of Group 2 are considered. If multiple PMs from Group
2 can fit the VM, then the one whose uptime will be extended
the least after placement will be chosen. This is to reduce the
extra time for which the PM will be kept ON. Finally, if no
fit is found in Group 2, then Group 3 is considered. Thus our
preference criteria switches a new PM ON to accommodate

4

the VM only if we have no other choice. The PM in Group 3
with the largest capacity is chosen in that case so that requests
with larger demands can be supported by this PM in the future.

B. Resource Management Module

The main role of this module is to make resource and
power management decisions for the controlled PM. A PM
Pj’s module performs the following procedures:

1) Resource Allocation: A flag is dedicated to indicate
whether or not the allocated resources for the tasks
hosted on the controlled PM need to be retuned. This
flag is set true whenever one of the following events
occurs: a) a new delay-sensitive elastic task gets placed
on the PM, or b) the PM’s uptime gets increased due
to assigning a new best-effort elastic task, or c) one of
the already hosted tasks (elastic/inelastic) gets released
from the PM. The resource management module checks
this flag periodically every Tp period. If the flag is
true, then the amount of resources wi to be allocated
to each task i hosted on Pj is tuned. This is done by
solving an optimization problem whose objective is to
maximize the PM’s profit, which is calculated to be the
difference between the revenues collected from serving
the hosted tasks and the PM’s energy expenses spent
to accomplish those tasks, and where constraints are
included to guarantee meeting all tasks’ requirements and
deadlines. Details on the resource allocation optimization
problem are provided in Section V. The flag is reset to
false after updating these allocations. Ideally, to maximize
the profits, new resource tuning needs to be calculated
anytime a new delay-sensitive elastic task gets placed on
the PM (as it might be more profitable to finish this task
earlier), or any time the PM’s uptime gets extended due
to assigning a new best-effort elastic task (as it might
be possible to increase the allocated resources for this
task so that the PM’s uptime gets decreased in order
to save energy), or anytime a task gets released (as an
extra free resource slack becomes available to use for the
remaining hosted tasks). However, tuning the allocated
resources for the hosted tasks each time one of those
events occur has a high computation overhead. The flag
is thus introduced for practical uses in order to limit the
number of times the optimization problem is solved and
the resources are retuned per PM to be once at most every
Tp period. The choice of Tp is left to the cloud provider
depending on how much computation overhead it can
afford. The smaller the selected value for this parameter,
the more responsiveness the framework becomes to tune
allocations that maximize its profits, but also the higher
the computation overhead. In our implementation, Tp is
set to 5 minutes as evaluations revealed that high revenues
and great energy savings can be achieved for such choice
while keeping the calculation overhead low.

2) Remaining Time/Volume Tracking: for each elastic task
i hosted on Pj , the module tracks tremi , the amount of
remaining time before which the task should be accom-
plished. The remaining time is initially set to tmax

i when

the task is first scheduled on the PM and is decremented
as time goes by. For each elastic or inelastic task i hosted
on Pj , the module also tracks the amount of remaining
computing volume still needed to accomplish each one
of these tasks. The remaining computing volume for task
i, referred to by vremi , is initially set to be equal to
the task’s requested computing volume vreqi when the
task is first scheduled on Pj . Let wi be the amount
of resources allocated to task i for period T , then the
remaining volume will be updated after the T period is
over as follows: vremi ← vremi − (wi × T).

3) VM Termination: a task completes when it is allocated
all of its requested computing volume. Thus the module
releases the allocated resources for VM i hosted on the
PM once its remaining computing volume vremi reaches
zero. If no other VMs are still hosted on the PM after
this release, then the PM is put to sleep to save energy.

IV. CHARGING MODELS

We first discuss how inelastic tasks are being charged in
current cloud centers, and then propose a charging model for
both the best-effort and the delay-sensitive elastic tasks.

In current cloud providers (e.g. Amazon, Microsoft), the
charging cost for an inelastic task i is dependent on the task’s
volume vreqi which captures both the amount of requested
resources wreq

i and the duration treqi for which these resources
are reserved. More specifically, letting ϕ denote the price per
a unit of volume for the inelastic service, the charging cost ri
for the inelastic task i can be expressed as

ri = ϕvreqi (1)

We propose a similar model for the best-effort elastic tasks
with the only exception that the cloud provider charges the
client’s task with a reduced price compared to the inelastic
case. This is basically to provide an incentive for clients to
request an inelastic service as clients in this case provide a
flexibility in terms of the allocated resources and in terms of
when their tasks can be accomplished. This flexibility pro-
vides further management capabilities that the cloud provider
exploits to reduce its expenses and increase significantly its
profits (as will be seen in Section VI), so that the reduced price
for this service ends up to be a win-win situation for both the
clients and the cloud provider. More specifically, the charging
cost rmin

b for a best-effort elastic task b with a computing
volume vreqb is calculated as follows:

rmin
b = φ vreqb (2)

where φ is the reduced cost per one unit of volume which
is specified by the cloud provider and where φ < ϕ holds.
Observe that the cost of this type of service is only dependent
on the task’s volume where the cloud provider guarantees
providing the requested volume to complete the task within
the maximal tolerable duration tmax

b . It is worth mentioning
that in our model the reduced price φ was considered to be
fixed for all the elastic requests. Another option could be to
have a reduced price φ that is different from an elastic task
to another depending on how flexible each elastic task is. The

5

Task Duration (t
i
)

C
ha

rg
in

g
C

os
t (

r
i)

Delay−Sensitive Service
Best−Effort Service

tmin
i

tmax
i

rmin
i

rmax
i

Fig. 3: Proposed charging models for elastic tasks.

higher the elastic task’s flexibility, the lower the charged cost
and vice versa.

As for the delay-sensitive elastic tasks, the charging cost
in that case is not only dependent on the task’s volume but
also is affected by how fast the task completes. We propose
a linear charging model for this service, where the charging
cost rd of the delay-sensitive elastic task d is expressed as a
function of the task’s duration td as follows:

rd(td) = rmin
d + δ(tmax

d − td) (3)

Where: rmin
d captures the volume cost and is calculated using

equation (2), and δ is the price that the client pays for getting
his task completed one unit of time earlier and is specified
by the cloud provider. Recall that the duration by which
the task completes td is bounded up by tmax

d which is the
maximal tolerable duration that is specified by the client’s
request. There is also an implicit lower bound on td as the
task can be allocated at most wmax

d of CPU resources at any
time, and thus the least duration needed to complete the task
is tmin

d = vreqd /wmax
d which corresponds to allocating the

maximal resources wmax
d all the time. Observe that based

on equation (3) as the task’s duration increases from tmin
d

to the maximum tolerable duration tmax
d , the charging cost

for the delay sensitive task decreases linearly from rmax
d =

rmin
d + δ(tmax

d − tmin
d) to rmin

d .
To further illustrate our proposed charging models, Fig. 3

plots how an elastic task i would be charged as the duration
ti needed to complete the elastic task increases from tmin

i to
tmax
i for both the best-effort and the delay-sensitive services.

Observe that if task i requested a best-effort service, then its
charging cost would be the same (equals to rmin

i) regardless of
when the task completes, as long as the task completes within
the maximal duration tmax

i specified by the client. Whereas
if task i requested a delay-sensitive service, then its charging
cost would be dependent on how fast the task completes where
the cost decreases linearly from rmax

i to rmin
i as the duration

needed to complete the task ti increases from tmin
i to tmax

i .
It is worth noting that the slope of the charging cost for the
delay-sensitive services is controlled by δ.

V. PM RESOURCE ALLOCATION

Having explained the charging models for the elastic tasks,
we now elaborate on how our proposed resource management
module allocates resources for the tasks that are hosted on a
PM Pj which has a certain CPU capacity Cj . Let Ej and Ij be
respectively the sets of all elastic and inelastic tasks currently
hosted on Pj . Recall that each task in Ej is either a best-effort

or a delay-sensitive elastic task. Let Bj and Dj be respectively
the sets of the best-effort and the delay-sensitive elastic tasks
that are hosted on Pj where Ej = Bj ∪Dj . We explain in this
section how to tune wi ∈ R++, the amount of CPU resources
to be allocated to each task i hosted on PM Pj . The allocated
resources wi allows, in turn, to determine ti ∈ R++, the time
needed to accomplish the ith task. Our framework allocates
resources to the tasks assigned to Pj by solving the following
optimization problem.

A. Formulated Optimization Problem

Objective Function: The objective of our resource alloca-
tion strategy is to maximize the PM’s profits which can be
calculated as the difference between the PM’s revenues Rj

and the PM’s energy expenses Xj , i.e., we seek to:

Maximize Rj −Xj

We elaborate now how the PM’s revenues and expenses are
calculated based on the allocated resources:

1) PM Revenues: can be calculated by aggregating the
revenue collected from each task hosted on Pj , i.e.:

Rj =
∑
i∈Ij

ri +
∑
b∈Bj

rmin
b +

∑
d∈Dj

rd(td) (4)

Where the first, second and third summations aggregate
respectively the revenue collected from the inelastic tasks,
the best-effort elastic tasks and the delay-sensitive elastic
tasks that are hosted on the PM.

2) PM Expenses: Since Pj needs to be kept ON until its
last hosted task is accomplished, then the PM’s energy
expenses can be calculated as:

Xj = κ×max{ti : i ∈ Ej ∪ Ij}

where: κ is the cost to keep the PM ON for a single unit of
time and depends primarily on the PM’s power specs and
the electricity price. More specifically, κ = ξ × Pactive

where: ξ is the electricity price (given in dollars/unit of
energy) and Pactive is the power consumed to keep the
PM ON.

Constraints: The optimization problem is solved subject to
the following constraints. One,∑

i∈Ej∪Ij

wi ≤ Cj (C.1)

which states that the aggregate allocated resources for all the
tasks hosted on Pj must not exceed the PM’s capacity.

Two,
wi = wreq

i ∀i ∈ Ij (C.2)

which states that any inelastic task request must be assigned
the exact amount of requested CPU resources. Three,

wi ≤ wmax
i ∀i ∈ Ej (C.3)

which states that the allocated resources for any elastic task
must not exceed the maximum amount of resources that the
task supports. Four,

ti ≤ tremi ∀i ∈ Ej (C.4)

6

which states that the accomplishment time of each elastic task
must be within tremi , the remaining duration before which the
task should be accomplished.

Five,
ti × wi = vremi ∀i ∈ Ej ∪ Ij (C.5)

which states that the resulting allocations must provide the
remaining computing volumes vreqi required by the hosted
tasks.

B. Equivalent Optimization Problem

We introduced in the previous subsection the objective
and the constraints of the formulated resource allocation
optimization problem where the decisions variables for each
task i are wi ∈ R++ and ti ∈ R++. We show now how
to perform simple transformation on the above introduced
problem in order to transform it into an equivalent problem of
a certain type whose optimal solution can be obtained easily.
The transformation consists basically of performing a variable
renaming by letting ti = 1/fi where the decision variables
for each task i become now wi ∈ R++ and fi ∈ R++. This
changes the optimization problem as follows.

Objective Function After Transformation: Both the rev-
enues and the expenses of the objective are affected by this
variable renaming as follows:

1) PM Revenues: only the revenue collected from the delay-
sensitive elastic tasks is affected by this renaming where
(4) becomes:

Rj =
∑
i∈Ij

ri +
∑
b∈Bj

rmin
b +

∑
d∈Dj

rd(1/fd)

After plugging (1), (2) and (3) in the previous expression,
we end up with:

Rj =
∑
i∈Ij

ϕvreqi +
∑
b∈Bj

φ vreqb +
∑
d∈Dj

φ vreqd +δ(tmax
d −1/fd)

By performing simple algebraic manipulation, the PM
revenue can be expressed as:

Rj = Rconst
j − δ

∑
d∈Dj

1/fd (5)

Where:

Rconst
j =

∑
i∈Ij

ϕvreqi +
∑
b∈Bj

φ vreqb +
∑
d∈Dj

φ vreqd + δtmax
d

is a constant as it is not affected by any of the op-
timization problem decision variables. In other words,
any feasible solution for the formulated optimization
problem allocates for the inelastic tasks the requested
CPU resources for the specified period of time and also
guarantees meeting the deadline of all the elastic tasks,
thus the revenues collected from the inelastic and from
the best-effort elastic tasks are the same for any feasible
solution. From a revenue point of view, what differentiate
a feasible solution from another is only the revenue
collected from the delay-sensitive elastic tasks, which is
captured by the second term of (5). The PM revenues
Rj calculated based on (5) is a concave function. This

can be proved based on the following facts [28]. First,
for any given task d, the function 1/fd is convex on
R++. Second, the positive summation of a set of convex
functions is also a convex function (thus

∑
d∈Dj

1/fd
is convex). Third, multiplying a convex function by a
negative scalar (−δ) reverses the curvature from convex to
concave. Finally, adding a constant (Rconst

j) to a concave
function preserves the concave curvature.

2) PM Expenses: becomes after renaming:

Xj = κ×max{1/fi : i ∈ Ej ∪ Ij}

The PM expenses Xj after variable renaming is a convex
function based on the following facts [28]. First, for any
given i, the function 1/fi is convex on R++. Second,
the maximum of a set of convex functions is a convex
function (thus max{1/fi : i ∈ Ej ∪ Ij} is convex).
Finally, multiplying a convex function by a positive scalar
κ maintains the convex curvature.

Putting it all together, the objective function Rj − Xj that
we seek to maximize after transformation is the difference
between the concave function Rj and the convex function
Xj . Since Xj is convex, then −Xj is concave. Now since
the positive summation of two concave functions is concave,
Then the objective function Rj−Xj is a concave function that
we seek to maximize. Finally, the problem of maximizing the
concave function Rj − Xj can be reformulated equivalently
as a problem of minimizing −(Rj −Xj), which is convex.
Constraints After Transformation: Constraints (C.1), (C.2),
and (C.3) remain the same after the variable renaming as they
are each a function of wi only. Note that all of these three
constraints are affine functions with respect to wi.

Constraint (C.4) becomes the following affine constraint
after renaming:

1 ≤ fi × tremi ∀i ∈ Ej

Observe that constraint (C.5) in the original problem is not
affine as the decision variables wi and ti are multiplied by each
other. However, after renaming the variables, the constraint is
now transformed into the following equivalent linear (and thus
affine) constraint:

wi = fi × vremi ∀i ∈ Ej ∪ Ij

As a result, by letting ti = 1/fi, the original problem
transforms into a convex optimization problem as the new
objective function −(Rj − Xj) is convex that we seek to
minimize and as all equality and inequality constraints of the
new equivalent problem are now affine. The optimal solution
for such problems can be found easily and quickly using
convex optimization solvers such as CVX [29], which is the
one used in our implementation.

VI. FRAMEWORK EVALUATION

The experimental evaluations presented in this section are
based on real traces [30] that include all the tasks that were
submitted to a Google cluster that is made up of more than
12K PMs. The PMs within that cluster have three types in
terms of their supported CPU capacity. Table I shows the

7

number of PMs for each one of these types along with their
CPU capacities normalized with respect to the PM with the
largest capacity in the cluster. Since the size of the Google
traces is huge (> 39 GB), we limit our evaluations to a chunk
of the traces that spans 30 hours.

TABLE I: Configurations of the PMs within the Google cluster

Number of PMs CPU Capacity
798 1.00

11658 0.50
126 0.25

For each task request i found in the traces, Google reports:
• a timestamp that indicates when the task was submitted.
• wtrace

i the task’s reserved amount of CPU resources.
• ttracei the duration after which the task was accomplished

based on the reserved resources.
Unfortunately the traces do not reveal the type or the nature

of the submitted tasks and thus we could not infer the elastic
tasks from the inelastic ones. In our evaluations, ρ percent
of the tasks found in the traces are picked at random and
are assumed to be elastic. We use the information revealed
by the traces to determine the requested demands of these
tasks. For each task i in the traces that is treated as inelastic,
the requested amount of computing resources wreq

i and the
duration for which these resources are needed treqi are taken
from the trace numbers and are set to be equal to wtrace

i and
ttracei respectively. For each task i in the traces that is treated
as elastic, the requested computing volume vreqi is calculated
from the traces numbers to be vreqi = wtrace

i × ttracei .
The duration tmax

i within which the elastic task must be
accomplished is set to ttracei (i.e., the elastic tasks have a
worst case accomplishment time equal to the one reported in
the traces). Finally, we had to make assumptions about wmax

i ,
the maximum amount of resources that can be allocated to
the elastic task i, as no information is revealed about the
nature of these tasks. In our experiments, wmax

i is set to:
wmax

i = wtrace
i + λ× wtrace

i where λ is the elasticity factor.
This makes wmax

i proportional to wtrace
i where the assumption

here that the higher the reserved resources for the tasks in the
traces, the higher the maximum amount of resources that these
tasks can be allocated.

Our proposed framework is compared against the following
resource allocation schemes:
• BF Min: the BF heuristic [17] is used to make PM

placement decisions where a submitted request is placed
on a PM in sleep only if it can’t be fitted in any ON PM
and the PM with the largest capacity is chosen in that
case for placement. If multiple ON PMs can fit the task,
then the one with the least slack is selected for placement.
The minimum amount of resources wmin is allocated for
the elastic tasks throughout their lifetimes so that they
finish exactly in tmax period.

• BF Max: the BF heuristic is used to make PM placement
decisions, and the maximum amount of the task’s sup-
ported resources wmax are allocated to the elastic tasks
throughout their lifetimes so that they are accomplished
as fast as possible.

• BF Rand: the BF heuristic is used to make PM placement
decisions, and for each requested elastic task i, a random
value between wmin

i and wmax
i is allocated to that task

throughout its whole lifetime. It is worth mentioning that
any selected value within that range guarantees that the
task finishes within tmax

i period.
The conducted experiments are organized into two subsec-

tions based on the type of service that the elastic tasks request.

A. Best-Effort Service
We consider first the case where all the elastic tasks request

a best-effort service. This means that clients are only interested
in getting their elastic tasks completed before the specified
deadlines and will not be charged more for getting their
tasks completed earlier than the deadlines. Our framework’s
resource management module in that case tunes the allocated
resources in a way that minimizes the PMs energy expenses
(by minimizing the PMs uptime) as the PMs revenues are now
constant since there are no delay-sensitive elastic tasks.

In the following comparative studies, we consider first the
case where ρ = 50% and λ = 0.5 and provide a detailed
comparison of the different schemes in terms of number of
active PMs, cluster utilization and cluster energy expenses.
We then vary ρ and λ and report the energy expenses of the
different schemes under the different experiment setups.

1) Number of Active PMs: We analyze first the number
of ON PMs that were needed to serve the submitted tasks
as this number has a direct impact on the cluster’s energy
expenses. Fig. 4 shows the number of ON PMs in the Google
cluster over time when different schemes were used to manage
the traces tasks. Observe that the BF Max scheme used the
largest number of ON PMs most of the time. This is due to
the fact that by allocating the maximum amount of resources
for the elastic tasks, it is true that these tasks were released as
quickly as possible, however, they required a large amount of
CPU resources all the time and thus the scheme faced many
instances where it was forced to switch new PMs ON as there
was no enough slack on any of the currently ON PMs to fit the
coming requests. The BF Rand allocation scheme had a similar
performance where many ON PMs were also needed to serve
the submitted task requests. This clearly shows that allocating
random amount of resources to the elastic tasks does not lead
into efficient use of the cloud resources. Observe that the BF
Min allocation scheme used lesser number of PMs most of
the time. Although elastic tasks in that case took longer time
to be released, they were allocated smaller amounts of CPU
resources leaving larger slacks to support the coming tasks
which reduced the need for switching new PMs from sleep.
Observe that our framework used the least number of ON
PMs all the time compared to all the other schemes. Both the
VM placement and the resource management modules were
making efficient placement and tuning decisions in order to
reduce both the number of ON PMs and the duration for which
PMs need to be kept ON. It is worth mentioning that the
number of ON PMs for any of the four schemes shown in
Fig. 4 exhibits some temporal fluctuations due to the variation
in the number and in the resource demands of the tasks that
were requested by the clients over time.

8

5 10 15 20 25 30
0

500

1000

1500

2000

Time (Hour)

N
u

m
b

e
r

o
f

O
N

 P
M

s

BF Max
BF Rand

BF Min
Proposed Framework

ρ = 50%
λ = 0.5

Fig. 4: Number of ON PMs over time for the different resource
allocation schemes.

5 10 15 20 25 30
0

20

40

60

80

100

Time (Hour)

A
vg

.
C

P
U

 U
til

iz
a

tio
n

 (
%

)

Proposed Framework
BF Min
BF Rand
BF Max

ρ = 50%
λ = 0.5

Fig. 5: Average Utilization over time for the different resource
allocation schemes.

2) Utilization Gains: We compare next the utilization gains
that are achieved by the different resource allocation schemes
where the CPU utilization of a PM (referred to by η) is the
aggregate amount of CPU resources reserved for all of its
hosted VMs divided by the PM’s capacity. Fig. 5 shows the
average utilization for all of the ON PMs in the cluster over
time under the different resource allocation schemes. Observe
that the BF Max and the BF Rand allocation schemes had
the worst average utilization. This clearly shows that not only
those two schemes used a large number of ON PMs, but also
the resources of those ON PMs were not utilized efficiently.
Although the BF Min scheme allocated the least amount of
resources for the elastic tasks, it had an improved average
utilization over time compared to those schemes as it used
less number of ON PMs. Finally, our framework achieved
the highest average utilization among all the other schemes.

0

20

40

60

80

100

N
or

m
al

iz
ed

 T
ot

al
 E

ne
rg

y
(%

)

BF Max
BF Rand
BF Min
Proposed Framework

ρ = 50%
λ = 0.5

Fig. 6: Total Energy Consumption for the different schemes
(normalized w.r.t. the energy consumption of BF Max).

In fact, our framework reached in some cases an average
utilization level that is very close to 100%. This is attributed
to the VM placement module which packs the submitted
tasks tightly and to the resource management module which
reduced the wasted resource slacks by increasing the amount
of allocated resources for the elastic tasks whenever possible.

3) Energy Savings: We assess next the energy savings that
our framework achieves. Experiments in [5] show that the
consumed power, Pon, of an active PM increases linearly
from Pactive to Ppeak as its CPU utilization, η, increases
from 0 to 100%. More specifically, Pon(η) = Pactive +
η(Ppeak − Pactive), where Ppeak = 400 and Pactive = 200
Watts. On the other hand, a PM in the sleep state consumes
about Psleep = 100 Watts. Switching a PM from sleep to
ON consumes Es→o = 4260 Joules, whereas switching a PM
from ON to sleep consumes Eo→s = 5510 Joules. All of these
numbers are based on real servers’ specifications [23] and are
used through out all the energy evaluations that are mentioned
in the paper.

We calculate the total energy to run the cluster under the dif-
ferent resource allocation schemes where the total energy is the
summation of the energy consumed by both ON and sleep PMs
in addition to the switching energy (from sleep to ON and vice
versa). Fig. 6 shows the total energy consumed by the cluster
throughout the whole 30-hour traces period normalized with
respect to the total energy cost of BF Max scheme. Observe
that our proposed framework met the demands of all of the
requests within the traces while consuming the least amount
of energy compared to all other resource allocation schemes.
This proves the efficiency of our framework and highlights
how important it is to make efficient placement and resource
tuning decisions in cloud centers. It is worth mentioning that
the energy expenses (in dollars) for running the cluster under
the different schemes are directly proportional to the energy
consumption numbers reported in Fig. 6 as one merely needs
to multiply the energy consumption numbers by the electricity
price (given in dollars per energy unit) to get the corresponding
expenses for these schemes.

All the previous experiments where for the case when
ρ = 50% and λ = 0.5. For completeness, we compare the
energy consumption of the different resource management
schemes under different ρ and λ values. Fig. 7 plots the
cluster’s total energy consumption (in MegaWatt hour) for the
different schemes under different values of ρ when λ is fixed
to be 0.5. Observe that our proposed framework consumes the
least energy and thus has the least expenses when compared
to all the other schemes for the different values of ρ. Fig. 8
also shows the cluster’s total energy(in MegaWatt hour) during
the 30 hour trace period for the different schemes when ρ is
fixed to be 100% and under different values of elasticity factor
λ. Results show also that our framework had lower energy
consumption than all the remaining schemes for the different
values of λ.

B. Best-Effort and Delay-Sensitive Services

We now consider the case when the elastic tasks are a mix
of best-effort and delay sensitive requests, and analyze the

9

25% 50% 75% 100%
0

200

400

600

800

ρ: Percent of Elastic Tasks

To
ta

l E
ne

rg
y

(M
W

h)

BF Max BF Rand BF Min Proposed Framework

Fig. 7: Total cluster energy under different percentage of
elastic tasks when λ = 0.5.

0.5 1 1.5 2
0

200

400

600

800

1000

λ: Elasticity Factor

To
ta

l E
ne

rg
y

(M
W

h)

BF Max BF Rand BF Min Proposed Framework

Fig. 8: Total cluster energy under different elasticity factors
when ρ = 100%.

energy expenses, the collected revenues and the profits of the
different resource allocation schemes under such case. In the
following experiments, ρ = 50%, meaning that half of the
tasks found in the traces are assumed to be inelastic whereas
the remaining ones are elastic, where the elasticity factor is
λ = 0.5. These elastic tasks are split in half at random between
best-effort and delay-sensitive requests. Table II summarizes
the values that were selected for the different parameters in
our comparative studies. We tried our best to rely on real
values when selecting those parameters where ξ was selected
based on the average price of electricity in U.S. during 2014
[31], whereas the inelastic task’s cost per volume ϕ is based
on the pricing of Microsoft’s cloud computational service as
of March, 2015 [32]. We made assumptions regarding the
reduced price for the elastic service φ where it was set 10%
less than the volume price for the inelastic service ϕ. Finally,
the extra charge for completing a delay-sensitive elastic task
earlier is 0.25 $ / hour.

TABLE II: Experiment’s parameter values.

Parameter Symbol Value Unit
Electricity Price ξ 0.07 $ / kWh
Inelastic task price per volume ϕ 4.9 $ / CPU hour
Elastic task price per volume φ 4.41 $ / CPU hour
Extra charge for early completion δ 0.25 $ / hour

1) Collected Revenues: We start first by comparing in
Fig. 9 the total revenues collected from all the served tasks
that the Google cluster received during the 30-hour testing
period, where the results are normalized with respect to BF
Max revenues. Observe that the BF Max scheme had the
highest collected revenues among all remaining schemes. This
is anticipated as this scheme allocates the maximum amount
of resources for the elastic tasks all the time so that they
finish as fast as possible. Thus delay-sensitive tasks were
charged the highest cost since they were completed as fast

as possible, leading into the maximal revenues. Observe that
our proposed framework had the second highest revenues
as the collected revenues were part of the objective of the
optimization problem that our resource management module
seeks to maximize. Observe also that the BF Min scheme
had the least revenues. This is also expected as this scheme
allocates the least amount of resources for the elastic tasks all
the time so that they finish exactly in their maximal tolerable
periods. Thus the delay-sensitive elastic tasks were charged in
that case the least cost based only on their volumes as no extra
charges were collected for early completion.

2) Energy Expenses: We report next in Fig. 10 the total
energy expenses for running the Google cluster under the
different schemes normalized with respect to the BF Max
expenses. Observe that our proposed framework had the least
expenses among all the different schemes. This is attributed to
the placement module which places the received requests in a
way that minimizes the number of ON PMs and the duration
for which PMs are kept ON, and to the resource management
module which considers the expenses when tuning the allo-
cated resources for the hosted tasks. The remaining schemes
kept a larger number of ON PMs for longer periods which
increased significantly their expenses.

3) Profits: Finally, we report in Fig. 11 the total profits
(the difference between the revenues and the expenses) for the
different schemes normalized with respect to our framework’s
profits. Observe that our framework had the highest profits
when compared to all the other schemes. More specifically,
our framework had 25%, 29% and 40% higher profits than the
BF Max, the BF Rand and the BF Min resource management
schemes. This is attributed to the fact that our framework had
the least expenses (as was shown in Fig. 10) and had high rev-
enues (as was shown in Fig. 9). It is worth mentioning that our
framework was also compared against the remaining schemes
when considering different parameter values (different pricing
values, different percentages of best-effort and delay sensitive
tasks, etc.). In all those cases, our framework had higher profits
compared to all the remaining schemes.

VII. CONCLUSIONS

We propose in this paper a profit-driven online resource
allocation framework for elastic and inelastic task requests.
Our framework exploits the elasticity and the varying charging
costs among the submitted requests and decides where to place
the heterogeneous submitted task requests, and how much
resources should be allocated to the elastic ones such that the
cloud profits are maximized while meeting all tasks demands.
Comparative evaluations based on Google traces showed that
our framework increased the cloud profits significantly by con-
sidering both the energy expenses and the collected revenues
in its allocation decisions.

VIII. FUTURE WORK DIRECTIONS

We end the paper by providing some directions on cloud
resource management that require further exploration in future.
a) Tasks with Multiple Resources: The focus of this paper was

on the case where tasks (elastic/inelastic) have certain CPU

10

0

20

40

60

80

100
N

o
rm

a
li
z
e

d
 R

e
v
e

n
u
e

s
 (

%
)

BF Max BF Rand BF Min Proposed Framework

Fig. 9: The collected revenues for the
different schemes (normalized w.r.t.
Max BF reveneues)

0

20

40

60

80

100

N
o
rm

a
liz

e
d
 E

x
p
e
n
s
e
s
 (

%
)

BF Max BF Rand BF Min Proposed Framework

Fig. 10: The energy expenses for the
different schemes (normalized w.r.t.
Max BF expenses)

0

20

40

60

80

100

N
o
rm

a
liz

e
d
 P

ro
fi
ts

 (
%

)

BF Max BF Rand BF Min Proposed Framework

Fig. 11: The profits for the different
schemes (normalized w.r.t. our frame-
work’s profits)

resource demands. An interesting direction for future work
would be to consider the case when these heterogeneous
tasks have other resource demands in addition to CPU (e.g.
memory and bandwidth). Managing resources becomes
more complex in that case as the resource manager needs
to account for the interaction and for the relations among
the different resources.

b) Tasks with Dependencies: Another open problem is how to
schedule and allocate resources in a profitable way when
there are dependencies among the tasks. A submitted task
in that case might be dependent on the output of other
tasks and thus can only be scheduled after the completion
of those tasks.

c) Task Pricing Models: We believe that further efforts should
be made by the industry and by the research community
to adapt and develop pricing models for the heterogeneous
tasks. There are many questions that require further inves-
tigation such as by how much should the elastic services be
cheaper than the inelastic ones? How much should the extra
charge for completing a delay-sensitive elastic task earlier
be? and whether or not to consider non-linear charging
models1 for the delay-sensitive service.

d) Testing on Further Real Traces: Finally, the lack of public
release of real traces similar to those provided by Google
has prevented us from testing our framework on other
traces. We hope to have the chance to do that in future.

IX. ACKNOWLEDGMENT

This work was made possible by NPRP grant # NPRP 5-
319-2-121 from the Qatar National Research Fund (a member
of Qatar Foundation). The statements made herein are solely
the responsibility of the authors.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010,” A
report by Analytical Press, completed at the request of The New York
Times, 2011.

[2] Z. Qi, Z. Quanyan, M. Zhani, R. Boutaba, and J. Hellerstein, “Dynamic
service placement in geographically distributed clouds,” IEEE Journal
on Selected Areas in Communications, vol. 31, no. 12, pp. 762–772,
2013.

[3] A. Ksentini, T. Taleb, and F. Messaoudi, “A lisp-based implementation
of follow me cloud,” IEEE Access, vol. 2, pp. 1340–1347, 2014.

1A nice property of the optimization problem solved by our proposed
resource management module is the fact that the problem remains convex
for any charging model (even non-linear ones) as long as the charging cost
is a convex function of the task’s completion time.

[4] M. Abu Sharkh, M. Jammal, A. Shami, and A. Ouda, “Resource
allocation in a network-based cloud computing environment: design
challenges,” Communications Magazine, IEEE, vol. 51, no. 11, pp. 46–
52, 2013.

[5] L. Barroso and U. Holzle, “The case for energy-proportional comput-
ing,” Computer Journal, 2007.

[6] Lei R., Xue L., Le X., and Wenyu L., “Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment,” in Proceedings of IEEE INFOCOM, 2010, pp.
1–9.

[7] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for internet-scale systems,” in ACM SIGCOMM
Computer Communication Review, 2009, vol. 39, pp. 123–134.

[8] Y. Zhang, Y. Wang, and X. Wang, “Electricity bill capping for cloud-
scale data centers that impact the power markets,” in the International
Conference on Parallel Processing, 2012, pp. 440–449.

[9] A. Amokrane, M. Zhani, R. Langar, R. Boutaba, and G. Pujolle, “Green-
head: Virtual data center embedding across distributed infrastructures,”
IEEE Transactions on Cloud Computing, vol. 1, no. 1, pp. 36–49, 2013.

[10] Y. Zhang, Y. Wang, and X. Wang, “Greenware: Greening cloud-scale
data centers to maximize the use of renewable energy,” in Middleware,
pp. 143–164. 2011.

[11] L. Jianying, R. Lei, and L. Xue, “Temporal load balancing with
service delay guarantees for data center energy cost optimization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 3, pp.
775–784, 2014.

[12] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, 2013.

[13] A. Rahman, L. Xue, and K. Fanxin, “A survey on geographic load
balancing based data center power management in the smart grid
environment,” IEEE Communications Surveys Tutorials, vol. 16, no.
1, pp. 214–233, 2014.

[14] M. Shojafar, S. Javanmardi, S. Abolfazli, and N. Cordeschi, “FUGE: A
joint meta-heuristic approach to cloud job scheduling algorithm using
fuzzy theory and a genetic method,” Cluster Computing, vol. 18, no. 2,
pp. 829–844, 2015.

[15] M. NoroozOliaee, B. Hamdaoui, M. Guizani, and M. Ben Ghorbel,
“Online multi-resource scheduling for minimum task completion time
in cloud servers,” in Computer Communications Workshops (INFOCOM
WKSHPS), 2014 IEEE Conference on. IEEE, 2014, pp. 375–379.

[16] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provi-
sioning for the cloud using online bin packing,” IEEE Transactions on
Computers, 2013.

[17] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, 2012.

[18] V. Shrivastava, P. Zerfos, Kang-Won L., H. Jamjoom, Yew-Huey Liu,
and S. Banerjee, “Application-aware virtual machine migration in data
centers,” in Proceedings of IEEE INFOCOM, 2011.

[19] M. Alicherry and T. V. Lakshman, “Network aware resource allocation
in distributed clouds,” in Proceedings of IEEE INFOCOM, 2012.

[20] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Release-time
aware vm placement,” in Globecom Workshops (GC Wkshps), 2014.
IEEE, 2014, pp. 122–126.

[21] K. Ye, Z. Wu, C. Wang, B. Zhou, W. Si, X. Jiang, and A. Zomaya,
“Profiling-based workload consolidation and migration in virtualized
data centers,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 3, pp. 878–890, 2015.

11

[22] H. Liu, H. Jin, C. Xu, and X. Liao, “Performance and energy modeling
for live migration of virtual machines,” Cluster computing, vol. 16, no.
2, pp. 249–264, 2013.

[23] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient
datacenter resource utilization through cloud resource overcommitment,”
in Proceedings of IEEE INFOCOM Workshop on Mobile Cloud and
Virtualization, 2015.

[24] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality
of service constraints,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 7, pp. 1366–1379, 2013.

[25] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Towards energy-
efficient cloud computing: Prediction, consolidation, and overcommit-
ment,” IEEE Network Magazine, 2015.

[26] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient
cloud resource management,” in Proceedings of IEEE INFOCOM
Workshop on Mobile and Cloud Computing, 2014.

[27] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient
resource allocation and provisioning framework for cloud data centers,”
IEEE Transactions on Network and Service Management, 2015.

[28] S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge
University Press, 2004.

[29] Inc. CVX Research, “CVX: Matlab software for disciplined convex
programming, version 2.0,” 2012.

[30] http://code.google.com/p/googleclusterdata/ .
[31] U.S. Energy Information Administration, http://www.eia.gov, 2014.
[32] Microsoft Inc., http://azure.microsoft.com/en-us/pricing/details/

virtual-machines/ , March 2015.

Mehiar Dabbagh received his B.S. degree in
Telecommunication Engineering from the University
of Aleppo, Syria, in 2010 and the M.S. degree in
ECE from the American University of Beirut (AUB),
Lebanon, in 2012. During his master’s studies, he
worked as a research assistant in Intel-KACST Mid-
dle East Energy Efficiency Research Center (MER)
at AUB, where he developed techniques for soft-
ware energy-awareness. Currently, he is pursuing the
Ph.D. degree in ECE at Oregon State University,
USA. His research interests include: Cloud Com-

puting, Energy-Aware Computing, Network Security and Data Mining.

Bechir Hamdaoui (S’02-M’05-SM’12) is presently
an Associate Professor in the School of EECS at
Oregon State University. He received the Diploma of
Graduate Engineer (1997) from the National School
of Engineers at Tunis, Tunisia. He also received M.S.
degrees in both ECE (2002) and CS (2004), and
the Ph.D. degree in Computer Engineering (2005)
all from the University of Wisconsin-Madison. His
research interests span various topics in the areas of
wireless communications and computer networking
systems. He has won the NSF CAREER Award

(2009), and is presently an AE for IEEE Transactions on Wireless Communi-
cations (2013-present), and Wireless Communications and Computing Journal
(2009-present). He also served as an AE for IEEE Transactions on Vehicular
Technology (2009-2014) and for Journal of Computer Systems, Networks,
and Communications (2007-2009). He served as the program chair for SRC
in ACM MobiCom 2011 and many IEEE symposia/workshops, including ICC,
IWCMC, and PERCOM. He also served on the TPCs of many conferences,
including INFOCOM, ICC, and GLOBECOM. He is a Senior Member of
IEEE, IEEE Computer Society, IEEE Communications Society, and IEEE
Vehicular Technology Society.

Mohsen Guizani (S’85-M’89-SM’99-F’09) is cur-
rently a Professor at the Computer Science & Engi-
neering Department in Qatar University. Qatar. He
also served in academic positions at the University
of Missouri-Kansas City, University of Colorado-
Boulder, Syracuse University and Kuwait University.
He received his B.S. (with distinction) and M.S.
degrees in EE; M.S. and Ph.D. degrees in CS in
1984, 1986, 1987, and 1990, respectively, all from
Syracuse University, Syracuse, New York. His re-
search interests include Wireless Communications,

Computer Networks, Cloud Computing, Cyber Security and Smart Grid. He
currently serves on the editorial boards of several international technical
journals and the Founder and EiC of "Wireless Communications and Mobile
Computing" Journal published by John Wiley. He is the author of nine books
and more than 400 publications in refereed journals and conferences (with
an h-index=30 according to Google Scholar). He received two best research
awards. Dr. Guizani is a Fellow of IEEE, member of IEEE Communication
Society, and Senior Member of ACM.

Ammar Rayes Ph.D., is a Distinguished Engi-
neer at Cisco Systems and the Founding President
of The International Society of Service Innovation
Professionals, www.issip.org. He is currently chair-
ing Cisco Services Research Program. His research
areas include: Smart Services, Internet of Every-
thing (IoE), Machine-to-Machine, Smart Analytics
and IP strategy. He has authored / co-authored
over a hundred papers and patents on advances
in communications-related technologies, including
a book on Network Modeling and Simulation and

another one on ATM switching and network design. He is an Editor-in-Chief
for "Advances of Internet of Things" Journal and served as an Associate Editor
of ACM "Transactions on Internet Technology" and on the Journal of Wireless
Communications and Mobile Computing. He received his BS and MS Degrees
in EE from the University of Illinois at Urbana and his Doctor of Science
degree in EE from Washington University in St. Louis, Missouri, where he
received the Outstanding Graduate Student Award in Telecommunications.

