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ABSTRACT

In this paper, we propose content-centric, in-network content caching and placement approaches that

leverage cooperation among edge cloud devices, content popularity, and GPS trajectory information to

improve content delivery speeds, network traffic congestions, cache resource utilization efficiency, and

users’ quality of experience in highly populated cities. More specifically, our proposed approaches exploit

collaborative filtering theory to provide accurate and efficient content popularity predictions to enable

proactive in-network caching of Internet contents. We propose a practical content delivery architecture that

consists of standalone edge cloud devices to be deployed in the city to cache and process popular Internet

contents as it disseminates throughout the network. We alsoshow that our proposed approaches ensure

responsive cloud content delivery with minimized service disruption.

I. INTRODUCTION

The world has witnessed an unprecedented growth in its urbanpopulation throughout the years. Studies

show that the world’s urban population has expanded by about60 million per year, and by 2050, 70% of this

population is expected to be living in cities1. Content delivery networks have emerged as a potential solution

for meeting the data demands of cities and the quality of experience (QoE) of users alike. Fog computing [1],

[2] has been leveraged to bring data closer to user locations[3] and enhance overall network performance;

later evolving to address urban challenges using information, advances in communication technology, and

the Internet [4]. Building such an infrastructure is increasingly difficult due to the proliferation of Internet

devices and to the huge data demands that these devices wouldgenerate. For instance, recent studies show

that by 2021, global mobile data traffic will increase sevenfold (from 2016) reaching 49 exabytes per month,

most of which will be mobile video content, with a percentageprojected to reach up to 78% by 2021 [5].

In traditional IP networks, geographically distributed and limited content delivery nodes service different

regions throughout the world [6]. These nodes are typicallylocated at the Internet edges over multiple

1This work was supported in part by Cisco Systems and the US National Science Foundation (NSF) under NSF award CNS-

1162296.

1World population data sheet: http://www.prb.org/
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backbones while remotely servicing different regions. Although utilizing caching paradigms to push content

closer to the consumer improves network performance [7], users in large urban networks naturally experience

added latency due to their increased mobility, congestion,and hops traversed within the network. That is,

content in large urban communication networks must traverse the system, to and from a remote data center

hosting the content, multiple times resulting in subpar performance. In addition, different users may request

the same content incurring excessive duplicate content requests. Thus, pushing content closer to the requesting

user using content-centric delivery principles can help improve performance.

Traditional caching methods typically concentrate on one network parameter rather than consider multiple

parameters and metrics. This work accounts for multiple network metrics in the caching decision such as

latency, distance, caching capacity, city population densities, time variability of content popularity, and intra-

and inter-neighborhood content popularity. In addition, we design a complete framework using an existing

urban communication network where different caching policies and protocols can be evaluated. Also, we

leverage Content-Centric Networking (aka Named-Data Networking) which, unlike traditional IP networking,

allows for caching to be analyzed and controlled at much lower level; that is storing small data chunks of

the order of a single packet. Traditional methods typicallyonly cache large chunks or full content and are

ill-equipped to analyze or control caching granularity. Finally, the large size of caches and massive size of

Internet catalogs makes our study a valuable task.

The content-centric networking and delivery paradigm is a proposed Internet architecture that shifts from

today’s host/IP-centric content delivery principle to a data-centric delivery one, where data is being routed

in the Internet based on its content rather than on its physical location [8]. In this paper, we present

a framework that leverages edge cloud computing capabilities and content-centric delivery principles to

improve content delivery speeds and reduce network traffic in highly populated cities. Specifically, we first

propose in Section II a content delivery architecture that consists of standalone edge cloud devices to be

deployed in the city to cache and process popular Internet content as it disseminates throughout the network,

thereby improving content downloading time, reducing Internet traffic, and avoiding network congestions.

For instance, in the case of the LinkNYC network2, a New York City network we use throughout this work

as a use-case for illustrating and evaluating our proposed concepts (see Section II-A for more on LinkNYC),

the already-deployed, traditional payphone kiosks, when upgraded with storage and computing capabilities,

can play the role of these edge cloud devices, to be referred to ascloudlets throughout. Then, in Sections III

and IV, we present four complementary content-centric caching techniques that ensure responsive content

delivery with minimized service disruption. These techniques exploit:(i) content popularity among city users

to make efficient in-network caching decisions to improve content delivery responsiveness;(ii) cooperation

and information sharing among city cloudlets to bring Internet content closer to end users with minimum

2https://en.wikipedia.org/wiki/LinkNYC
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network resource usage;(iii) collaborative filtering theory to provide accurate and efficient content popularity

predictions to enable proactive in-network caching of Internet contents; and(iv) user trajectory information

obtained through GPS to enable content prefetching, thus providing realtime content access to mobile users

with minimized service disruption. We finally conclude the paper in Section V.

II. CLOUDLET-DRIVEN CONTENT DELIVERY ARCHITECTURE

We present techniques that combine content-centric delivery principles with the edge cloud computing

paradigm to improve content delivery responsiveness and reduce network congestions in highly populated

cities. Throughout, we use LinkNYC [6] as our use case for illustrating and validating our proposed concepts.

A. The LinkNYC Use Case

LinkNYC [6], an infrastructure project announced in 2014 and became operational in 2016, provides a

novel data network offering free gigabit Wi-Fi in New York City (NYC) by replacing thousands of payphones

with kiosk-like structures calledLinks , making LinkNYC the largest and fastest free public Wi-Fi network

in the world.

Figure 1. Payphone locations in NYC boroughs: Brooklyn (BK);

Bronx (BX); Manhattan (MN); Queens (QU); Staten Island (SI).

Fig. 1 shows the locations of these

payphones/Links in each of the 5 NYC

boroughs. Each Link is equipped with an

802.11ac Wi-Fi hotspot and basic services

such as advertisements, device charging,

free voice over IP (VoIP) phone calls, ac-

cess to city services and maps, etc.

We propose to leverage edge cloud com-

puting to improve network responsiveness

to content delivery in highly populated

cities like NYC. For our LinkNYC use

case, this translates into enabling some (or

all) of the Links with extra storage and

computing capabilities to be able to cache

and process content locally, thus reducing

the need for having to request content from

its source every time a local user requests it. Throughout, we will refer to these capable Links ascontent-

delivery cloudlets (CDCs), which are essentially small-scale cloud datacenters thatstore data closer to

(mobile) end users [9]. Naturally, the number and placementof CDCs depend, among other factors to be
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discussed later, on the number and locations of currently installed payphones3, which are shown in Fig. 1

and summarized in Table I for the LinkNYC use case. Manhattanis the most dense of the five boroughs

with 3,409 payphones and Staten Island is the most sparse with only 51 payphones. Unlike traditional

content delivery networks, where a limited number of remoteservers are distributed throughout the world,

our proposed approach leverages edge cloud computing to bring content closer to end users by selecting

and designating a subset of the LinkNYC’s Links to play the role of CDCs. Our preliminary CDC selection

and placement approach is presented next.

Table I

PAYPHONES IN THE FIVE BOROUGHS OFNYC

Borough # Payphones Avg. distance # CDCs

Manhattan 3409 43.2 m 50

Queens 1042 136.8 m 25

Brooklyn 1004 150.8 m 25

Bronx 591 125.5 m 20

Staten Island 51 606 m 10

Total 6097 212.5 m 130

B. Cloudlet Selection and Placement

As consumers become increasingly mobile, the placement of CDCs in large cities becomes both crucial

and challenging. Specifically, mobile users that undergo frequent handoffs as they move across a path while

being connected results in QoE issues [10] if CDCs’ placement schemes are not carefully designed. Clearly

relying on a single CDC is insufficient to meet the demand of the mobile consumers, and thus, having

content readily available in multiple nearby CDCs is indispensable to ensure responsive content delivery

and maintain acceptable QoE. In what follows, we discuss clustering approaches that efficiently select and

decide on the placement of multiple CDCs to enable content-centric networking and delivery in smart cities,

and as done throughout, we consider the LinkNYC network as our use-case for evaluating such approaches.

We apply a hierarchical clustering technique to NYC’s boroughs to decide for the placement of CDCs.

Since the connectivity of NYC’s payphone backhaul is unknown, we assume that Links are physically

connected (e.g., by fiber optic cables) to their nearest neighbors. Given a particular NYC borough (e.g.

Brooklyn), we construct an Euclidean minimum spanning tree(EMST) using Prim’s algorithm [11] where

3NYC Open Data: https://nycopendata.socrata.com
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Figure 2. CDC placement: Brooklyn

edge weights are equal to the geographic distances between the Links. The EMST topology for the Brooklyn

borough is represented in Fig. 2 by the small dots as the nodesand the lines connecting these dots as the

edges. Although we focused here on Brooklyn borough, the same approach applies to each of the other

boroughs. Initially, all Links in the borough are considered to be part of the same membership and form

a single community. In order to promote and enable cloudlet-driven content delivery, some Links will be

chosen to play the role of CDCs based on their average hop counts to the remaining Links within their

respective communities. First, the probability that requests are initiated from each Linki is assumed to

be proportional to its respective surrounding population density,γi, and is defined asri =
γi

∑Nl
j=1

γj

, where

Nl is the number of Links in the entire borough network (e.g., Brooklyn). (The population densities of all

LinkNYC’s Links—γi for Link i—are estimated as described in [7]). Let’s now denote byS the shortest

path matrix that contains the length of the shortest path to and from each Link in the borough network.

Given the Link request probability vectorr = (r1, r2, . . . , rNl
), a weighted average shortest path vector,

s̄ = S ·r, is then computed, where each entry value of the vector represents the weighted average hop count

to be traversed had all content requested by all borough users been provided through the Link corresponding

to the entry. Then, the Link with the minimum sum of weighted average hop counts is selected as a CDC.

This ensures that content is placed as close as possible to the geographic location of potential consumers

within a community. Once selected, the incident edge between the CDC and the Link with the minimum

average hop count is removed, thus forming two disjoint communities. For each of these two communities,

a CDC is selected providing the minimum average hop count, resulting in two CDCs and their respective

communities. Next, a CDC is selected in the community experiencing the highest average hop count. Once

selected the incident edge is removed and the same process repeats until the desired number of CDCs is

reached. The CDC placement decision process is a one-time calculation done prior to network deployment

resulting in a time complexity ofO(N3
l ). Fig. 3 shows the average hop count for the 5 major boroughs as
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the number of CDCs increases.
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Figure 3. Expected hop count

CDC placement requires an ongoing effort by

city network administrators to physically augment

cloudlets with additional caching capabilities. That

is, increasing the number of CDCs will naturally

increase the cost of deployment. Therefore, aug-

menting each cloudlet with caching capabilities

is not a practical solution, neither is frequently

changing CDC locations to meet demand. That’s

why our heuristic considers assigning CDCs to only

highly populated areas, thereby limiting the incurred costof deployment. Now the question that arises is

how to decide on the appropriate number of CDCs. One approachwe use here is to estimate the number

of CDCs that corresponds to the ’elbow’ in the CDC curve, given in Fig. 3, and use it to be the number of

CDCs to be selected. The last column of Table I shows these numbers for each borough, and Fig. 2 shows

the clusters/communities for the Brooklyn’s network when considering the number of CDCs that corresponds

to the elbow value (i.e., # of CDCs= 25). The 5 boroughs range in size from small, medium to large, and

our framework yields similar performance gains when applied to cities with different sizes.

So far, we iterated the benefits of using cloudlet-driven content delivery architectures vis-a-vis of their abil-

ity to reduce downloading time and network backhaul traffic.In the following two sections, we present ideas

and approaches that enable efficient content delivery in such cloudlet-driven communication architectures.

III. C ONTENT-CENTRIC CACHING: A POPULARITY-DRIVEN APPROACH

Cloudlet-driven architectures do not guarantee the best performance unless key factors like content hetero-

geneity, user mobility, content popularity, and resource availability are carefully accounted for. Therefore, in

the rest of this paper, we focus on content-centric caching approaches that account for these aforementioned

factors. Specifically, we will begin in this section by presenting a caching approach that accounts for content

popularity information, and discuss in the next section three other content-centric caching approaches that

account for other factors. All these proposed approaches are complementary to one another.

A. Popularity-Driven Content Caching

Traditionally, caching consists of fetching content upon request and storing it locally based on some

cache replacement policy, such as First-In-First-Out (FIFO), Most Recently Used (MRU), Least Recently

Used (LRU), and Least Frequently Used (LFU) [12]. These traditional solutions, however, are not suitable

for Internet content delivery in highly populated cities, mainly due to the diversity, volume, and dynamics
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Figure 4. CDC caching

nature of Internet content. In this section, we investigatea content-centric LFU caching approach that is more

suitable for these highly populated cities by incorporating and relying on the popularity of content encoun-

tered by the CDCs when deciding on which content to cache. This popularity-based LFU method, denoted

pLFU , works as follows. Each CDC computes and maintains an estimate of the average number of each

contentf ’s requests encountered by the CDC. We propose to estimate this average number periodically using

an exponentially weighted moving average approach. Specifically, the average number,c̄(k)f , of encountered

contentf ’s requests estimated at thekth update period window is computed asc̄(k)f = βc̄
(k−1)
f +(1−β)c

(k)
f,w

where c(k)f,w is the number of contentf ’s requests encountered during thekth window period, andβ is a

weighting design parameter set between0 and1. Each contentf is then associated with apopularity index

to be computed by CDCi during thekth window period asp(k)f,i = c̄
(k)
f /

∑
g∈F c̄

(k)
g whereF is the set of

contents encountered by the CDC. Upon arrival of new contentand when needed, a CDC uses the popularity

index to decide on which content to cache.

B. The LinkNYC Framework

We experimented with the LinkNYC use case to demonstrate thebenefits of adopting such a popularity-

driven content caching approach in these cloudlet-driven content delivery architectures. Fig. 4(a) shows

content delivery latency (measured in terms of number of hops traversed by the content) for the Brooklyn’s

LinkNYC network when varying the average number of content requests underLRU and pLFU . In this

experiment, we assume that each CDC is capable of storing about 3% of the total popular content (cache

capacity of each CDC is 3% of total content). If requested content is not available at a CDC, it is requested

through neighboring CDCs otherwise it must be fetched from the original publisher. The figure depicts

the average content delivery latency under:(i) the traditional, single-CDC content delivery approach (TR),

(ii) cloudlet-driven content delivery approach with k-means clustering [13] (KM ), and(iii) cloudlet-driven

content delivery approach with the clustering method described in Section II(CL). For the two clustering

methods, the number of CDCs is set to25 (as determined by the elbow curve shown in Fig. 3).

First, observe that incorporating content popularity whenmaking caching decisions (i.e., pLFU) allows

even the single-CDC deployment approach (TRpLFU) to provide a near 25% reduction in average latency com-
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pared to using LRU caching (TRLRU). Though reduced, the average latency obtained via the popularity-based

content caching approach still remains high (47.5 hops) andis not good enough for dynamically changing

environments. Second, the figure also shows that coupling in-network caching through the deployment of

multiple CDCs (as inKM andCL) with population-based content caching reduces the latency even further

by pushing content of interest even closer to end users. Observe that both KMLRU and CLLRU provide latency

reductions of about 58% and 67% compared to TRLRU, whereas KMpLFU and CLpLFU provide about 65%

and 80% latency reduction compared to TRpLFU. Note that these latency improvements are a result of the

adoption of the cloudlet architecture, which allows to bring and cache content closer to end users. Therefore,

such improvements come at the hardware and deployment costsassociated with these cloudlets. In the case

of LinkNYC, these costs, for instance, should not be significant, since already existing payphone stations

and networks have been converted to play the role of cloudlets (though, they still need to be upgraded with

extra storage and processing capabilities).

To investigate the impact of the number of CDCs, we show in Fig. 4(b) the latency behavior for

Brooklyn’s network. As expected, latency improves as more CDCs are deployed. However, it flattens out

as the percentage of CDCs increases, and does so around 2 and 3percent for the Brooklyn network, which

corresponds to the optimal number of25 as determined in Section II and shown in Table I.

IV. TOWARDS COOPERATIVE, PROACTIVE AND PREDICTIVE CONTENT-CENTRIC CACHING:

POTENTIAL IDEAS WITH THEIR ASSOCIATEDCHALLENGES

Although accounting for content popularity improves downloading latency, more can still be done. In this

section, we propose techniques that rely on(i) cloudlet cooperation,(ii) content popularity prediction, and

(iii) GPS trajectory information to improve content delivery responsiveness even further.

A. Cloudlet Cooperation for Faster Content Access

Content caching and placement decisions should depend not only on local but also on neighboring

CDC conditions and observations, such as content popularity, storage capacity, content availability in the

neighborhood, user population, and link/network condition (congestion, data rates, etc.). Intuitively, when a

new content is requested within some local CDC, the decisions on(i) whether to cache the new content or

not, (ii) which CDC to cache the content at, and(iii) which existing cache content to evict should involve

both local and neighboring CDCs, so that globally optimal placement decisions can be made. For example,

if the new content is available at a nearby CDC, then there might not be a need for caching it again at

the local CDC, thus saving local cache resources. Now if the new content is not available locally, nor in

neighboring CDCs, then the decision whether to cache or not should depend on its community popularity,

not just its local popularity. If this content is popular enough to cache, then the decision to where it should
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be cached at should weigh in its popularity indexes at the different CDCs within the community. Even if

the content is just being requested by a user located within aCDC i, it might be more efficient to cache it

at a neighboring CDC if future requests are to be generated byusers within the neighboring CDC and/or

the neighboring CDC has more available cache space. Designing cooperative content caching and placement

approaches that consider the aforementioned performance aspects is an open research problem that has not

been addressed yet. And deriving models that capture the various content and network aspects influencing

these decisions, such as content popularity, storage availability, content availability, user population, and

network condition, is a challenging task that requires further and careful study.

One proposed approach is to introduce a utility functionU
(k)
f,i that each CDCi maintains for each of its

encountered contentf , updates every periodk, and uses to make content placement and caching decisions.

As an initial step, we propose that this function captures and models the following aspects:

• Content popularity: A popularity index of each content as observed by CDCi during update window

k. This index is computed by CDCi as explained in Section III-A.

• Content availability: A binary availability index of each content, where 1 indicating that the content

is cached in CDCi during update windowk, and 0 otherwise.

• Population density: This reflects the population density of CDCi, as described in Section II-B.

• Node storage capability:It captures the storage capacity and availability of CDCi.

• Network delay: It represents the delay experienced by a user belonging to one CDC i requesting

content cached at a neighboring CDCj. It essentially captures the number of hops, as well as the link

bandwidth capacity of each hop, connecting CDCsi andj.

We propose to model the utility as a weighted average of a network cost,Unet
(k)
f,i , and a node cost,Unode

(k)
f,i ;

i.e.,U (k)
f,i = αUnet

(k)
f,i +(1−α)Unode

(k)
f,i . The network cost is proportional to the popularity density, the content

popularity and availability, and the network delay. It represents a weighted average latency that users’ requests

generated within all CDCs will experience had contentf been cached at CDCi. On the other hand, the

node cost is proportional to the local file popularity, localpopulation density and inverse proportional to the

intra-CDC delay. Note that this initially proposed node cost function is simple. Other models that capture

the nodal cost (processing, storage, memory, energy, etc.)more accurately can be considered. The parameter

α balances between the need for having responsive content delivery and that of keeping storage costs low.

As these above network and content conditions change over time, each CDC must periodically maintain

and compute utility function values for encountered contents. This could be done by having CDCs query

neighboring CDCs for content popularity indexes, population densities, and CDC resource availability, and

use this information for updating these values, which are then used as follows for caching and placement

decisions. Upon request of a contentf , CDC i first finds the least utility value across the set of CDCs

that contain contentf at periodk and checks ifi) it is above a target utility value threshold that needs
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to be achieved; this can, for example, be the minimum required latency, andii) U

(k)
f,i is less then the least

utility value across the set of CDCs that contain contentf at periodk, then contentf is cached at CDCi.

Otherwise, no caching takes place.

All these proposed models and approaches need further investigation that we leave for future consideration.

B. Collaborative Filtering for Proactive Content Caching

In the previous section, the focus was on deriving models that capture storage capacity availability, content

popularity, user populations, and content availability. In this section, we focus on designing methods that

provide effective ways of acquiring the information neededfor computing these models. Specifically, we

leverage collaborative filtering theory to predict key parameters, such as content popularity, content features,

etc., thereby eliminating the need for acquiring it from neighboring CDCs. For instance, content popularity

indexes vary over time and across communities, and are unavailable beforehand [14], and hence, it would

be very beneficial to have prediction approaches that can provide some accurate estimates in realtime.

One challenge with our popularity-based caching (pLFU) approach (discussed in Section III) is that it may

not scale well considering the volume of content that users can be interested in accessing. One approach

to overcome this challenge is to use collaborative filteringand low-rank matrix theory [15] to help predict

popularity of contents whose popularity indexes are not known yet through the use of contents with known

popularity indexes. The idea is that each content can be associated with one (or a combination) of some

content categories/interests (e.g., Sports, Politics, Entertainment, etc). For movie content, this categorization

could refer to the conventional classifications: action, comedy, drama, documentary, etc. Formally, a content

f can be described by a vector of featuresxf where each feature measures the degree to which the content

falls within a particular category/interest. Now the distribution of content categories within a community

served by CDCi during windowk can, for instance, be represented by a parameter vector, sayθ
(k)
i . Note

that the distribution of interests may change from one time window to another. The popularity index of

contentf encountered at CDCi can then be computed asp(k)i,f = (θ
(k)
i )Txf . We can also write popularity

indexes of all content using matrix notation asP
(k) = Θ

(k)T
X whose rows and columns correspond to the

CDCs and contents, respectively. Here,θ
(k)
i ’s are the columns of matrixΘ(k) and thexf ’s are the columns

of the matrixX.

We presented some solution approach idea that has great potential for effectively predicting content

popularity. This idea requires future investigation.

C. Mobility Prediction for Real-Time Content Delivery

In addition to bringing Internet content closer to end usersso that content delivery latency is reduced,

cloudlet-driven content delivery architectures in these highly populated cities are required to support and
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handle user mobility. In these cities, users will be receiving and downloading content on the move. Therefore,

mobile users are expected to experience frequent handoffs across different CDCs during a connection lifetime,

resulting in intermittent connectivity and service disruptions, especially near the edge of CDCs’ coverage,

which is detrimental for mobile service continuity and overall QoE [10]. In this case, even though a handoff

may be imminent, interest requests must still be requested,causing potential packet losses and increased

response times. Although careful placement of CDCs improves overall network performance, the mobility

nature of city users gives rise to service disruption issuesthat need to be addressed.

For this, we propose to rely on content prefetching approaches for overcoming these issues. Specifically,

we rely on GPS technology to predict the mobile user’s path and prefetch content on the CDCs located

on the user’s expected path. For instance, a CDC-aware pathPN , whereN is the number of CDCs on a

mobile user’s path, can consist of a 4-tuple,(Ci, Ri, di, si), i = 1, 2, . . . , N , with Ci representing CDCi,

Ri anddi representingCi’s throughput and coverage area, andsi representing the expected speed traveled

within Ci’s coverage area. Content chunks can then be prefetched on the CDCs belonging to the user’s

path based on theseRi, di and si parameters. For example, a mobile user can first obtain a CDC-aware

path,PN = (C1, R1, d1, s1), ..., (CN , RN , dN , sN ), through a central server where state information and

parameters of all CDCs are maintained. The mobile user can also obtain from the server a content-specific

manifest file, containing content details such as content size, duration, publisher, etc. Once received, the

mobile user parses the manifest file to acquire the content size and in turn the maximum number of chunks

based on the maximum transmission unit (MTU) of the network.The mobile user also maintains a current

chunk number,Scur, which is used to inform candidate CDCs of the starting chunknumber to begin

prefetching at as the user moves across a path. Based on the mobile user’s current speed,si, distance within

the CDC’s coverage area,di, and throughput,Ri, the expected amount to be downloaded within the current

CDC can be estimated toE[Di] =
di

si
Ri, and hence, the expected chunk number for the candidate CDC to

begin prefetching at is⌊E[Di]
MTU

⌋+ Scur. This process is repeated until the entire content has been prefetched

or the user has arrived at its destination. That is said, whatremains for future investigation are a thorough

assessment of their ability to prevent service disruption of mobile users, a study of the impact of mobility

on the numbers of CDCs that need to be placed, and the finding ofthe appropriate numbers that account

for user mobility.

V. CONCLUSION

This paper proposes a set of in-network, content-centric caching approaches for large urban cities, and

shows that such approaches improve network responsivenessand reduce backhaul traffic congestions. Our

presented approaches leverage cooperation and information sharing among network devices, prediction and

collaborative filtering of content popularity within city regions, and user trajectory information obtained

through GPS to provide faster content delivery, lesser backhaul traffic, and better QoE.
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