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Abstract— Receive diversity yields a higher signal-to-noise
ratio (SNR) than transmit diversity when the total transmit-
ted power and diversity order are the same. However, if the
transmitter has complete or partial knowledge of channel, the
SNR gap between these two schemes can be reduced. This paper
introduces an adaptive power allocation scheme for space-time
block coded (STBC) multiple-antenna systems to improve system
performance. For any set of channel fading coefficients, the
transmit power scaling factors are controlled by a single design
parameter u. The proposed adaptive power allocation scheme
improves the instantaneous SNR at the receiver. Special choices
of u result in some existing STBC schemes. Performance gain of
the proposed scheme over the conventional equal-power scheme
under the condition of perfect and imperfect feedback is studied.
The maximum achievable SNR gain limit over the conventional
scheme is also derived.

I. INTRODUCTION

Space-time block codes (STBC) provide transmit diversity
over fading channels. In a commonly used STBC, transmit
power is equally divided among all transmit antennas. How-
ever, if the transmitter has full or partial knowledge of the
channel, adaptive transmit power allocation that allocates more
power to the transmit antenna with a better fading condition
will improve the received signal-to-noise ratio (SNR). In [1]–
[4], several adaptive power allocation methods for systems
with two transmit antennas were introduced. These schemes
can be considered as a variation of the Alamouti scheme [5].
In [6], a method to transmit the Alamouti block code based
on selecting two out of three transmit antennas was proposed.
When the transmitter does not have perfect knowledge of the
fading coefficients, none of the methods mentioned above can
guarantee the maximum SNR at the receiver.

In this paper, we derive the maximum SNR gain limit
achievable by adaptive power allocation for STBC designed
for multiple-input multiple-output (MIMO) systems when per-
fect feedback is available. Then, an adaptive power allocation
scheme with imperfect feedback is proposed and analyzed.
A design parameter u is introduced to control the power
scaling factors. SNR gain of the proposed scheme over the
conventional scheme in which power is equally distributed
among all transmit antennas is provided. The conventional
STBC scheme and the adaptive scheme analyzed in [1] are
special cases of the proposed scheme with specific choices of

a design parameter u.

II. SYSTEM MODEL

Consider a wireless communications system with M trans-
mit antennas and N receive antennas, denoted as an (M,N)
system in this paper. Each receive antenna responds to each
transmit antenna through a statistically independent fading
coefficient. The received signals are further corrupted by
additive white Gaussian noise that is statistically independent
among different receive antennas and different symbol periods.
Let the P × M transmission matrix be

G =




g1,1 g1,2 · · · g1,M

g2,1 g2,2 · · · g2,M

...
. . .

. . .
...

gP,1 gP,2 · · · gP,M


 (1)

and the transmitted symbol vector be s = [s1, s2, · · · , sK ]T ,
where [·]T denotes transpose. Each element of G is a linear
combination of symbols s1, s2, · · · , sK and their complex
conjugates. The (p,m)th entry of G, gp,m, will be transmitted
at time slot p from transmit antenna m. The code rate, as
defined in [7], is given as K/P , where P is the number of time
slots used to transmit K symbols. The total average transmit
power is normalized to 1. Average energy of each symbol is
Es. Thus, the transmitted signal at time slot p from transmit
antenna m is expressed as xp,m = αm

√
Esgp,m, where

αm is a real power scaling factor determined by feedback
information. In order to maintain the same total average power
after power scaling, it is required that

M∑
m=1

α2
m = 1. (2)

For the conventional STBC scheme, αm =
√

1/M, m =
1, · · · ,M .

The channel is assumed to be quasi-static, allowing it to be
constant over a frame of symbols and change independently
from one frame to another. Let hm,n denote the fading
coefficient from the mth transmit antenna to the nth receive
antenna of an (M,N) system. Rayleigh fading is considered so
that hm,n is a zero-mean complex Gaussian random variable.
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The average power of the channel is also normalized so that
hm,n has a unit variance.

The received signal at time p by receive antenna n, rp,n, is
given as

rp,n =
M∑

m=1

hm,nxp,m + νp,n (3)

where νp,n is the additive zero-mean white Gaussian noise
component with variance N0. The maximum likelihood (ML)
decoder calculates the following decision metric

d =
P∑

p=1

N∑
n=1

∣∣∣∣∣rp,n −
M∑

m=1

αm

√
Esĝp,m

∣∣∣∣∣
2

(4)

and the codeword (ŝ1, · · · , ŝK) that minimizes d will be the
decoder output.

III. SNR ANALYSIS

Assuming a full-diversity system coded with orthogonal
space-time block codes (OSTBC), ML decoding can be
achieved using linear operations on rp,n, αm, and hm,n. In
a system with a rate-1 transmission matrix or with a rate-3/4
transmission matrix, the decision variable for the kth element
of s, ŝk, is expressed as [5], [7]–[9]

ŝk =
√

Es

N∑
n=1

M∑
m=1

α2
m|hm,n|2sk + ξk (5)

where ξk is the complex zero-mean Gaussian noise component

whose variance is given as σ2
ξk

= N0

N∑
n=1

M∑
m=1

α2
m|hm,n|2. As

an example, in a (2,1) system (M = 2, N = 1) with the
Alamouti code [5], the received signals are expressed as

r1,1 =
√

Es (α1h1,1s1 + α2h2,1s2) + ν1,1 (6a)

r2,1 =
√

Es (−α1h1,1s
∗
2 + α2h2,1s

∗
1) + ν2,1 (6b)

and the decision variables are given as

ŝ1 =α1h
∗
1,1r1,1 + α2h2,1r

∗
2,1

=
√

Es

(
α2

1|h1,1|2+α2
2|h2,1|2

)
s1+α1h

∗
1,1ν1,1+α2h2,1ν

∗
2,1

ŝ2 =α2h
∗
2,1r1,1 − α1h1,1r

∗
2,1

=
√

Es

(
α2

1|h1,1|2+α2
2|h2,1|2

)
s2+α2h

∗
2,1ν1,1 − α1h1,1ν

∗
2,1.

In a system with rate-1/2 transmission matrix for complex
signals, the decision variable is given as [8]

ŝk = 2
√

Es

N∑
n=1

M∑
m=1

α2
m|hm,n|2sk + ηk (8)

where ηk is the complex zero-mean Gaussian noise
component whose variance is given as σ2

ηk
=

2N0

∑N
n=1

∑M
m=1 α2

m|hm,n|2. Obviously, the SNR for
rate-1/2 codes is doubled compared with rate-1 and rate-3/4
codes. With adaptive power allocation, however, the SNR
gain will be the same for codes of rate 1, 3/4, and 1/2.
Specifically, let SNRa be the SNR with adaptive power

allocation and SNRc be the SNR with the conventional
equal-power scheme. The ratio SNRa

SNRc
will be the same

for codes of rate 1, 3/4, and 1/2. Thus, in the following
discussion, we will only focus on rate 1 and rate 3/4 codes.
The received instantaneous SNR is obtained as

γ =
Es

N0

M∑
m=1

[
α2

m

N∑
n=1

|hm,n|2
]

. (9)

IV. ADAPTIVE POWER ALLOCATION

A. Minimum Feedback Allocation Scheme (Antenna Selection)

Let βm =
∑N

n=1 |hm,n|2. Without loss of generality, we
assume that β1 ≥ β2 ≥ ... ≥ βM . Thus, we can write βM−1 =
βM + δ1, βM−2 = βM + δ1 + δ2, ..., β1 = βM + δ1 + ... +
δM−1, where βi and δj are nonnegative real numbers. The
instantaneous SNR is then expressed as

γ =
Es

N0

[
βM + δ1

M−1∑
i=1

α2
i + δ2

M−2∑
i=1

α2
i + ... + δM−1α

2
1

]
.

(10)
Obviously, when α1 = 1 (note that

∑M
m=1 α2

m = 1), γ is
maximized to be Es

N0
β1. This means that if β1 ≥ ... ≥ βM

holds, the system should allocate all its power to transmit
antenna 1 for best performance.

The feedback required for this scheme is minimum; only
�log2(M)� bits for each transmission, where �·� denotes the
nearest integer towards infinity. For simplicity, we will refer
to this scheme as the minimum-feedback-allocation scheme
(MFAS). Note that this scheme results in antenna selection
(one out of M ). Other advantages of the MFAS include that
there are no quantization errors for the feedback. Because
there is no inter-symbol interference, it is easy to realize a
rate-1 transmission for complex signals with full diversity,
which is a challenging issue for MIMO systems with STBCs.
However, this scheme, as will be seen from simulation results
in Section V, is more sensitive to feedback errors than other
power allocation schemes.

B. A New Adaptive Power Allocation Scheme

In practice when feedbacks are imperfect (channel coeffi-
cients obtained by the transmitter through feedback contain
errors), a very simple scheme with α1 > · · · > αM will
improve the system performance if β1 > · · · > βM . In
this case there are M − 1 variables, α1, · · · , αM−1 (αM =√

1 −∑M−1
m=1 α2

m ), to be solved, and it is rather difficult to
determine which set of combinations of αm give the best
performance. Thus, we propose a new scheme with only one
parameter that can be easily controlled to maximize SNR at
the receiver. Additionally, this scheme is robust to feedback
errors. In the proposed adaptive power allocation scheme, the
real scaling factor for the mth transmit antenna is given as

αm =

√
βu

m∑M
m=1 βu

m

(11)
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where for a given set of channel coefficients, hm,n, parameter
u controls the power scaling factor αm. It is easy to verify
that αm given in (11) satisfies the requirement given in (2).

It is worth of mentioning two special cases, u = 0 and
u = 2, which correspond to, respectively, the conventional
STBC scheme in which power is equally distributed among
all transmit antennas and the adaptive scheme proposed in [1]
for a system with two transmit antennas.

By applying the power scaling factor αm given in (11) to
the instantaneous SNR given in (9), we obtain

γu =
Es

N0

∑M
m=1 βu+1

m∑M
m=1 βu

m

. (12)

It will be interesting to examine the relationship between SNR
and parameter u for the adaptive power allocation scheme. The
difference between γu+1 and γu is obtained to be

γu+1 − γu =
Es

N0

(∑M
m=1 βu+2

m∑M
m=1 βu+1

m

−
∑M

m=1 βu+1
m∑M

m=1 βu
m

)

=
Es

N0

(∑M
i=1 βu

i

) (∑M
j=1 βu+2

j

)
−
(∑M

j=1 βu+1
j

)2

(∑M
i=1 βu

i

) (∑M
j=1 βu+1

j

)

=
Es

N0

∑
1≤i<j≤M

βu
i βu

j (βi − βj)
2

M∑
i=1

M∑
j=1

βu
i βu+1

j

. (13)

It can be seen from Eq. (13) that γu+1−γu is always greater
than or equal to 0 with equality only if β1 = β2 = · · · = βM .
If this condition does not hold, which is true for any practical
scenario, SNR increases monotonically with parameter u (note
that u does not necessarily need to be an integer). However,
performance improvement with the proposed adaptive power
allocation scheme will saturate as u increases. This is proved
as follows. Without loss of generality, we assume that β1 =
β2 = · · · = βw = max{β1, · · · , βM}, where 1 ≤ w < M .
The ratio γu+1/γu can be written as

γu+1

γu
=

β−2u−2
1

(
βu+2

1 + · · · + βu+2
M

)
(βu

1 + · · · + βu
M )

β−2u−2
1

(
βu+1

1 + · · · + βu+1
M

)2
=

w2 + ε1
w2 + ε2

.

It can be easily determined that lim
u→+∞ ε1 = lim

u→+∞ ε2 = 0,

which implies
lim

u→+∞ γu+1/γu = 1. (14)

Additionally, let us consider the limit of γu:

lim
u→+∞ γu =

Es

N0
lim

u→+∞
βu+1

1 + βu+1
2 + ... + βu+1

M

βu
1 + βu

2 + ... + βu
M

=
Es

N0
lim

u→+∞
β1 + β2(β2

β1
)u + ... + βM (βM

β1
)u

1 + (β2
β1

)u + ... + (βM

β1
)u

=
Es

N0
β1. (15)

Eq. (15) gives the ultimately achievable maximum SNR at
receiver with the proposed adaptive power allocation scheme,
which is the same as the SNR achieved by antenna selection.
Based on Eq. (15) and the fact that γu is a continuous function
of u, an appropriate u could results in the maximum achievable
SNR. This reduces the multidimensional problem to a one-
dimensional problem.

We define the average SNR gain as the ratio of the average
SNR with the adaptive power allocation scheme to the average
SNR with the equal-power scheme. This ratio is expressed as
10 log10

[
E{γu}
E{γ0}

]
dB, where E{·} denotes expectation. Recall

that the average SNR for the traditional equal-power scheme
is given as

E{γ0} =
Es

MN0
E

{
M∑

m=1

[
N∑

n=1

|hm,n|2
]}

=
NEs

N0
. (16)

The maximum average SNR gain in dB can be obtained as

10 log10

(
E{γ+∞}
E{γ0}

)
= 10 log10

(
E{max(β1, · · · , βM )}

N

)
(17)

where βi, i = 1, · · · , M , are central chi-square-distributed
random variables with freedom 2N in a Rayleigh fading
environment. The cumulative distribution function (CDF) of
βi can be found in closed form as [10]

FY (y) = 1 − e−y/2σ2
N−1∑
k=0

1
k!

( y

2σ2

)k

, y ≥ 0 (18)

where σ =
√

2/2. The CDF of max(β1, · · · , βM ) is given as

Fmax
Y (y) =

[
1 − e−y/2σ2

N−1∑
k=0

1
k!

( y

2σ2

)k
]M

=

[
1 − e−y

N−1∑
k=0

1
k!

yk

]M

, y ≥ 0. (19)

The probability density function (PDF) of
max(β1, · · · , βM ), pmax

Y (y), can be calculated by
differentiating Fmax

Y (y). The expected value of
max(β1, · · · , βM ) is obtained as

E{max(β1, · · · , βM )} =
∫ ∞

0

ypmax
Y (y)dy. (20)

As an example, let us consider a (2,1) system:

FY (y) = 1 − e−y, y ≥ 0 ⇒
Fmax

Y (y) = (1 − e−y)2, y ≥ 0 ⇒
pmax

Y (y) = 2e−y(1 − e−y) ⇒
E{max(β1, β2)} =

∫ ∞

0

2ye−y(1 − e−y)dy =
3
2
.

Therefore, the maximum average SNR gain for a (2,1) system
is 10 log10(

3
2 ) = 1.76 dB.

Values of the maximum average SNR gains for various
combinations of M and N of a MIMO system are evaluated
numerically and summarized in Table 1.
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Gain (dB) M =2 M =3 M =4 M =5 M =6
N = 1 1.7609 2.6323 3.1875 3.5856 3.8917
N = 2 1.383 2.0588 2.4886 2.797 3.0344
N = 3 1.181 1.7567 2.1232 2.3866 2.5897
N = 4 1.0498 1.5615 1.8876 2.1223 2.3033
N = 5 0.9555 1.4215 1.7188 1.9329 2.0983

Table 1: The maximum gains in the average SNR for MIMO
systems.

Examining Table 1, we find that the maximum gain in the
average SNR due to the proposed adaptive power allocation
increases as the number of transmit antennas increases, and
decreases as the number of receive antenna increases. This can
be intuitively explained as follows. As M increases with N
fixed, E{max(β1, · · · , βM )} has more dimensions to provide
a gain. On the other hand, when N increases with M fixed, the
difference between max(β1, · · · , βM ) and the average value
of βi decreases.

C. The New Scheme with Imperfect Feedback

In a practical system, channel coefficients will not be
perfectly known. Even if channel coefficients were perfectly
known, there will be quantization errors in the feedback. In
order to resolve the problem of imperfect feedback and lower
the number of feedback bits required, we pre-determine a
finite set of values for αm. The receiver only needs to inform
the transmitter that which pre-determined power scaling factor
should be assigned to antenna m. For example, in a system
with two transmit antennas, we pre-determine a fixed set of
values for αm as αm ∈ (0.8, 0.6). If the receiver finds out that
β1 > β2, it then needs only 1 bit to instruct the transmitter
to allocate 0.8 to antenna 1. For a general system with M
transmit antennas, �log2(M !)� feedback bits are needed.

For simplicity, we assume that the feedback system is a
SISO system with the same constellation as the information
channel. The average energy of feedback symbols is also
Es. The pre-determined power scaling factors αm,m =
1, · · · ,M for a particular choice of parameter u can be
determined using the method as follows. As defined earlier,
βm is a function of fading coefficients hm,1, · · · , hm,N . For
each realization of the channel coefficients, let βmax =
max{β1, · · · , βM}. The pre-determined largest power scal-

ing factor αmax can be set as αmax = E
{√

βu
max∑M

m=1 βu
m

}
.

In the same manner, let βsec be the second largest value
among β1, · · · , βM , for each realization of the channel. The
second largest power scaling factor αsec is calculated to be
αsec = E

{√
βu

sec∑M
m=1 βu

m

}
. This method can be continued until

the smallest scaling factor αmin is determined as αmin =√
1 − α2

max − α2
sec − · · ·. As an example, if u is chosen to

be u = 1 for a system with M = 3, then the pre-determined
power scaling factors can be calculated to be (α1, α2, α3) ≈
(0.7765, 0.5158, 0.3620). If u is chosen to be u = 2, then
(α1, α2, α3) ≈ (0.8602, 0.4144, 0.2973).

For 3 transmit antennas, we have to use �log2(3!)� = 3 bits
to feed back 3! = 6 possible groups (αmax, αsec, αmin).

However, the 3 bits could represent 8 unique groups, yielding
two invalid groups. The transmission power allocation strategy
for this case is that if feedback symbols are erroneously
decoded as one of two invalid groups, equal power allocation
will be used in next transmission.

V. NUMERICAL EXAMPLES AND DISCUSSION

Simulated results demonstrating the performance of the
proposed adaptive power allocation schemes are obtained in
this section. Fig. 1 shows the error probability of different
systems as a function of parameter u. It is found that for a

0 0.5 1 1.5 2 2.5 3

10
−3.4

10
−3.3

10
−3.2

u

B
E

R

2ISO, BPSK, Es/No = 15dB
2I2O, QPSK, Es/No = 11dB

Fig. 1. BER versus parameter u (M = 2, N = 1, 2)

(2, 1) system with BPSK modulation operating at Es/N0 =
15dB, the optimum value of u is 0.6. The corresponding
power scaling factors for the proposed adaptive scheme with
imperfect feedbacks can be determined to be (αmax, αmin) ≈
(0.8196, 0.57293). For a (2, 2) system with QPSK modulation
operating at Es/N0 = 11dB, the optimum value of u is
found to be 1. The corresponding power scaling factors for the
two transmit antennas are determined to be (αmax, αmin) ≈
(0.88452, 0.4665).

It is usually not easy to determine the optimum value
of u by an analytical approach since it depends on Es/N0

in the information channel, the power of feedback symbols,
the number of transmit and receiver antennas (M, N), and
the modulation scheme. With the feedback model and PSK
modulation, the optimum u in the sense of minimizing error
probabilities can be calculated numerically using the procedure
described below.

According to Eq. (5), orthogonal space-time block codes in
an (M, N ) system have the same performance as a (1, MN )
system (a diversity-reception only system) using maximal ratio
combining, provided that the transmit power per antenna is the
same in both systems to make the comparison fair. Therefore,
the optimum value of u can be found by using the exact
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Fig. 2. BER versus Eb/N0 curves for different schemes (M = 2, N = 1,
BPSK)

error probability for multichannel PSK signals given in [10],
Appendix C. As an example, let us consider the Alamouti
scheme using BPSK in a (2, 1) system. We can easily compute
the error probability in the feedback channel Pfeedback and
the error probability in the information channel for equal
power allocation Pi,equal (no adaptive power allocation), where
Pi,equal = f( Es

N0
) is a function of the received signal-to-

noise ratio. Additionally, we have E{βmax} = 1.5 from
Table 1. Thus, E{βmin} = 2 − 1.5 = 0.5. The average
error probability for the information channel with adaptive
power allocation under imperfect feedback is given by Pi,adp =
(1− Pfeedback)f(1.5α2

max
Es

N0
) + Pfeedbackf(0.5(1− α2

max) Es

N0
),

where αmax ∈ (0, 1) is a variable that depends on u. If we
fix Es

N0
, then Pi,adp is a function of u. The optimal value of u

can be found by minimizing Pi,adp.
Figs. 2 and 3 compare the error performances of the MFAS,

the equal-power scheme, and the adaptive power allocation
scheme which applies the optimum u. Although the optimum
u depends on Es/N0, for simplicity the values of u obtained
in Fig. 1 are used for any Es/N0 in Figs. 2 and 3. It is found
that when perfect feedback symbols are assumed, the antenna-
selection scheme works the best. However, when there are
feedback symbol errors, the antenna-selection scheme suffers
from diversity loss.

VI. CONCLUSION

We have proposed a new power allocation scheme for space-
time block coded MIMO systems. If the channel coefficients
are known, the power scaling factors for all transmit antennas
are controlled by a single parameter u which, for some special
cases, can be predetermined numerically. Different choices of
parameter u yields different SNR gains. The maximum achiev-

0 2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Es/No

B
E

R

MFAS with perfect feedback (SNR limit)
new scheme with u=1, imperfect feedback
equal power
MFAS, imperfect feedback

Fig. 3. BER versus Es/N0 curves for different schemes (M = 2, N = 2,
QPSK)

able SNR gain can be achieved by choosing an appropriate
value of u. Some special choices of parameter u with the
proposed adaptive power allocation scheme reduce to some
existing STBC power allocation schemes (i.e. [1], [5]). A much
simpler power allocation scheme (single antenna selection)
that needs significantly less number of feedback bits is also
proposed. Performance gains of the proposed schemes over
the conventional equal-power STBC scheme are simulated for
systems with different number of antennas and modulation
schemes.
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