
956 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 12, DECEMBER 2009

Secure Network Coding with
Minimum Overhead Based on Hash Functions

Majid Adeli and Huaping Liu, Senior Member, IEEE

Abstract—In order to achieve complete security in networks
with network coding, it has been shown that at least 𝑘 original
information symbols must be substituted with 𝑘 uniformly
distributed random symbols chosen from the same code field,
where 𝑘 is the maximum number of independent coding vectors
accessible to the adversary. Thus, sender nodes must dedicate a
portion of the bandwidth to transmit noise, which could cause a
significant signaling overhead. In this letter, we propose a scheme
that requires only one noisy symbol to be embedded in the
original information symbol vector to achieve complete secrecy.
This scheme utilizes hash functions to generate different random
noisy symbols by using the only uniformly distributed random
symbol and the information symbols. It has two main advantages:
(a) complete security is guaranteed regardless of the number of
independent coding vectors acquired by the adversary; and (b)
signaling overhead to obtain complete security is minimized.

Index Terms—Network coding, complete security, hash func-
tion, information rate.

I. INTRODUCTION

NETWORK coding is a general form of the traditional
routing schemes [1]. In network coding based networks,

each intermediate node has the ability to process the data
packets it receives and then transmit the processed symbols
over its outgoing channels [2], [3]. If an intermediate node has
𝑛 input and 𝑚 output channels, then it should have 𝑚 different
functions of its 𝑛 different input symbols. Network coding can
be broadly categorized into two classes: linear network coding
and nonlinear network coding [2]. Linear network coding, the
focus of this paper, has been widely considered because it is
simple and practical.

There have been research efforts on achieving secure net-
work coding shortly after network coding was introduced in
[1], [4]. In [5], a necessary and sufficient condition for the
feasibility of constructing a secure linear network code is
derived. In [6], [7], connections between secure network cod-
ing and secret sharing are established and trade-offs between
security, code alphabet size, and multicast rate of secure linear
network codes are derived. Two different types of security are
considered in [8] and a code field size bound is obtained for
each case. The scheme discussed in [9] is based on mixing the
original raw information symbols with a vector of uniformly
distributed random symbols of the same length by 𝑋𝑜𝑟ing
them, and then concatenating the resultant vector with the
random symbol vector. The concatenated vector is finally sent
through the network. Other works such as [10], [11] have

Manuscript received August 6, 2009. The associate editor coordinating the
review of this letter and approving it for publication was S. A. Jafar.

The authors are with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, Oregon 97331 U.S.A. (e-mail:
{adeli, hliu}@eecs.oregonstate.edu).

Digital Object Identifier 10.1109/LCOMM.2009.12.091648

addressed security issues when the adversary can manipulate
the functionality of some intermediate nodes in the network.
To deal with such type of attacks, called Byzantine attacks, it
is suggested to use error-correcting codes at the source nodes.
Coding at the source nodes is also considered in [12] as a
way to make the network code secure. In this case, the source
nodes apply channel coding on information symbols before
network code is applied. Vulnerabilities of security schemes
in network coding are briefly analyzed in [13].

Randomized network coding in mobile, unreliable, noisy
networks is considered in [14]. To make the network code
robust against these issues and at the same time keep the
overhead low, training sequences are embedded in data packets
and then channel coding is applied on the entire data packet.

In this paper, we propose a new scheme to achieve complete
security for linear network coding with minimum information
overhead and without changing the code field size or the func-
tionality of intermediate nodes. Here, complete security means
that the adversary will not gain any meaningful information by
wiretapping the network links; where meaningful information
implies any linear combination of the information symbols.
The basic idea to achieve complete security with minimum
overhead is to utilize hash functions [15], instead of by adding
redundancy to the information message.

II. PROBLEM DEFINITION

We consider an interference-and-delay-free network with
linear network coding where all channels act as noiseless,
linear time-invariant filters. As commonly adopted, we denote
this network as 𝐺(𝑉,𝐸) [1], where 𝐺 is an acyclic directed
graph with unit capacity for each edge, 𝑉 denotes the set of
all nodes (vertices) in the network, and 𝐸 represents the set of
all edges (links or channels) that connect the network nodes.

Suppose that a set of source nodes, named 𝑆, send data over
the network. All information symbols generated by the source
nodes form an information vector of length 𝑛 expressed as

𝒎 = (𝑚1,𝑚2, ⋅ ⋅ ⋅ ,𝑚𝑛)
𝑇
, (1)

where 𝑚𝑖 ∈ 𝐺𝐹 (𝑞) and ∥𝑆∥ ≤ 𝑛. Since we consider linear
network coding, each edge is associated with a length-𝑛
vector, called coding vector. For 𝑖 = 1 to 𝑁

def
= ∥𝐸∥, we

denote each coding vector as

𝒗𝑖 = (𝜈𝑖1, 𝜈𝑖2, ⋅ ⋅ ⋅ , 𝜈𝑖𝑛)𝑇 . (2)

Coding vectors are defined over the same code field to which
the information symbols belong. At any time instant, the
symbol transmitted on the 𝑖th edge, denoted by 𝑥𝑖, is the
inner product of the information vector and the coding vector

1089-7798/09$25.00 c⃝ 2009 IEEE

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 21, 2009 at 20:18 from IEEE Xplore. Restrictions apply.

ADELI and LIU: SECURE NETWORK CODING WITH MINIMUM OVERHEAD BASED ON HASH FUNCTIONS 957

associated with that edge. So 𝑥𝑖, which is a linear combination
of all information symbols can be expressed as

𝑥𝑖 = 𝒗𝑇
𝑖 𝒎, for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁. (3)

Assume that the adversary has access to at most 𝑘 (𝑘 < 𝑛)
independent edges, where “independent edges” means their
corresponding coding vectors are linearly independent. In
order to prevent the adversary from acquiring any meaningful
information, we should substitute some of information sym-
bols (say 𝑟) in the original information vector with uniformly
distributed random symbols, 𝑧, selected from the same code
field and then run a linear transformation on the modified
information vector, �̃�, which is expressed as

�̃� = (𝑚1,𝑚2, ⋅ ⋅ ⋅ ,𝑚𝑛−𝑟, 𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑟)𝑇 . (4)

A final transformation is applied on �̃� because if we
simply place the components of �̃� on the output edges of
the source nodes, then on some of the outgoing edges we
will have plain, disclosed information symbols, which are not
secure. This linear transformation can be modeled by a simple
matrix multiplication at source nodes. This way, at the output
edges of each source node we have a linear combination of
meaningful information symbols and noisy symbols. Under
some constraints that will be discussed in Sec. III, each edge
in the network carries only noise, yielding complete security.

The noisy symbols embedded to ensure security cause a
reduction in information rate. It has been shown that with
existing approaches, the number of noisy symbols, 𝑟, must
be at least equal to 𝑘 [5]–[9]. This substitution results in
significant reduction in information rate.

III. EXISTING SCHEMES

We review existing approaches to achieve completely secure
linear network coding which has been proposed in literatures
such as [5]–[9]. The basic idea is to make sure that the
adversary will not be able to neutralize the effect of the noisy
symbols on meaningful data by linearly combining available
𝑥𝑖’s. To achieve this goal, we consider

𝑽 �̃� = [𝒗1 𝒗2 ⋅ ⋅ ⋅ 𝒗𝑘]
𝑇
�̃� = [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑘]

𝑇
, (5)

where 𝒗𝑖 denotes an 𝑛-dimensional coding vector correspond-
ing to the 𝑖th edge available to the adversary, and 𝑽 is the
matrix obtained by putting all these coding vectors together.
If we partition 𝑽 𝑘×𝑛 into two submatrices, 𝑨𝑘×(𝑛−𝑟) and
𝑩𝑘×𝑟, corresponding to the parts of �̃� that contain informa-
tion and noisy symbols respectively, then we have

[
𝑨𝑘×(𝑛−𝑟)∣𝑩𝑘×𝑟

]
�̃� = (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘)

𝑇
. (6)

In order to maintain complete security, any linear combination
of the rows of matrix 𝑽 should not yield to a length-𝑛 vector
with all zeros for its last 𝑟 components, because otherwise the
adversary would be able to gain meaningful information (i.e.,
a linear combination of the original information symbols) by
linearly combining his wiretapped symbols. This requires the
submatrix 𝑩 to have independent rows, which necessitates
𝑟 ≥ 𝑘. Therefore, the number of substituted noisy symbols in
�̃� must not be less than 𝑘.

IV. PROPOSED SCHEME

From Sec. III, we see that existing schemes are based
on embedding uniformly distributed random symbols in the
information vector and mixing them with information symbols
through linear combinations. This approach makes linear net-
work code secure at the expense of potentially a significantly
increased overhead. Also, for any given number of embedded
noisy symbols, the adversary could break the security by
acquiring the symbols on more independent edges.

The goal of this paper is to minimize overhead while guar-
anteeing complete security in network coding. Our scheme
is based on using hash functions. A hash function ℎ maps
an input 𝑥 of arbitrary (but finite) bit-length to an output
ℎ(𝑥) of fixed, pre-specified bit-length [15]. In addition, given
ℎ and an input 𝑥, ℎ(𝑥) can be calculated with polynomial
time complexity but for a given output, it is computationally
infeasible to find the corresponding input. Also for a hash
function, it is computationally infeasible to find two distinct
inputs 𝑥1 and 𝑥2 such that ℎ(𝑥1) = ℎ(𝑥2). The last property
can be interpreted as a pseudo one-to-one input-output rela-
tionship, which means that for different inputs, the outputs
will be different with high probability. In other words [15],

∀𝑥1, 𝑥2 if 𝑥1 ∕= 𝑥2
with high probability

=⇒ 𝑓(𝑥1) ∕= 𝑓(𝑥2). (7)

Stronger hash functions have lower collision probability.
Since hash function domain is bigger than its range, theo-
retically the collision probability is greater than zero. How-
ever, for a well designed hash function, finding collisions in
polynomial time is practically impossible. Hence, with a good
approximation, we can assume that (7) is always true. More
details about hash function properties are available in [15].

Now suppose that 𝑓(⋅) is a hash function with outputs
defined over 𝐺𝐹 (𝑞) and 𝑎 ∈ 𝐺𝐹 (𝑞) is a uniformly distributed
random symbol. We build the vector �̃� as

�̃� = (𝑥1+𝑓(𝑎), 𝑥2+𝑓(𝑎, 𝑥1), 𝑥3+𝑓(𝑎, 𝑥1, 𝑥2), ⋅ ⋅ ⋅ ,
𝑥𝑛−1 + 𝑓(𝑎, 𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛−2), 𝑎)

𝑇
, (8)

where the comma-separation of independent variables in the
hash function denotes concatenation, which means the indi-
vidual components are put next to each other in a bit-wise
manner and then applied to the hash function as a single input.
Since the arguments of the hash functions in (8) are different,
and considering (7), we find that each component in (8) has
a different noisy term (similar to one-time-pad stream ciphers
[15]). So, this way, by using only one random symbol, we have
concealed all the information symbols in such a way that the
adversary cannot recover them via linear combination. The
rest of the process is the same as current schemes: running
a linear transformation on �̃� and then sending the resultant
vector through the network.

Note that in this scheme 𝑓(⋅) is known to all parties
including the adversary, and we have not used any crypto-
graphic process. Furthermore, there is no need for senders and
receivers to do any kind of handshaking before starting data
transmission. Since the receivers know 𝑓(⋅), after recovering
�̃� (feasibility of recovery depends on the design of the
network code), all information symbols can be recovered by
having 𝑎, which is the last component of �̃�.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 21, 2009 at 20:18 from IEEE Xplore. Restrictions apply.

958 IEEE COMMUNICATIONS LETTERS, VOL. 13, NO. 12, DECEMBER 2009

The main reason for using hash function is to generate
different random symbols out of the only noisy symbol, 𝑎.
Although the statement (7) is probabilistic, as long as the
probability of the event 𝑓(𝑎, 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑖) = 𝑓(𝑎, 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑗)
for any distinct 𝑖 and 𝑗 is not greater than the probability
of having the same outcomes for two independent uniformly
distributed random variables selected from 𝐺𝐹 (𝑞) (i.e., 1

𝑞),
then the security is as strong as using 𝑛 − 1 independent
uniformly distributed random symbols for 𝑛− 1 information
symbols in �̃� (i.e. One-time-pad stream cipher). Typical hash
functions and code fields satisfy this condition easily.

A. Discussion and Comparison with Existing Schemes

Since 𝑩𝑘×𝑟 in (6) has to be full row rank, all its rows
must be linearly independent. This requirement imposes some
limitations in assigning coding vectors to the network edges
and makes the design and management of network code more
complex, especially for random linear network codes. In our
proposed scheme, we use only one random symbol and then
spread out the randomness evenly over the information vector
so that each component in �̃� has a noisy term. Therefore,
for the adversary, neither any individual component of �̃� nor
any linear combination of them has meaningful information.
As a result, there is virtually no limitation on the coding
vector design. For example, we could even have coding vectors
like 𝑒𝑖 = (0, ⋅ ⋅ ⋅ , 0, 1, 0, ⋅ ⋅ ⋅ , 0), which has only one nonzero
component located at the 𝑖th position. However, assigning
code vector 𝑒𝑛 = (0, ⋅ ⋅ ⋅ , 0, 1) to any edge of the network
should be avoided, since in this case, if 𝑒1 = (1, 0, ⋅ ⋅ ⋅ , 0) is
another coding vector, and if the corresponding channels of
both of these two coding vectors are reached by the adversary,
then 𝑥1 can be detected; if 𝑒2 as well as 𝑒1 and 𝑒𝑛 is a
coding vector and acquired by the adversary, then 𝑥2 can be
detected, and so on. Therefore, it is recommended to avoid
assigning 𝑒𝑛 to any of the network edges and that would be the
only restriction. Since each coding vector has 𝑛 components,
excluding the all-zero vector, roughly we have 𝑞𝑛−1 possible
ways for selecting coding vectors. Note that this is an upper
bound for the coding vector space. With the proposed scheme,
this bound will be reduced from 𝑞𝑛−1 to 𝑞𝑛−2. Considering
that 𝑛 and 𝑞 have large values (e.g., 𝑞 = 28 and 𝑛 = 10), this
reduction in the coding vector choices would be negligible.

One-way functions are also used in [16] to make a network
code secure. The main idea in [16] is to obtain security
based on the topology of the network. This scheme requires
establishing a spanning tree throughout the network and each
network node needs to distinguish its output links not included
in the spanning tree from the one included. It assumes that
there is only one receiver and the sender wants to transmit one
information symbol in each time interval, and each node has
a random number generator. For cases that the above scheme
does not work properly, one-way functions with the same
domain and range (i.e., both are defined over the same field)
are suggested to generate random symbols. It is shown that by
using such functions, security is achievable. Hash functions are
used in our proposed scheme with a different goal: achieving
complete security while minimizing information overhead in

such a way that intermediate nodes do not need a random

number generator and there are no restrictions on the number
of receivers and no need for spanning trees.

V. CONCLUSION

We have presented a new approach to achieve complete
security in networks with linear network coding. The basic
idea of the proposed scheme is to introduce noisy terms using
hash functions. Advantages of the proposed scheme include (a)
sender nodes need to substitute only one information symbol
with a uniformly distributed random symbol, which minimizes
transmission overhead; (b) no changes are needed for all the
coding and routing processes at intermediate nodes; (c) no
cryptographic schemes are needed and no handshaking is
required before data transmission starts; (d) greatly relaxed
requirements on coding vector selection space; and (e) nei-
ther any linear combinations nor any individual component
in the message vector gives the adversary any information.
A disadvantage of proposed approach might be the use of
hash functions, which increases the transmission complexity.
However, an appropriately chosen, simple and efficient hash
function will reduce the added complexity.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W.-H. Yeung, “Network
information flow,” IEEE Trans. Inf. Theory, vol. IT-46, pp. 1204–1216,
Apr. 2000.

[2] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, Network Coding Theory.
Now Publishers Inc., 2006.

[3] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. IT-49, pp. 371–381, Feb. 2003.

[4] R. W.-H. Yeung and Z. Zhang, “Distributed source coding for satellite
communications,” IEEE Trans. Inf. Theory, vol. IT-45, pp. 1111–1120,
May 1999.

[5] N. Cai and R. W. Yeung, “Secure network coding,” in Proc. IEEE ISIT’02,
Lausanne, Switzerland, July 2002, p. 323.

[6] J. Feldman, T. Malkin, C. Stein, and R. A. Servedio, “On the capacity of
secure network coding,” in Proc. 42nd Annual Allerton Conf. Commun.,
Control and Comput., Sep. 2004.

[7] J. Feldman, T. Malkin, C. Stein, and R. A. Servedio, “Secure network
coding via filtered secret sharing,” in Proc. 42nd Annual Allerton Conf.
Commun., Control and Comput., Sep. 2004.

[8] K. Bhattad and K. R. Narayanan, “Weakly secure network coding,” in
Proc. NETCOD’05, Riva del Garda, Italy, Apr. 2005.

[9] Y. Zhang, C. Xu, and F. Wang, “A novel scheme for secure network
coding using one-time pad,” in Proc. Int. Conf. Networks Security,
Wireless Commun. and Trusted Comput., China, Apr. 2009, pp. 92–98.

[10] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
“Byzantine modification detection in multicast networks using random-
ized network coding,” in Proc. ISIT’04, June 2004, p. 143.

[11] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard,
“Resilient network coding in the presence of Byzantine adversaries,”
IEEE Trans. Inf. Theory, vol. 54, pp. 2596–2603, June 2008.

[12] S. Y. El Rouayheb and E. Soljanin, “On wiretap networks II,” in Proc.
ISIT’07, Nice, France, June 2007, pp. 551–555.

[13] J. Dong, R. Curtmola, R. Sethi, and C. Nita-Rotaru, “Toward secure
network coding in wireless networks: threats and challenges,” in Proc.
IEEE NPSEC, Orlando, Florida, Oct. 2008, pp. 33–38.

[14] M. Riemensberger, Y. E. Sagduyu, M. L. Honig, and W. Utschick,
“Training overhead for decoding random linear network codes in wireless
networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 5, pp. 729–737, June
2009.

[15] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography, chs. 6 and 9. CRC Press, 1996.

[16] K. Jain, “Security based on network topology against the wiretapping
attack,” IEEE Wireless Commun., vol. 11, no. 1, pp. 68–71, Feb. 2004.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 21, 2009 at 20:18 from IEEE Xplore. Restrictions apply.

