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Power Allocation for Distributed Transmit Diversity with
Feedback Loop Delay

Kwonhue Choi, Member, IEEE, and Huaping Liu, Senior Member, IEEE

Abstract—We study two power allocation (PA) schemes for
distributed transmit diversity systems. We first derive the per-
formance of the instantaneous channel gain feedback-based PA
(ICG-PA) scheme in the presence of channel variation during
feedback delay. We then study channel gain variance feedback-
based PA (CGV-PA) to mitigate the performance degradation of
ICG-PA caused by feedback delay. Finally, we derive design rules
for optimum CGV-PA from a compact and accurate performance
expression derived.

Index Terms—Distributed transmit antennas, transmit diver-
sity, power allocation, feedback delay, time varying fading.

I. INTRODUCTION

D ISTRIBUTED transmit diversity (DTD)[1]–[5] has be-
come a key feature of the air interface of coopera-

tive relay systems, distributed multiple-input multiple-output
(MIMO) antenna systems, and distributed base station sys-
tems. Unlike clustered (non-distributed) transmit diversity
(CTD) systems where multiple transmit antennas are co-
located on a single transmitter, transmit antennas in DTD
systems are typically located far apart; thus each channel will
undergo different large-scale fading. This results in noniden-
tical channel gain variances for each channel. In addition to
the diversity from small-scale fading, the different channel
variances in DTD systems could be exploited to provide
an additional diversity, called ‘macro-diversity’, which is not
available in CTD.

It has been shown that selective power allocation is optimum
for DTD [3], that is, all the available power should be
allocated to the transmit antenna that has the largest channel
gain among the distributed transmit antennas. This conclusion
is based on two main assumptions: availability of channel
state information (CSI) including the instantaneous channel
gain (ICG) and no feedback delay in the power allocation
control loop. However, in a practical system, there will be an
inevitable feedback delay due to signal generation/processing
time and propagation time. Thus, due to channel variation
during the feedback period, the transmit antenna with the
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highest channel gain at the time when measurement was taken
might not have the highest gain anymore when the power
control signal arrives at the receiver. Another problem of
instantaneous-channel-gain-based power allocation (ICG-PA)
is that it requires considerable overhead for feedback and
processing, which becomes even higher in DTD as the number
of simultaneous connections for a receiver increases.

In order to resolve the problems of ICG-PA, channel
covariance-based power allocation is proposed for CTD in [6].
Since the correlation among the propagation paths is high in
CTD, covariance feedback is a valid approach. In the DTD
scenario considered in this work, the paths from distributed
transmit antennas are uncorrelated. Therefore, covariance-
based power allocation is not an appropriate scheme for
DTD. In [1], [2], channel-gain-variance-based optimum power
allocation (CGV-PA) is proposed for DTD. The term ‘mean
channel gain’ in these papers refers to the mean-square value
of the instantaneous channel gain. When the instantaneous
channel gains is zero mean, complex Gaussian distributed, it
corresponds to the variance of the instantaneous channel gain.
Since the channel gain variance is determined by large-scale
fading such as shadowing and path-loss, it varies slowly. Thus,
in practical environments, the channel gain variance can be
assumed constant during feedback delay. Compared with ICG-
PA, the channel gain variance in CGV-PA could be reported
to the transmitters with a fairly low frequency, which will
significantly reduce the feedback load. CGV-PA is especially
suitable for DTD since the instantaneous channel gain fluctu-
ation that is not considered in power allocation is inherently
compensated in the receiver through diversity combining of
the signals from the distributed transmit antennas.

The effects of feedback delay to the performance of power
allocation in code-division multiple-access systems, MIMO
diversity systems, and space-time coded transmit diversity
systems are analyzed in [8], [9], and [10] and [11], respec-
tively. These works assume a single transmit antenna [8]
or clustered transmit antennas such that the channel gain
variances from all transmit antennas are identical [9]–[11];
thus, there is no macro-diversity. Optimum CGV-PA in the
sense of minimum outage probability for DTD is derived
in [1], [2]. The optimum power allocation rule derived in
[1], [2] cannot be used to minimize the error rates given
a certain modulation because even with the same outage
probability, the symbol error rates could be quite different
depending on the distribution of the received signal-to-noise
ratio (SNR) and the outage threshold settings. Our previous
work [12] has studied the performance degradation of small-
scale-fading-based power allocation caused by feedback delay.
However, the observations made in [12] are mainly obtained
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from simulation, and the impact of feedback delay on macro-
diversity gain in DTD systems has not been well understood
yet. Also, a systematic comparison of CGV-PA and ICG-PA
has not been established by existing work.

The main focus of this paper is to analytically assess the
performance degradation of ICG-PA in the presence of instan-
taneous channel gain variation during the feedback period. We
also derive a compact and accurate expression that leads to
design rules for optimum CGV-PA. We show that optimum
CGV-PA is insensitive to feedback loop delay and establish
that CGV-PA is a promising PA solution for DTD.

II. SYSTEM MODEL

A. Channel and Signaling

Consider a DTD system with 𝑁 independent channels. The
signaling method and channel model are basically the same
as described in [1]–[3]. The channels might correspond to a
set of relays capable of decoding the message transmitted
by the source node or might correspond to a distributed
transmit antenna system. We assume that the instantaneous
channel gains (amplitude and phase) from the 𝑁 transmitters
(or the nodes in a relay network) ℎ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 , are
independent complex Gaussian random variables with distinct
variances 𝑔𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 [1]–[3]. The variance 𝑔𝑖 rep-
resents the channel variance from the 𝑖th transmit antenna
and is determined by the large scale fading factors such as
path-loss and shadowing. Unlike CTD systems where multiple
transmit antennas are co-located on a single transmitter, the
transmit antennas in DTD are located apart; thus each channel
undergoes a different large scale fading. This results in distinct
𝑔𝑖’s for different values of 𝑖.

The received signal from the 𝑖th transmit antenna (or node
in relay networks) is given by [1], [2]

𝑦𝑖 = ℎ𝑖
√
𝑝𝑖𝑠+ 𝑛𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (1)

where the transmitted signal 𝑠 with energy 𝐸[𝑠𝑠∗] = 𝐸𝑠 is
common to all transmit antennas, 𝑛𝑖 is the additive white
Gaussian noise (AWGN) with zero mean and variance 𝜎2

𝑛 =
𝑁0/2, and 𝑝𝑖 denotes the normalized transmit power gain of
the 𝑖th transmitter so that

∑𝑁
𝑖=1 𝑝𝑖 = 1.

Let ℎ𝑖,(𝑝𝑎𝑠𝑡) denote the 𝑖th transmit antenna’s latest instan-
taneous channel gain measurement obtained from the latest
channel gain feedback and ℎ𝑖 denote the current instantaneous
channel gain at the instant when the power controlled signal
according to ℎ𝑖,(𝑝𝑎𝑠𝑡) arrives at the receive antenna after
feedback delay. The channel gain variance is assumed to
satisfy

𝜎2
ℎ𝑖,(𝑝𝑎𝑠𝑡)

= 𝜎2
ℎ𝑖

= 𝑔𝑖. (2)

This assumption is reasonable since the coherence time of
the large scale fading factor that determines the channel gain
variance is much greater than the feedback delay in practical
systems. The correlation coefficient between ℎ𝑖,(𝑝𝑎𝑠𝑡) and ℎ𝑖

is given by [8], [11], [16]

𝐸[ℎ𝑖,(𝑝𝑎𝑠𝑡)ℎ
∗
𝑖 ]

𝜎2
ℎ𝑖,(𝑝𝑎𝑠𝑡)

(
= 𝜎2

ℎ𝑖

) = 𝐽0(2𝜋𝑓𝐷𝜏) ≡ 𝜌 (3)

where 𝐽0(⋅) is the zeroth-order Bessel function of the first
kind, 𝑓𝐷 denotes the Doppler frequency, and 𝜏 denotes the
feedback delay.

The correlation model satisfying (2) and (3) can be realized
by using the linear combination of two independent variables
as [10], [13]

ℎ𝑖 = 𝜌ℎ𝑖,(𝑝𝑎𝑠𝑡) +
√
1− 𝜌2𝑚𝑖 (4)

where 𝑚𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 , with variance 𝑔𝑖 are independent,
zero-mean, complex Gaussian random variables.

B. Diversity Combining in the Receiver

The decision variable 𝑑 in the receiver is obtained by a
maximal ratio combiner (MRC), which combines the received
signal from each transmit antenna as [1], [2]

𝑑 =

𝑁∑
𝑖=1

ℎ∗
𝑖

√
𝑝𝑖𝑦𝑖. (5)

The received SNR is calculated as the sum of the received
SNRs from each transmit antenna and is expressed as [1], [2]

𝛾𝑅 =

𝑁∑
𝑖=1

∣ℎ𝑖∣2𝑝𝑖𝐸𝑠

𝑁0
= 𝛾0

𝑁∑
𝑖=1

∣ℎ𝑖∣2𝑝𝑖 (6)

where 𝛾0 = 𝐸𝑠/𝑁0, which is the reference mean SNR from
one of the transmit antennas when its channel gain variance
is 1.

III. INSTANTANEOUS CHANNEL GAIN-BASED POWER

ALLOCATION (ICG-PA)

A. Optimum ICG-PA Assuming Constant Instantaneous Chan-
nel Gains During Feedback Delay

When the instantaneous channel gain does not change
during feedback delay, 𝜌 = 1 (𝑓𝐷𝜏 = 0). The optimum ICG-
PA rule for minimum instantaneous error rate is obtained by
solving the following equation

{𝑝1,𝑜𝑝𝑡, 𝑝2,𝑜𝑝𝑡, ⋅ ⋅ ⋅ , 𝑝𝑁,𝑜𝑝𝑡}

= argmin(𝑝1,𝑝2,⋅⋅⋅ ,𝑝𝑁 )𝑃
(𝑖𝑛𝑠𝑡)
𝑒 (𝛾𝑅) subject to

𝑁∑
𝑖=1

𝑝𝑖 = 1

= argmax(𝑝1,𝑝2,⋅⋅⋅ ,𝑝𝑁 )

𝑁∑
𝑖=1

∣ℎ𝑖∣2𝑝𝑖 subject to
𝑁∑
𝑖=1

𝑝𝑖 = 1

(7)

where 𝑃
(𝑖𝑛𝑠𝑡)
𝑒 (𝑥) denotes the bit (or symbol) error rate given

the instantaneous SNR 𝑥 in AWGN. If there is no instan-
taneous channel gain variation during feedback delay, then
ℎ𝑖,(𝑝𝑎𝑠𝑡) = ℎ𝑖. It can be easily shown that [3]

𝑝𝑖 =

{
1, for 𝑖 = argmax𝑗 ∣ℎ𝑗∣2
0, otherwise

(8)

maximizes
∑𝑁

𝑖=1 ∣ℎ𝑖∣2𝑝𝑖 in (7). This means that selective
power allocation is optimum for ICG-PA.
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B. Error Probability of Selective PA when the Instantaneous
Channel Gain Varies During Feedback

In this case, 𝜌 < 1 (𝑓𝐷𝜏 > 0). Selective power allocation
is optimum for the ideal case when the instantaneous channel
gain does not change during feedback delay, i.e., 𝑓𝐷𝜏 = 0,
which is a rather unrealistic assumption for practical mobile
communication environments. In this subsection, we derive a
closed-form expression of the error probability of selective PA
for the case when the instantaneous channel gain varies during
feedback, i.e., 𝑓𝐷𝜏 > 0.

Let 𝑖max denote the index of the transmit antenna with
the maximum instantaneous channel gain for selective power
allocation. Note that 𝑖max is not determined from current
instantaneous channel gain; it is determined by using the
instantaneous channel gain information 𝜏 seconds earlier, that
is, 𝑖max = argmax𝑗 ∣ℎ𝑗,(𝑝𝑎𝑠𝑡)∣2. Let 𝑝𝑋(𝑦) denote the prob-
ability density function (pdf) of 𝑋 . The pdf of the received
SNR conditioned on 𝑖max can be obtained by applying Bayes’
theorem as

𝑝𝛾𝑅(𝑦) =

𝑁∑
𝑘=1

𝑝𝛾𝑅 (𝑦∣𝑖max = 𝑘)Pr [𝑖max = 𝑘] . (9)

Applying Bayes’ theorem again to (9) by taking ∣ℎ𝑘,(𝑝𝑎𝑠𝑡)∣2
as the condition, we rewrite 𝑝𝛾𝑅(𝑦) as

𝑝𝛾𝑅 (𝑦∣𝑖max = 𝑘)Pr [𝑖max = 𝑘]

=

∫ ∞

0

𝑝𝛾𝑅

(
𝑦∣𝑖max = 𝑘, ∣ℎ𝑘,(𝑝𝑎𝑠𝑡)∣2 = 𝑧

)
×

Pr
[
𝑖max = 𝑘

∣∣∣(∣ℎ𝑘,(𝑝𝑎𝑠𝑡)∣2=𝑧
)]

𝑝∣ℎ𝑘,(𝑝𝑎𝑠𝑡)∣2(𝑧)𝑑𝑧.(10)

From (6) and (8), the first multiplicand in (10) is written as

𝑝𝛾𝑅

(
𝑦∣𝑖max = 𝑘, ∣ℎ𝑘,(𝑝𝑎𝑠𝑡)∣2 = 𝑧

)
= pdf of ∣ℎ𝑘∣2𝛾0 given

∣∣ℎ𝑘,(𝑝𝑎𝑠𝑡)

∣∣2 = 𝑧. (11)

From (4), we can rewrite ∣ℎ𝑘∣2 as

∣ℎ𝑘∣2 =
∣∣∣𝜌ℎ𝑘,(𝑝𝑎𝑠𝑡) +

√
1− 𝜌2𝑚𝑘

∣∣∣2
=

∣∣∣𝜌 ∣∣ℎ𝑘,(𝑝𝑎𝑠𝑡)

∣∣ 𝑒𝑗∠ℎ𝑘,(𝑝𝑎𝑠𝑡) +
√
1− 𝜌2𝑚𝑘

∣∣∣2
=

∣∣∣𝜌 ∣∣ℎ𝑘,(𝑝𝑎𝑠𝑡)

∣∣+√1− 𝜌2𝑚𝑘𝑒
−𝑗∠ℎ𝑘,(𝑝𝑎𝑠𝑡)

∣∣∣2
=

∣∣∣𝜌√𝑧 +
√
1− 𝜌2𝑚𝑘𝑒

−𝑗∠ℎ𝑘,(𝑝𝑎𝑠𝑡)

∣∣∣2 (12)

where 𝑚𝑘𝑒
−𝑗∠ℎ𝑘,(𝑝𝑎𝑠𝑡) is the phase-rotated version of 𝑚𝑘;

thus, it is another complex Gaussian r.v. whose distribution
is the same as that of 𝑚𝑘. Consequently, ∣ℎ𝑘∣2 is the square
of a complex Gaussian r.v. with mean 𝜌

√
𝑧, that is, ∣ℎ𝑘∣2 is a

Ricean r.v. Thus, (11) is given as [15]

𝑝𝛾𝑅

(
𝑦∣𝑖max = 𝑘, ∣ℎ𝑘,(𝑝𝑎𝑠𝑡)∣2 = 𝑧

)
=

1

(1− 𝜌2)𝑔𝑘𝛾0
𝑒
− 𝜌2𝑧𝛾0+𝑦

(1−𝜌2)𝑔𝑘𝛾0 𝐼0

( √
𝑦𝜌

√
𝑧𝛾0

(1− 𝜌2)𝑔𝑘𝛾0/2

)
(13)

where 𝐼0(𝑥) is the zeroth-order modified Bessel function of
the first kind. The second and third multiplicands in (10) are

calculated as

Pr
[
𝑖max = 𝑘∣ (∣ℎ𝑘,(𝑝𝑎𝑠𝑡)∣2 = 𝑧

)]
=
∏
𝑗 ∕=𝑘

Pr
[
∣ℎ𝑗,(𝑝𝑎𝑠𝑡)∣2 < 𝑧

]
=
∏
𝑗 ∕=𝑘

(
1− 𝑒−𝑧/𝑔𝑗

)
(14)

𝑝∣ℎ𝑘,(𝑝𝑎𝑠𝑡)∣2(𝑧) =
1

𝑔𝑘
𝑒−𝑧/𝑔𝑘 . (15)

Substituting (13), (14) and (15) into (10) and expanding it, we
find that the integrand in (10) is a linear combination of the
terms 𝑒−𝑎𝑧𝐼0 (𝑏

√
𝑧) with 𝑏 =

𝜌
√
𝑦

(1−𝜌2)𝑔𝑘𝛾0/2
and different 𝑎’s.

Using the definite integral
∫∞
0

𝑒−𝑎𝑧𝐼0 (𝑏
√
𝑧) 𝑑𝑧 = 𝑒

𝑏2

4𝑎 /𝑎,
we can obtain the closed-form expression for (10). Eq. (14)
contains 2(𝑁−1) terms after expansion. In order to avoid
tedious expansion, we take the example of 𝑁 = 3 to illustrate
the closed-form expression next. Generalization to an arbitrary
value of 𝑁 is straightforward. The only difference is that there
will be more (or less for 𝑁 = 2) terms in the calculation. If
we set 𝑁 = 3 and 𝑘 = 1, Eq. (10) is calculated as

𝑝𝛾𝑅 (𝑦∣𝑖max = 1)Pr [𝑖max = 1] =

𝑒−
𝑦

𝑔1𝛾0

𝑔1𝛾0
− 𝑔2𝑒

− (𝑔1+𝑔2)𝑦

𝑔1𝛾0 (𝑔1+𝑔2−𝑔1 𝜌2)

𝑔1𝛾0 (𝑔1 + 𝑔2 − 𝑔1 𝜌2)
− 𝑔3𝑒

− (𝑔1+𝑔3)𝑦

𝑔1𝛾0(𝑔1+𝑔3−𝑔1 𝜌2)

𝑔1𝛾0 (𝑔1 + 𝑔3 − 𝑔1 𝜌2)

+
𝑔2𝑔3𝑒

− (𝑔2 𝑔1+𝑔3 𝑔1+𝑔2 𝑔3)𝑦

𝑔1𝛾0 (𝑔2 𝑔1+𝑔2 𝑔3+𝑔3 𝑔1−𝑔2 𝑔1 𝜌2−𝑔3 𝑔1 𝜌2)

𝑔1𝛾0 (𝑔2 𝑔1 + 𝑔2 𝑔3 + 𝑔3 𝑔1 − 𝑔2 𝑔1 𝜌2 − 𝑔3 𝑔1 𝜌2)
. (16)

By appropriately replacing 𝑔1, 𝑔2 and 𝑔3
in (16), we can also obtain the closed-form
expressions for 𝑝𝛾𝑅 (𝑦∣𝑖max = 2)Pr [𝑖max = 2] and
𝑝𝛾𝑅 (𝑦∣𝑖max = 3)Pr [𝑖max = 3]. Finally, substituting these
expressions for 𝑝𝛾𝑅 (𝑦∣𝑖max = 𝑘)Pr [𝑖max = 𝑘] into (9), we
have a closed-form solution for the pdf of the received SNR,
𝑝𝛾𝑅(𝑦).

The average error probability is calculated as

𝑃𝑒 =

∫ ∞

0

𝑝𝛾𝑅(𝑦)𝑃
(𝑖𝑛𝑠𝑡)
𝑒 (𝑦)𝑑𝑦

=

𝑁(=3)∑
𝑘=1

∫ ∞

0

𝑝𝛾𝑅 (𝑦∣𝑖max = 𝑘) Pr [𝑖max = 𝑘]𝑃 (𝑖𝑛𝑠𝑡)
𝑒 (𝑦)𝑑𝑦

(17)

where 𝑃
(𝑖𝑛𝑠𝑡)
𝑒 (𝑦) denotes the bit error rate (BER) or symbol

error rate (SER) for the instantaneous SNR in AWGN and is
given as [15]

𝑃 (𝑖𝑛𝑠𝑡)
𝑒 (𝑦) =

1

2
erfc(

√
𝑦) for BER of BPSK, QPSK

with 𝑦 = 𝐸𝑏/𝑁0 (18)

𝑃 (𝑖𝑛𝑠𝑡)
𝑒 (𝑦) ≃

⎧⎨
⎩

erfc
(√

sin
(

𝜋
𝑀

)
𝑦
)

for SER of MPSK

erfc
(√

3
2(𝑀−1)𝑦

)
for SER of QAM

with 𝑦 = 𝐸𝑠/𝑁0 and 𝑀 > 4. (19)

To derive further for a general expression, we define a unified
expression for 𝑃

(𝑖𝑛𝑠𝑡)
𝑒 (𝑦) as

𝑃 (𝑖𝑛𝑠𝑡)
𝑒 (𝑦) = 𝛼erfc

(√
𝜉𝑦
)

(20)

where we appropriately set 𝛼 and 𝜉 according to (18) and (19)
for a specific modulation under consideration. Substituting
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(16) and (20) into (17), and expanding it and using the integral∫∞
0 𝑒−𝑑𝑦erfc

(√
𝜉𝑦
)
𝑑𝑦 = 1

𝑑

(
1−

√
𝜉

𝑑+𝜉

)
, we can obtain a

closed-form solution of the average bit (or symbol) error
probability as a function of 𝜌 as

𝑃𝑒 = 𝛼 [𝑋 ((𝑔1, 𝑔2, 𝑔3), 𝜌, 𝜉𝛾0) +𝑋 ((𝑔2, 𝑔1, 𝑔3), 𝜌, 𝜉𝛾0)

+𝑋 ((𝑔3, 𝑔1, 𝑔2), 𝜌, 𝜉𝛾0)] (21)

where 𝑋 ((𝑝, 𝑞, 𝑟), 𝜌, 𝑆) = 1
3 −

√
𝑝𝑆√

1+𝑝𝑆
+

√
𝑝𝑆 𝑞

𝑝+𝑞√
𝑝+𝑞

𝑝+𝑞−𝜌2𝑝
+𝑝𝑆

+
√
𝑝𝑆 𝑟

𝑝+𝑟√
𝑝+𝑟

𝑝+𝑟−𝜌2𝑝
+𝑝𝑆

−
√
𝑝𝑆 𝑟𝑞

𝑝𝑞+𝑟𝑝+𝑞𝑟√
𝑝𝑞+𝑝𝑟+𝑞𝑟

𝑝𝑞+𝑞𝑟+𝑟𝑝−𝜌2(𝑝𝑞+𝑟𝑝)
+𝑝𝑆

. The closed-form

expressions (16) and (21) allow us to conveniently and ac-
curately evaluate 𝑝𝛾𝑅(𝑦) and 𝑃𝑒 as a function of 𝛾0, 𝑔1, 𝑔2,
𝑔3 and 𝜌 without relying on time-consuming simulation for
different parameter sets.

IV. NEAR-OPTIMUM CHANNEL-GAIN-VARIANCE-BASED

POWER ALLOCATION (CGV-PA)

A. Error Probability for CGV-PA

The optimum CGV-PA rule for minimum average error rate
is obtained by solving the following equations

{𝑝1,𝑜𝑝𝑡, 𝑝2,𝑜𝑝𝑡, ⋅ ⋅ ⋅ , 𝑝𝑁,𝑜𝑝𝑡}

= argmin(𝑝1,𝑝2,⋅⋅⋅ ,𝑝𝑁 )𝑃𝑒 subject to
𝑁∑
𝑖=1

𝑝𝑖 = 1 (22)

where 𝑃𝑒 is average error rate over the instantaneous channel
gains given the channel gain variance.

The average error rate expression is obtained by calculating
the following integral

𝑃𝑒 = 𝐸𝛾𝑅

[
𝛼erfc(

√
𝜉𝛾𝑅)

]
=

∫ ∞

0

𝛼erfc(
√

𝜉𝑥)𝑝𝛾𝑅(𝑥)𝑑𝑥 (23)

where 𝑝𝛾𝑅(𝑥) is the pdf of the received SNR 𝛾𝑅 given the
channel gain variances and transmit power.

From (6), we note that 𝛾𝑅 is the sum of independent
nonidentical exponential r.v.’s. Using the formula given in
[14], we can write the closed-form expression for the average
error rate as

𝑃𝑒 = 𝛼

(
1−

𝑁∑
𝑙=1

𝐴𝑙

√
𝜉𝛾0𝑔𝑙𝑝𝑙

𝜉𝛾0𝑔𝑙𝑝𝑙 + 1

)
(24)

where 𝐴𝑙 =
∏𝑁

𝑘=1,𝑘 ∕=𝑙

(
1− 𝑔𝑘𝑝𝑘

𝑔𝑙𝑝𝑙

)−1

. The analytical solution
to (22) given the error probability expression in (24) will be
very complex. To simplify the analytical solution of (22), we
use an approximation of the average error rate, which can be
obtained by approximating erfc(

√
𝑥) in (23) as 𝑒−2𝑥. Then,

the average error rate is calculated as

𝑃𝑒 ≃
∫ ∞

0

𝛼𝑒−2𝜉𝛾𝑅𝑝𝛾𝑅(𝑥)𝑑𝑥

= 𝛼
𝑁∏
𝑖=1

1

2𝜉𝛾0𝑔𝑖𝑝𝑖 + 1
. (25)

There exist better approximations of erfc(
√
𝑥) than the ap-

proximation as 𝑒−2𝑥 (e.g., [17]); however, they do not allow

us to find an analytical solution to (22) as the one we adopt
here. Simulation results in Sec. V reveal that the derived power
allocation based on this approximation achieves almost the
same BER as the optimum approach obtained from numerical
search.

B. Optimum CGV-PA in the Sense of Minimum Error Proba-
bility

The objective function to be minimized is given by (25),
where 𝑝𝑖’s are the power allocation parameters to be opti-
mized. The Lagrange function conditioned on a fixed total
power is given by

𝑀(𝑝1, 𝑝2, 𝑝3, ⋅ ⋅ ⋅ , 𝜆) = 𝑃𝑒 + 𝜆

(
𝑁∑
𝑖

𝑝𝑖 − 1

)
. (26)

By letting the partial derivative of (26) with respect to
𝑝1, 𝑝2, ⋅ ⋅ ⋅ , 𝑝𝑁 and 𝜆 equal zero, we obtain 𝑁 + 1 equations

∂𝑀

∂𝑝𝑖
= 𝜆− 𝜉𝛾0𝑔𝑖

(2𝜉𝛾0𝑔𝑖𝑝𝑖 + 1)2
∏𝑁

𝑗 ∕=𝑖(2𝜉𝛾0𝑔𝑗𝑝𝑗 + 1)
= 0,

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (27)

∂𝑀

∂𝜆
=

𝑁∑
𝑖=1

𝑝𝑖 − 1 = 0. (28)

The optimum power for the 𝑖th transmit antenna of CGV-PA
with a total of 𝑁 transmit antennas is determined from (27)
and (28) as

𝑝
(𝑁)
𝑖,𝑜𝑝𝑡 =

1

𝑁
+

1

𝑁𝜉𝛾0

⎡
⎣ 𝑁∑
𝑘=1,𝑘 ∕=𝑖

(
1

𝑔𝑘
− 1

𝑔𝑖

)⎤⎦ . (29)

Note that the only condition for this solution is
∑𝑁

𝑖=1 𝑝𝑖 =
1, while the sign of 𝑝𝑖 is not enforced. When 𝑔𝑖 is much
smaller than 𝑔𝑘’s, ∀𝑘 ∕= 𝑖, the solution of 𝑝

(𝑁)
𝑖,𝑜𝑝𝑡 could be

negative. In this case, we set 𝑝
(𝑁)
𝑖,𝑜𝑝𝑡 = 0, so that only 𝑁 −

1 antennas are actually transmitting signals. Therefore, it is
important to reduce 𝑁 to 𝑁 − 1 and recalculate (29) for the
remaining active channel links. This process must continue
until the allocated powers for all active transmit antennas are
positive. This power optimization process can be accomplished
through the following steps:

∙ Step 1. Sort channel gains subject to 𝑔1 > 𝑔2 > 𝑔3 >
⋅ ⋅ ⋅ > 𝑔𝑁 .

∙ Step 2. Calculate (29).
∙ Step 3. Check whether or not 𝑝(𝑁)

𝑁,𝑜𝑝𝑡 > 0. If yes, then go
to Step 5; otherwise go to Step 4.

∙ Step 4. Set 𝑝𝑁,𝑜𝑝𝑡 = 0 and 𝑁 = 𝑁 − 1 and go to Step
2.

∙ Step 5. Set 𝑝𝑖,𝑜𝑝𝑡 = 𝑝
(𝑁)
𝑖,𝑜𝑝𝑡, 𝑖 = 1, 2 ⋅ ⋅ ⋅ , 𝑁 and exit.

V. PERFORMANCE

First, we investigate the effect of feedback delay on the
received SNR of selective ICG-PA, which is optimum for
the ideal case − no feedback delay (𝑓𝐷𝜏 = 0). In Fig. 1,
we plot the pdf’s of the received SNR of selective ICG-PA
given in (9) with (16) for 𝑁 = 3 and various values of 𝑓𝐷𝜏
. In the ideal case, the received SNR equals the maximum
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Fig. 1. The probability density functions of the received SNR of ICG-PA
for various values of 𝑓𝐷𝜏 .

of the 3 nonidentical exponential random variables and it
has a bell-shaped distribution. However, as 𝑓𝐷𝜏 increases
from 0, the pdf’s approach the exponential distribution at
an accelerated rate. For example, when 𝑓𝐷𝜏 = 0.15, which
corresponds to the case that feedback delay is roughly 0.15 of
the instantaneous channel gain fading cycle, the received SNR
has an exponential-like distribution, which implies that we can
hardly exploit the diversity from the different instantaneous
channel gains of the multiple transmit antennas. Comparing
Fig. 1(a) and Fig. 1(b) where the channel gains are set to
[1, 10−4, 10−8] and [1, 0.95, 0.85], respectively, we find that
the degradation in diversity gains becomes more significant
when the channel gain variances do not differ appreciably from
one another. When 𝑓𝐷𝜏 = 0, the received SNR reaches its
peak around 0.7𝛾0 and 𝛾0 for the channel gains of [1, 10−4,
10−8] and [1, 0.95, 0.85], respectively. On the other hand,
when 𝑓𝐷𝜏 = 0.3, the difference between the distributions
of the received SNR for channel gains of [1, 10−4, 10−8]
and [1, 0.95, 0.85] is very small. We thus conclude that
the performance of ICG-PA becomes more sensitive to the
feedback delay for scenarios where the receiver is located at
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Fig. 2. Comparison of bit-error rate for various PA schemes (BPSK, 𝑁=3).

the intersection of the coverage area of the transmit antennas.
Next, we compare the error rates of the ICG-PA and CGV-

PA schemes for several typical sets of the channel gain
variance combinations. As a reference, two basic CGV-PA
schemes are also included in addition to the optimal CGV-PA
in (29): the selective CGV-PA, which allocates all transmit
power to the transmit antenna with the maximum channel
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gain variance, and the equal power CGV-PA, which allocates
the identical power to all transmit antennas. We consider the
following three different scenarios of the receiver locations:

∙ Scenario 1: In the region where all 3 transmit antennas
have comparable channel gain variances (Fig. 2(a)).

∙ Scenario 2: In the region where one of the transmit
antennas has a relatively weak signal (Fig. 2(b)).

∙ Scenario 3: In the region where only one of the transmit
antennas has a strong channel gain variance (Fig. 2(c)).

We plot the bit-error rates of various PA schemes for the three
scenarios in Fig. 2(a)-(c). From (20), we note that different
modulations result in only different scaling factors, 𝛼 and 𝜉, to
the error rate and SNR 𝛾0, respectively. The conclusions drawn
for one modulation are thus applicable to other modulations.
Therefore, without loss of generality, we limit our numerical
examples to BPSK modulation.

First, as the main interest of this study, we observe that
ICG-PA degrades drastically as 𝑓𝐷𝜏 increases. It is important
to note that although the difference in SNR distributions
between 𝑓𝑑𝜏 = 0.01 and 𝑓𝑑𝜏 = 0 is very small (see Fig.
1), the difference in error probability for these two cases is
not negligible. When 𝑓𝐷𝜏 = 0.05, BER degradation becomes
unacceptable and the BERs of ICG-PA are greater than those
of the optimal CGV-PA scheme. This shows that outdated
feedback information significantly degrades the performance
of ICG-PA even if the channel changes only slightly during
the feedback period. As 𝑓𝐷𝜏 increases, ICG-PA becomes even
worse than the selective CGV-PA. Although this degradation
is relatively reduced in Scenario 3, optimal CGV-PA and
selective CGV-PA achieve almost the same performance as
the ideal ICG-PA that assumes no feedback delay. From
these observations, we conclude that even with very frequent
and a large amount of channel state information to include
instantaneous channel gains, ICG-PA is not a good solution
for distributed transmit diversity systems if there is even a
small feedback delay.

Regarding CGV-PA, first, it is found that optimal CGV-PA
and equal power CGV-PA achieve the same diversity order
as ideal ICG-PA without feedback delay (𝑓𝐷𝜏 = 0). This is
because the system still inherently achieves a diversity order
𝑁 by combining the signals with independent instantaneous
channel gains in the receiver. In Scenario 1, equal power CGV-
PA achieves nearly the same performance as optimal CGV-
PA; in Scenario 3, selective power CGV-PA achieves almost
the same performance as optimal CGV-PA in the SNR range
of 𝛾0 < 30 dB. This agrees with our intuition. However, in
Scenario 2 and in the SNR range of 𝛾0 > 30 dB in Scenario
3, the optimal CGV-PA rule in (29) achieves a significantly
lower BER than equal power and selective CGV-PA schemes.
It is observed that optimal CGV-PA achieves more than 1.5 dB
SNR gain over equal power CGV-PA although the diversity
order is the same. Note that even when the difference the
among channel gain variances is large (approximately up to
20 dB), equal power CGV-PA has only a slight SNR loss
compared to optimal CGV-PA in the high-SNR region [1], [2].
(See Fig. 5 in [1] and Figs. 2 and 3 in [2].) However, as the
difference among channel gain variance exceeds 20 dB, like
Scenarios 2 and 3 as shown in Fig. 2(b)(c), the performance
gap between optimal CGV-PA and equal power CGV-PA is

significant even in the high-SNR region.
It is also observed that the symbol-error-rate gap between

selective PA and optimum PA could be substantial for some
scenarios (e.g., Scenarios 1 and 2). This shows that simply
switching between equal power CGV-PA and selective CGV-
PA according to the combination of the channel gain variances
is not a proper choice. In other words, an appropriately
designed power allocation rule is critical for CGV-PA to
achieve the best performance.

In order to assess the effect of the approximation made
in (25) for the derivation of the closed-form expression for
optimal power, we use exhaustive search to determine the
optimal power combination. The corresponding BER results
are shown in Fig. 2(b). Note that (24) with the derived power
allocation rule in (29) agrees well with the minimum value of
(24) obtained by numerical search.

VI. CONCLUSIONS

We have considered transmit power allocation based on the
channel variance in a DTD system and derived a simple but ac-
curate optimum power allocation rule to achieve the minimum
error rate. The proposed scheme resolves the feedback delay
problem in instantaneous channel gain-based power allocation.
Even with a small instantaneous channel gain variation, the
performance of ICG-PA degrades significantly and the pro-
posed CGV-PA scheme achieves a much lower error rate. In
addition, the proposed CGV-PA is simple to implement, since
it does not require frequent feedback and the computational
complexity for optimal power setting is minimal. This is
especially useful for DTD systems where multiple channel
connections must be monitored simultaneously.
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