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Space-Time Block Codes from Cyclic Design
Liang Xian and Huaping Liu, Member, IEEE

Abstract— It has been proved that full-rate complex orthogonal
space-time block codes do not exist for systems with more than
two transmit antennas. In this letter, we present a space-time
block coding scheme based on cyclic design. The proposed codes
provide full rate and full diversity for quaternary phase shift
keying (QPSK) symbols in systems with three or four transmit
antennas.

Index Terms— Space-time block codes, spatial diversity, wire-
less communications.

I. INTRODUCTION

L INEAR orthogonal space-time block codes (STBC) are
attractive because of their inter-symbol interference (ISI)

free structure and the feasibility of realizing maximum like-
lihood (ML) decoding using linear operations. However, in
[1] Tarokh et. al. proved that full-rate complex orthogonal
codes do not exist for systems with more than two transmit
antennas. So the Alamouti scheme [2] is the only complex
orthogonal code with full transmission rate. In order to achieve
full transmission rate in systems with more than two transmit
antennas, one must give up orthogonality. Therefore in [3]
Jafarkhani proposed a quasi-orthogonal code with full rate but
partial diversity for systems with four transmit antennas. In
[4] Sharma et. al. proposed a constellation-rotation scheme to
improve the performance of quasi-orthogonal code, which was
subsequently extended for systems with an arbitrary number
of transmit antennas in [5]. Later, He et. al. [6] proposed
a nonlinear orthogonal code with full rate and full diversity
for QPSK systems with four transmit antennas. However, the
encoding and decoding complexities of this code are higher
than those of quasi-orthogonal codes.

In this letter, we present a new space-time block coding
scheme based on cyclic design. We will first analyze the deter-
minants of real square orthogonal code matrices and propose
a new real code from cyclic design. Then, we minimize ISI
to design complex cyclic codes that achieve full diversity.
We also study the performance of the proposed scheme and
compare it with existing schemes.

II. SYSTEM MODEL

Consider a system with N transmit antennas and M receive
antennas. The transmission matrix is defined as an L × N
matrix G(x), where L is the frame length. The input symbol
vector is expressed as x = [x1, · · · , xP ]T , where (·)T denotes
transpose and P is number of symbols to be transmitted in
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each frame. The codeword corresponding to input symbol
vector x is written as c = c1

1 · · · cN
1 c1

2 · · · cN
2 · · · c1

L · · · cN
L ,

where cn
t , n = 1, 2, · · · , N, t = 1, 2, · · · , L, is a combination

of input constellation symbols. At each time slot t, signal cn
t

is transmitted from antenna n. The transmission rate is defined
as R = P/L.

The channel is assumed to be frequency nonselective
Rayleigh, and is modeled as quasi-static, allowing fading
coefficients to be constant over a block of data and change
independently from one block to another. Let hn,m, n =
1, · · · , N, m = 1, · · · ,M , be the path gain from transmit
antenna n to receive antenna m. The path gains are modeled as
samples of independent zero-mean complex Gaussian random
variables with variance 0.5 per real dimension.

At time t, the signal received at antenna m, rm
t , is given

by

rm
t =

N∑
n=1

√
Es

N
hn,mcn

t + ηm
t (1)

where Es is the average energy per symbol and 1/N is the
power scaling factor for each transmit antenna so that the
total transmission power is normalized. The received noise
components ηm

t ,m = 1, · · · ,M , are independent samples of
zero-mean complex Gaussian random variables with variance
N0/2 per real dimension. Assuming the availability of perfect
channel state information, the receiver computes the following
decision metric

d =
L∑

t=1

M∑
m=1

∣∣∣∣∣rm
t −

N∑
n=1

√
Es

N
hn,mcn

t

∣∣∣∣∣
2

=
M∑

m=1

(
rH

mrm −
√

Es

N
hH

mGH(x)rm −
√

Es

N
rH

mG(x)hm

+
Es

N
hH

mGH(x)G(x)hm

)
(2)

where (·)H denotes complex conjugate transpose, rm =
[rm

1 , rm
2 , · · · , rm

L ]T , and hm = [h1,m, h2,m, · · · , hN,m]T .
After comparing over all possible codewords, the receiver
decides in favor of the codeword that minimizes d.

III. NEW CODES FROM CYCLIC DESIGN

Cyclic codes are easy to design across time and space
domains. Because of a lack of orthogonality, interference will
degrade their performance. For this reason, cyclic codes are
much less attractive than orthogonal codes from Hurwitz-
Radon family [1] for real symbols. For full-rate complex code
design, however, cyclic codes could be very attractive because
ISI in these codes may not cause a loss in diversity under
some conditions, and full diversity can be achieved without
constellation rotation.
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Let us review the rank criterion given in [1], [7]. Let an
input symbol vector be y = [y1, y2, · · · , yP ]T , which
generates codeword e = e1

1 · · · eN
1 e1

2 · · · eN
2 · · · e1

L · · · eN
L . In

order to achieve the maximum diversity of order NM , the
difference matrix between the two code matrices correspond-
ing to distinct input symbol vectors x and y

B(e, c) =

⎛
⎜⎜⎜⎝

e1
1 − c1

1 e2
1 − c2

1 · · · eN
1 − cN

1

e1
2 − c1

2 e2
2 − c2

2 · · · eN
2 − cN

2
...

...
. . .

...
e1
L − c1

L e2
L − c2

L · · · eN
L − cN

L

⎞
⎟⎟⎟⎠

must be of full rank. If B(e, c) has a minimum rank r, then
a diversity of order rM is achieved.

A. The determinant criterion

The determinant criterion for linear space-time codes to
achieve full diversity in Rayleigh fading environments: If
a square code matrix G(x) is chosen to be such that
det (G(x)) �= 0 for an arbitrary non-zero input vector x
(elements of x do not necessarily be constellation symbols),
then the code achieves full diversity.

Proof: Because of linearity, B(e, c) = G(y) − G(x) =
G(y−x). For y �= x, we have det (G(y − x)) �= 0. Therefore,
B(e, c) is a full-rank matrix for any pair of distinct codewords
e and c.

A non-zero determinant is a stronger condition than the full-
rank criterion for achieving full diversity. It will be interesting
to analyze the determinants of the linear square orthogonal
transmission matrices given in [2] and [1]:

G2 =

(
x1 x2

−x∗
2 x∗

1

)
, G4 =

⎛
⎜⎝

x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

⎞
⎟⎠ ,

G8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6 x7 x8

−x2 x1 x4 −x3 x6 −x5 −x8 x7

−x3 −x4 x1 x2 x7 x8 −x5 −x6

−x4 x3 −x2 x1 x8 −x7 x6 −x5

−x5 −x6 −x7 −x8 x1 x2 x3 x4

−x6 x5 −x8 x7 −x2 x1 −x4 x3

−x7 x8 x5 −x6 −x3 x4 x1 −x2

−x8 −x7 x6 x5 −x4 −x3 x2 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that G2 is complex whereas G4 and G8 are real.
The determinants of G2, G4, and G8 can be determined to
be det(G2) = |x1|2 + |x2|2, det(G4) = (

∑4
i=1 x2

i )
2, and

det(G8) = (
∑8

i=1 x2
i )

4. Obviously, all three codes achieve full
diversity.

B. New full-rate full-diversity codes from cyclic design

Based on the determinant criterion, we can design the
following linear real cyclic code

H4 =

⎛
⎜⎜⎝

x1 x2 x3 x4

x4 x1 x2 −x3

−x3 −x4 x1 x2

−x2 x3 x4 x1

⎞
⎟⎟⎠

whose determinant is obtained to be det(H4) = (x2
1 + x2

3)
2 +

(x2
2 + x2

4)
2. Thus, this code achieves full diversity for real

symbols. From (2), it is easy to recognize that the non-zero off-
diagonal elements in GHG represent the ISI terms. It should
be mentioned that for the nonlinear codes proposed in [6], the
diagonal elements, as will be shown later in Section IV, may
cause ISI. Eq. (2) also explains why existing linear orthogonal
codes are ISI free. Although the two codes H4 and G4 have
the same diversity order, ISI degrades the performance of H4.

To design complex cyclic codes, we minimize ISI based
on the structure of H4. Equivalently, we must maximize the
number of columns that are pairwise orthogonal in the code
matrix. Based on this design goal, a complex cyclic code for
4 transmit antennas is obtained as

T4 =

⎛
⎜⎜⎝

x1 x2 x∗
3 x∗

4

x4 x1 x∗
2 −x∗

3

−x3 −x4 x∗
1 x∗

2

−x2 x3 x∗
4 x∗

1

⎞
⎟⎟⎠ . (3)

In matrix T4, the first column is orthogonal to the third column,
and the second column is orthogonal to the fourth column.
It can be verified by using the rank criterion that this code
provides full diversity for QPSK signals.

Let us compare the code from cyclic design given in (3)
with the quasi-orthogonal code given in [3]

A4 =

⎛
⎜⎜⎝

x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3

−x∗
3 −x∗

4 x∗
1 x∗

2

x4 −x3 −x2 x1

⎞
⎟⎟⎠ .

It follows easily that

T H
4 T4 =

⎛
⎜⎜⎝

a b1 0 b2

b∗1 a −b2 0
0 −b∗2 a b∗1
b∗2 0 b1 a

⎞
⎟⎟⎠ , (4)

and

AH
4 A4 =

⎛
⎜⎜⎝

a 0 0 b3

0 a −b3 0
0 −b∗3 a 0
b∗3 0 0 a

⎞
⎟⎟⎠ (5)

a = |x1|2 + |x2|2 + |x3|2 + |x4|2, b1 = x∗
1x2 + x1x

∗
4 +

x∗
3x4 − x∗

2x3, b2 = x∗
1x

∗
4 − x∗

3x
∗
4 − x∗

2x
∗
3 − x∗

1x
∗
2, b3 =

x∗
1x4+x1x

∗
4−x2x

∗
3−x∗

2x3. Terms b1 and b2 are the ISI terms
for the proposed code, and b3 is the ISI term for the quasi-
orthogonal code. For QPSK symbols, b1 and b2 do not cause a
loss in the diversity of the proposed cyclic code, but b3 reduces
the diversity order of the quasi-orthogonal code. Note that b3

can be expressed as b3 = f(x1, x4)+f(x2, x3), a sum of two
independent functions. Therefore, we can decode (x1, x4)
and (x2, x3) independently for the quasi-orthogonal code
without degrading performance. For the cyclic code, however,
the decoding complexity cannot be reduced even though there
is no ISI between x1 and x3 or between x2 and x4.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we simulate the performance of the proposed
cyclic code, and compare it with that of the quasi-orthogonal
code and the nonlinear code given in [6]. The nonlinear
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Fig. 1. Error performance of various schemes (N = 3, M = 1, QPSK).
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Fig. 2. Error performance of various schemes (N = 4, M = 1, 2, QPSK).

orthogonal code given in [6] also provides full rate and full
diversity for QPSK signals. Its code matrix is given as

O4 =

⎛
⎜⎜⎝

x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3

−z∗1 z2 x∗
1 −x2

−z∗2 −z1 x∗
2 x1

⎞
⎟⎟⎠

where z1 = Re{x3} + jIm{2x1x2x
∗
4} and z2 = x∗2

1 x4 +
x2

2x
∗
4+x∗

1x2x3−x∗
1x2x

∗
3. The orthogonality of O4 is achieved

by introducing nonlinearity. As a result, the diagonal elements
of OH

4 O4 cause ISI. The nonlinear code requires the constel-
lation to be (1/

√
2 )ej( π

4 +k π
2 ), k = 0, · · · , 3.

Fig. 1 shows the error performance curves of the proposed
code, the quasi-orthogonal code, and the quasi-orthogonal
code with optimal constellation rotation (optimal angle is π/6,
see [4]) for a QPSK system with three transmit antennas
and one receive antenna operating at 2 b/s/Hz. Code matrices

for the quasi-orthogonal design and for the cyclic design are
chosen as, respectively, the first three columns of A4 and
the first three columns of T4. Error performance results of

various codes including the nonlinear code proposed in [6]
for a QPSK system with four transmit antennas, one and two
receive antennas operating at 2 b/s/Hz are shown in Fig. 2.

It is observed from Figs. 1 and 2 that the slopes of SNR
versus bit-error-rate curves of the proposed cyclic code and
the quasi-orthogonal code with optimal constellation rotation
are the same. Therefore, both codes achieve the same diversity
order. The quasi-orthogonal code without rotation is found to
provide only partial diversity. The cyclic code always provides
better performance than the nonlinear code. In the low SNR
region, quasi-orthogonal codes (with or without constellation
rotation) perform slightly better than the cyclic code because
quasi-orthogonal codes have less ISI (see (4) and (5)). At high
SNR values, the cyclic code outperforms the unrotated quasi-
orthogonal code. The quasi-orthogonal code with optimal
constellation rotation performs slightly better than the cyclic
code. It is also observed that the three types of codes with
full diversity have comparable performance when there are
two receive antennas.

V. CONCLUSION

We proposed cyclic space-time block codes that achieve
full rate and full diversity for QPSK systems with three or
four transmit antennas. These codes perform much better than
unrotated quasi-orthogonal codes at high signal-to-noise ratios,
and perform slightly better than the nonlinear orthogonal code.
Compared with the nonlinear code given in [6], the proposed
cyclic code has a lower encoding complexity (decoding com-
plexity is the same) and always performs better. The proposed
code construction method could be applied to design rate-
one, full-diversity, complex cyclic codes for systems with an
arbitrary number of transmit antennas.
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