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Performance Modeling of
MIMO OFDM Systems via Channel Analysis
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Abstract— Multiple-input multiple-output (MIMO) antennas
can be combined with orthogonal frequency division multiplexing
(OFDM) to achieve diversity gain and/or to increase system
spectral efficiency through spatial multiplexing. In this letter,
we derive the probability density function (pdf) expressions of
the condition number (i.e., the maximum-to-minimum-singular-
value ratio, MMSVR) of the channel state information (CSI)
matrix. We show that this ratio is directly related to the
noise enhancement in open-loop MIMO systems and provides a
significant insight on the overall system capacity. The pdf of this
ratio could be used to predict the relative performances of various
MIMO configurations without complex system-level simulations.
The pdf can also be used to compute the probability of whether
certain channels will fail in the high-throughput mode. Extensive
simulations are performed to validate the accuracy of the closed-
form pdf of the MMSVR derived in this letter.

Index Terms— Multiple-input multiple-output systems, orthog-
onal frequency division multiplexing, channel analysis, condition
number, minimum mean-square error detection.

I. INTRODUCTION

IMPLEMENTATION of high-data-rate wireless local area
network (WLAN) has been a major focus of research

in recent years. Multiple-input multiple-output (MIMO)
schemes [1]–[3] and orthogonal frequency division multi-
plexing (OFDM) [4] can be combined to operate at the
high-throughput (HT) mode, or the diversity mode, or the
combination of both in fading environments [5]. Such systems
could achieve high spectral efficiency and/or a large coverage
area that are critical for future-generation wireless local area
networks.

Existing research has relied mainly on obtaining the error-
rate performance curves to determine the throughput and di-
versity gains [6], [7] of various MIMO configurations, assum-
ing Rayleigh fading and independent and identically distrib-
uted MIMO-OFDM sub-channels. Alternatively, the relative
capacity and throughput of different system configurations can
be obtained by using the channel characteristics. If analytical
characterizations of the channel are available, this approach
will be more efficient than the former, as it does not require
complex system-level simulations.
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Common open-loop linear detection schemes include the
zero-forcing (ZF) and minimum mean-square error (MMSE)
schemes [16], [17]. A large condition number (i.e., the
maximum-to-minimum-singular-value ratio, MMSVR) of the
channel state information (CSI) matrix implies a high noise
enhancement and may cause the open-loop schemes to fail in
exploiting the available capacity [8]. Thus, MMSVR could be
a convenient and effective metric to characterize the perfor-
mance of different MIMO configurations.

The importance and effectiveness of the eigenvalue dis-
tribution on MIMO system capacity and the overall system
performance have been well recognized [9]–[12]. The eigen-
value analysis for MIMO-OFDM systems can be used to
reduce the overall system complexity [13], [14]. In this letter,
we derive the analytical probability density function (pdf)
of the MMSVR value, which can be used to predict the
relative performance of different MIMO configurations. The
pdf can also be used to estimate the lower bound on the noise
enhancement [15] and the capacity of MIMO channels. We
establish the relationship between MMSVR and the achievable
data throughput. Simulation results verify the accuracy of the
closed-form pdf expressions of MMSVR derived in this letter.

This letter is organized as follows. In Section II, the MIMO-
OFDM system model and the open-loop ZF and MMSE
detection schemes [16], [17] will be described. Section III
introduces the channel model and then derives the pdf of the
MMSVR of the channel matrix, while Section IV provides
simulation setup and discusses channel analysis simulation
results for various MIMO configurations. Concluding remarks
are made in Section V.

II. SYSTEM MODEL AND DETECTION SCHEMES

A. System Model

Consider a MIMO-OFDM system where the transmitter
has N antennas, the receiver has M antennas, and all the
transmitted symbols share K subcarriers. The frequency do-
main transmitted sequence from the n-th (n = 1, · · · , N )
transmit antenna is represented by Xn,k, where k = 1, · · · ,K
represents the k-th OFDM subcarrier. The sequence received
by the m-th (m = 1, · · · ,M ) receive antenna is expressed as

Ym,k =
N∑
n=1

Hm,n,kXn,k + ζm,k (1)

where Hm,n,k is the frequency response of the channel be-
tween the n-th transmit antenna and the m-th receive antenna
for the k-th subcarrier, ζm,k is the frequency response of zero-
mean additive white Gaussian noise (AWGN) with a one-
sided power spectral density of N0. Let us define the signal
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transmitted on the k-th subcarrier from all the N transmit
antennas as Xk = [X1,k, X2,k, · · · , XN,k]

T , where (·)T
denotes transpose. The received signal as a function of the
respective CSI matrix Hk can be expressed as

Y k = [Y1,k, Y2,k, · · · , YM,k]
T

=

⎡
⎢⎣

H1,1,k H1,2,k · · · H1,N,k

...
HM,1,k HM,2,k · · · HM,N,k

⎤
⎥⎦Xk +

⎡
⎢⎢⎢⎣

ζ1,k
ζ2,k

...
ζM,k

⎤
⎥⎥⎥⎦

= HkXk + ζk. (2)

We obtain the general system description by vertically stacking
the received signal given in (2) for all K subcarriers as

Y =
[
Y T

1 , Y T
2 , · · · , Y T

K

]T
= HX + ζ (3)

where X = [XT
1 ,X

T
2 , · · · ,XT

K ]T , ζ = [ζT1 , ζ
T
2 , · · · , ζTK ]T ,

and H = diag[H1,H2, · · · ,HK ] is a block diagonal matrix.

B. Detection

Open-loop detection schemes require M ≥ N if the system
operates at the spatial multiplexing mode. ZF is the simplest
open-loop method in which the estimates of the transmitted
signals are obtained by multiplying the received signal Y with
the pseudo-inverse of the CSI matrix as

X̂ = WZFY = H+Y = X + ξ (4)

where (·)+ represents the pseudo-inverse, WZF = H+ is the
weight matrix for the ZF scheme, and ξ = H+ζ. Note that the
detection can be carried out on a subcarrier-by-subcarrier basis
if there is no inter-carrier interference. This method requires
channel estimates at the receiver, and since AWGN is not con-
sidered in the estimation process, it might result in a high noise
enhancement. An MMSE receiver can be adopted to improve
the performance of the ZF scheme. In the MMSE scheme,

the weight matrix is WMMSE =
(
H†H + N0INK

)−1

H†,

where (·)† denotes Hermitian transpose and INK is the
NK ×NK identity matrix. In the extreme case when signal-
to-noise ratio equals infinity, the ZF scheme is the same as
the MMSE scheme. At high signal-to-noise ratios (SNR), the
instantaneous noise power of the n-th data stream transmitted
on the k-th subcarrier is written as [18]

[E{ξξ†}]n×k,n×k = N0

[
WW †

]
n×k,n×k

(5)

where [·]n×k,n×k denotes the (n × k, n × k)-th component
of a matrix, E{·} denotes expectation, and W could be
either WZF or WMMSE . For a particular CSI matrix H ,
the instantaneous noise enhancement factor for the n-th data
stream in the k-th subcarrier is [WW †]n×k,n×k . When the
MMSVR of H is large, the noise enhancement will be high.

III. ANALYSIS OF MIMO CHANNEL

A. Channel Model

Spatial sub-channels (i.e., the channel from transmit antenna
n to receive antenna m) are assumed to be independent. This

assumption is valid if the antenna spacing is greater than
half of the wavelength of the carrier. We adopt the IEEE
802.11 model with an exponential power-delay profile [20].
The channel is modeled as a finite impulse response (FIR)
filter where all the L + 1 paths are independent complex
Gaussian random variables with zero mean and average power
ω2
l (l = 0, 1, · · · , L). The channel impulse response can be

written as hl = a + jb, where a and b are defined to be
random variables obeying normal distribution with zero mean
and variance of ω2

l /2. In this model, the power of multipath
components decreases exponentially. To normalize the channel
energy, the first multipath component is chosen as ω2

0 =
(1 − β)/(1 − βL+1), where β = e−Ts/τrms , L = 10τrms/Ts,
Ts represents the sampling period, and τrms is the root mean-
square (RMS) delay spread of the channel. The energy of the
l-th multipath component is then defined as ω2

l = ω2
0β

l.

B. Analysis of channel characteristics

For the ZF and MMSE detection schemes to work effi-
ciently, some constraints must be met. First of all, the number
of receive antennasM should not be, as mentioned earlier, less
than the number of transmit antennas N . In the downlink of a
practical WLAN system, however, it is preferred to have more
antennas at the transmitter considering power consumption of
the receiver. Moreover, the CSI matrix for each subcarrier,
Hk, should not be an ill-conditioned1 matrix since such a
matrix will cause a high noise enhancement in detection. For
open-loop operations, the system could run in the HT mode
(the number of spatial streams equals the number of transmit
antennas) when the received SNR is moderately high. If the
channel is ill-conditioned, detection using the ZF or MMSE
scheme will experience a low instantaneous SNR, resulting in
poor performance. In this case, it might be better to switch
the system to operate at the diversity mode (the number of
spatial streams is less than the number of transmit antennas).

Let the noise enhancement matrix for the k-th subcarrier
be Ωk, k = 1, · · · ,K . For a rank-two2 ZF scheme in the HT
mode, using the singular value decomposition (SVD) of the
CSI matrix, we obtain ΩZF,k as

ΩZF,k = WZF,kW
†
ZF,k = H+

k (H+
k )† = (H†

kHk)+

= (V kΣ
†
kU

†
kUkΣkV

†
k)

+

= V k(Σ
†
kΣk)+V †

k

= V k

[
1/|σk,1|2 0

0 1/|σk,2|2
]

V †
k

= |σk,1|−2V k

[
1 0
0 |σk,1|2/|σk,2|2

]
V †
k (6)

where σk,1 and σk,2 (σk,1 ≥ σk,2 > 0) represent the singular
values of matrix Hk. 1/|σk,1|2 and 1/|σk,2|2 also represent
the noise enhancement factors for the two sub-channels. Let
γk = σk,1/σk,2. A large γk value could arise either because
σk,2 is small or because σk,1 is large. From simulation

1In this letter, a non-square matrix is defined to be ill-conditioned if the
minimum singular value of the channel matrix is significantly small compared
to the maximum singular value.

2The main focus of this letter is on rank-two and rank-three CSI matrices
since the emerging IEEE 802.11n MIMO WLAN standard is expected to have
2 to 4 transmit and 2 to 4 receive antennas.
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results, it is found that the latter is unlikely3, thus γk is a
good indicator of noise enhancement, and if γk � 1, we
can conclude that the channel is ill-conditioned for the k-
th subcarrier. For an open-loop system with a rank higher
than two, the definition of γk can be generalized as σk,1/σk,u,
where u = min(N,M), and σk,1, σk,u are the maximum and
minimum singular values, respectively.

MMSVR is also a good measure of the system capacity
lower bound. Using the alternative capacity representation of
[9], the capacity of the k-th carrier can be written as

Ck =
u∑
i=1

log2

(
1 +

Pk
N

|σk,i|2
)

(7)

where Pk is the total power of the k-th subcarrier. Considering
σk,1 ≥ σk,2 ≥ · · · ≥ σk,u > 0, a lower bound of the capacity
can be written as

Ck ≥ log2

(
1 +

Pk
N

|σk,1|2
)

+

(u − 1) log2

(
1 +

Pk
N

|σk,1|2
|γk|2

)
. (8)

As mentioned earlier, a large γk value is mostly due to a small
σk,u value. This fact combined with Eq. (8) clearly indicates
that a high value of MMSVR results in a considerably lowered
system capacity.

The Fourier transform of the channel impulse response of
each OFDM carrier described in Section III-A has a normal
distribution. The singular values of the CSI matrix for the k-
th OFDM carrier, Hk, are the positive square-roots of the
eigenvalues of the positive-definite Wishart matrix given as
Qk = H†

kHk, where (·)† represents Hermitian transpose. To
obtain the pdf of γk, the joint pdf of the eigenvalues of Qk

is needed. Let λ1 ≥ λ2 ≥ · · · ≥ λu be the eigenvalues of
the positive-definite matrix Qk. The joint density function of
λ1, λ2, · · · , λu are obtained to be

fλ(λ1, · · · , λu) = K−1
u,ve

−�i λi

∏
i

λv−ui

∏
i<j

(λi − λj)2 (9)

where u = min(N,M), v = max(N,M), and Ku,v is a
normalization factor [9]. From Eq. (9), we can calculate the
joint density function of λ1 and λu, fλ(λ1, λu), from which
the joint cumulative distribution function is obtained as

Fλ(λ1, λu) =
∫ λ1

0

∫ λu

0

fλ(α, β)dαdβ. (10)

Since the singular values of Hk, σi, i = 1, · · · , u, are the
square-root of the eigenvalues λi, i = 1, · · · , u, of the positive-
definite matrix Qk, the joint cumulative distribution of σ1 and
σu is

Fσ(σ1, σu) = P (
√
λ1 ≤ σ1,

√
λu ≤ σu)

= P (0 ≤ λ1 ≤ σ2
1 , 0 ≤ λu ≤ σ2

u)
= Fλ(σ2

1 , σ
2
u) − Fλ(0, σ2

u) −
Fλ(σ2

1 , 0) + Fλ(0, 0). (11)

3The probability of having σk,1 larger than five equals 8.71 × 10−9 for
a 2 × 2 system, 1.05 × 10−7 for a 2 × 3 system, 1.17 × 10−6 for a 3 × 3
system, 8.59 × 10−6 for a 3 × 4 system, 5.81 × 10−5 for a 4 × 4 system
and 2.92 10−4 for a 4 × 5 system.

Using Eq. (11), the probability density function of γ, omitting
the subscript for simplicity of notation in the sequel, can be
derived as

fσ(σ1, σu) =
d2Fσ(σ1, σu)
dσ1dσu

(12)

fγ(γ) = fγ

(
σ1

σu

)

=
∫ ∞

0

| σu | fσ(σuγ, σu)dσu. (13)

For 2 × 2 and 2 × 3 configurations, the distribution of the
singular value ratios obtained using Eqs. (9)-(13) are

fγ(γ)2×2 =
12γ(−1 + γ2)2

(1 + γ2)4
(14)

fγ(γ)2×3 =
120γ3(−1 + γ2)2

(1 + γ2)6
. (15)

Similarly for 3 × 3 and 3 × 4 systems, the distributions of γ
obtained by using Eqs. (9)-(13) are

fγ(γ)3×3 =
216(−1 + γ2)7(1 + γ2)(11 + 20γ2 + 11γ4)

(2 + 5γ2 + 2γ4)6
(16)

fγ(γ)3×4 =
840γ3(−1 + γ2)7(1 + γ2)(A3×4(γ) +B3×4(γ))

(2 + 5γ2 + 2γ4)9

(17)

where

A3×4(γ) = 4107γ2 + 11562γ4 + 15868γ6 (18a)

B3×4(γ) = 454 + 11562γ8 + 4107γ10 + 454γ12. (18b)

The methodology of calculating the closed-form theoretical
expressions for the pdf of γ can be easily extended to MIMO-
OFDM systems with a rank higher than three.

IV. SIMULATION RESULTS AND DISCUSSION

In simulations, an RMS delay spread of τrms = 50ns and
the maximum delay of 10τrms are considered. Statistics are
collected based on 10,000 channel realizations. Each channel
tap is modeled as an independent complex Gaussian random
variable. The CSI matrix is decomposed on a per OFDM
carrier basis, and as defined in Section III-B, γk is the ratio
of the maximum and the minimum singular values of Hk for
the k-th subcarrier. The parameters of OFDM symbols are
chosen as in the IEEE 802.11a standard (i.e., 64 subcarriers
in one OFDM symbol with a subcarrier frequency spacing of
312.5kHz).

The analytical and simulated pdf of γk, k = 1, · · · , 64, for
a 2 × 2 system and a 2 × 3 system are shown in Fig. 1. For
both cases, the simulation and analytical results match very
well. Fig. 2 shows the simulation and theoretical results for
the system with 3 transmit antennas.

The pdf of γ leads directly to results showing which N×M
MIMO configuration is an appropriate choice for the high-
throughput mode. For instance, it is well known that an N ×
(M + 1) open-loop MIMO scheme outperforms an N ×M
system. The pdf of γ derived in this letter confirms this result.
For example, the pdf of γ clearly demonstrates that a 2 ×
2 spatial multiplexing system will experience a much higher
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Fig. 1. Analytical and simulated probability density of MMSVR for 2 × 2
and 2 × 3 MIMO-OFDM configurations.

2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

MMSVR

P
ro

b
a

b
ili

ty
 o

f 
M

M
S

V
R

3x3 MIMO OFDM, analytical result
3x3 MIMO OFDM, simulation result
3x4 MIMO OFDM, analytical result
3x4 MIMO OFDM, simulation result

Fig. 2. Analytical and simulated probability density of MMSVR for 3 × 3
and 3 × 4 MIMO OFDM configurations.

probability of having an ill-conditioned channel compared to
a 2×3 system. A 3×3 configuration is found to have a much
higher probability of ill-conditioned channels compared to a
2×2 system, even though the former has a higher throughput.

The difference of noise enhancement between two MIMO
configurations will result in different throughput. It is shown
in [15] that the lower bound of the noise enhancement when
ZF detection is adopted is given as the mean of the square of
MMSVR. This bound can be calculated using the analytical
expression of the pdf of MMSVR as

E{γ2
N×M} =

∫ ∞

1

γ2fγ(γN×M )dγ. (19)

The mean value of γ2
N×M is calculated to be 19.9636, 7.5452,

41.1853 and 17.9986 for 2× 2, 2× 3, 3× 3 and 3× 4 MIMO
configurations, respectively. Using these results, the relative
throughput gains can be estimated through channel analysis
as 10 log10

(
E{γ2

N×N}) − 10 log10(E{γ2
N×(N+1)})

)
. Figs. 3

and 4 show the upper bound of the throughput curves of
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Fig. 3. Throughput comparison of MIMO-OFDM systems at 20MHz [19].
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Fig. 4. Throughput comparison of MIMO-OFDM systems at 20MHz [19].

MIMO-OFDM schemes versus SNR4. It is observed that for a
throughput of 80Mbps, the 2×3 system attains an approximate
4.2dB gain over the 2× 2 system, and the 3× 4 has a gain of
3.6dB over the 3×3 system. These results match well with the
results obtained by using Eq. (19): 4.2257dB gain for 2 × 3
over 2 × 2, and 3.5950dB gain for 3 × 4 over 3 × 3. The
improvement provided by an extra receive antenna is attributed
to having fewer ill-conditioned channels.

V. CONCLUSION

We have derived the closed-form pdf expressions of the
condition number (MMSVR) of the channel matrix for various
MIMO configurations. These analytical results can be used
to predict the relative performance of MIMO-OFDM systems

4Five thousand channel realizations are created. For each realization, the
throughput of each modulation coding scheme (MCS) is calculated. After
obtaining the packet error rate (PER) using the i-th MCS, the corresponding
throughput is calculated as Throughput(i) = D(i)∗ (1−PER(i)), where
D(i) is data rate provided by the i-th MCS. The maximum throughput value
over all MCS sets is adopted as the ideal hull throughput for a specific
realization [19].
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without complicated system-level simulations. They can also
be applied to determine the lower capacity bound of such
systems. Through the channel analysis, it is clearly observed
that an additional receive antenna could provide significant
performance improvements. The analytical results and the
gain/loss of different configurations predicted using the mean
of the square of MMSVR matches well that obtained through
system-level simulations. The results presented in this letter
provide a simple and effective way for predicting the relative
performances of different MIMO-OFDM configurations.
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