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Low-Complexity MAP Channel Estimation for
Mobile MIMO-OFDM Systems

Jie Gao and Huaping Liu, Member, IEEE

Abstract— This paper presents a reduced-complexity maxi-
mum a posteriori probability (MAP) channel estimator with
iterative data detection for orthogonal frequency division mul-
tiplexing (OFDM) systems over mobile multiple-input multiple-
output channels. The optimal MAP estimator needs to invert an
NNT × NNT data-dependent matrix each in OFDM symbol
interval, where N is the number of subcarriers and NT is
the number of transmit antennas. We derive an expectation
maximization (EM) algorithm with low-rank approximation to
avoid inverting large-size matrices, and thus drastically reduce
the receiver complexity. In the iterative process, channel para-
meters are initially obtained by a least square (LS) estimator
for temporary symbol decisions. Then, inter-carrier interference
(ICI) due to fast fading is approximated and canceled. Finally, the
temporary symbol decisions and the ICI-canceled received signals
are processed by the EM-based MAP estimator to refine the
channel state information for improved detection. The proposed
scheme achieves about 2 dB gain over the LS scheme in channels
with medium to high normalized Doppler shifts.

Index Terms— Multiple-input multiple-output, orthogonal fre-
quency division multiplexing, fast fading, inter-carrier inter-
ference, maximum a posteriori probability estimation, low-rank
approximation.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is widely used for reliable data transmission

over frequency-selective channels without requiring a complex
equalizer. Multiple-input multiple-output (MIMO) antennas
and OFDM can be implemented to achieve a low error rate
and/or high data rate by flexibly exploiting the diversity gain
and/or the spatial multiplexing gain [1]–[3]. Realizing these
gains requires the channel state information (CSI) at the
receiver, which is often obtained through channel estimation.

There exist two main types of channel estimation schemes:
pilot-assisted schemes, in which a portion of the bandwidth is
allocated to training symbols [4], [5], and blind approaches,
which can be implemented by exploiting the statistical prop-
erties [6] or the deterministic information of the transmitted
symbol (e.g., finite alphabet, constant modulus, etc.) [7], [8].
For pilot-assisted schemes, CSI can be estimated by exploiting
the frequency correlation and/or the time correlation of the
pilot and data symbols [9]. The estimates are in general
reliable, but pilot symbols increase signaling overhead. On the
other hand, blind estimation requires a long data observation
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interval; the slow convergence rate makes it difficult to apply
the statistical approach in fast-fading channels, and the high
computational complexity required to solve the maximization
problem makes the deterministic approach appropriate only for
certain applications. In [10], algorithms based on comb-type
pilots with improvement using interpolation at data frequen-
cies are studied. Performance bound of a pilot-assisted, least-
square (LS) channel estimator over a slowly fading channel is
derived in [11]. A Kalman filter based scheme to estimate the
state-transition matrix of time-varying MIMO-OFDM chan-
nels and a scheme based on minimizing the mean-square error
(MSE) of a cost function are developed in [12], [13] and [14],
[15], respectively. To enhance the LS channel estimation for
MIMO-OFDM systems, optimal pilot sequences and optimal
placements of pilot tones are derived in [16]. Two expectation-
maximization (EM) algorithms, the classical EM and space-
alternating generalized EM (SAGE), are compared in terms of
their convergence rates in [17], [18]. In fast-fading channels,
inter-carrier interference (ICI) in OFDM systems could be
severe. In order to mitigate ICI, various detection structures
are proposed in [4] and an iterative channel estimator with ICI
cancellation to maximize the signal-to-noise-plus-ICI ratio is
derived in [5].

Maximum a posteriori probability (MAP) channel estima-
tion algorithms generate optimal results. When applied to
MIMO-OFDM systems, however, its complexity could be
prohibitively high for most applications. This paper develops
an iterative channel estimation and data detection scheme for
mobile MIMO-OFDM systems for which ICI may not be
neglected. The main contribution is on the derivation of a
reduced-complexity MAP channel estimator while maintaining
a high data-detection performance. In the proposed scheme,
the LS algorithm that operates on pilot symbols only is
applied to obtain initial channel estimates for temporary sym-
bol decisions. Then, the ICI component is approximated and
canceled from the received signals. In fast-fading channels, LS
estimates exploiting pilot symbols only might not be sufficient
to provide a high detection performance. With the temporary
data decisions and channel estimates, performance could be
significantly improved by applying a MAP estimator. The
major problem with the MAP estimator is that it requires
inversion and multiplication of matrices of size NNT ×NNT

for each OFDM symbol, where N is the number of subcarriers
and NT is the number of transmit antennas. We derive an EM-
based MAP estimator, which, by exploiting the channel sta-
tistical information and employing a low-rank approximation,
practically eliminates the need of frequent matrix inversions.
We show that the proposed scheme performs the same as the
MAP estimator while its complexity is significantly lower.
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II. SYSTEM MODEL

Consider a system with NT transmit antennas and NR

receive antennas. Sub-channels are defined as the spatial
channels from the u-th (1 ≤ u ≤ NT ) transmit antenna to the
v-th (1 ≤ v ≤ NR) receive antenna. In the transmitter, data
are serial-to-parallel (S/P) converted and sent to NT transmit
antennas for simultaneous transmission. Each sub-channel
consists of L + 1 paths, and each OFDM symbol consists
of N subcarriers. Let hv,u(l) denote the tap gain of path l for
the sub-channel from transmit antenna u to receive antenna v.
The channel has an exponentially decaying multipath power-
delay profile which determines the power distribution among
the taps, and the maximum tap delay is assumed to be shorter
than the OFDM guard interval. The power-delay profile is also
assumed identical for all independent sub-channels, which is
represented as [19]

E
{
hv,u(l1)h∗

v,u(l2)
}

= εe−l1/Lδl1l2 (1)

where ε = 1−e−1/L

1−e−(L+1)/L is a normalization factor to ensure
ε
∑

l e−l/L = 1, δ denotes the Kronecker delta function, E{·}
denotes statistical expectation, and {·}∗ represents complex
conjugate. Let H(l) denote the NR ×NT spatial channel ma-
trix whose (v, u)-th element is hv,u(l). From Eq. (1), it is easy
to obtain E

{
vec{H(l1)}vecH{H(l2)}

}
= 0NT NR

, ∀l1 �= l2,
where (·)H denotes Hermitian transpose, vec{H(l)} is an
NRNT×1 vector constructed by stacking the columns of H(l),
and 0NT NR

represents the NT NR × NT NR zero matrix. We
write the discrete-time multipath channel coefficients along the
delay path as hv,u = [hv,u(0), hv,u(1), · · · , hv,u(L)]T , where
(·)T denotes transpose. We also define

Hv,u(k) =
L∑

l=0

hv,u(l)e−j2πkl/N , 0 ≤ k ≤ N − 1 (2)

which represents the frequency response of the channel for the
k-th subcarrier. In a vector-matrix form, Hv,u(k) is the k-th
element of the N×1 vector Fhv,u, where F is an N×(L+1)
matrix with F [k, l] = e−j2πkl/N , 0 ≤ k ≤ N − 1, 0 ≤ l ≤ L.

The discrete-time transmitted signal at the n-th sam-
pling interval from antenna u is expressed as su(n) =√

Es

N

∑N−1
k=0 du(k)ej2πnk/N , where du(k) is the transmitted

symbol at the k-th subcarrier from the u-th antenna and Es is
the data symbol energy per subcarrier. Since the guard interval
is not shorter than the maximum delay of the channel, there
is no intersymbol interference. For simplicity of notation, we
let the symbol energy per subcarrier be normalized to 1. The
received signal on the k-th subcarrier of antenna v is given by

Yv(k) =
NT∑
u=1

du(k)Hv,u(k) + Wv(k) (3)

where Wv(k) = 1√
N

∑N−1
n=0 wv(n)e−j2πnk/N and wv(n) is

the zero-mean additive white Gaussian noise (AWGN) with
variance N0.

III. LOW-COMPLEXITY MAP CHANNEL ESTIMATION WITH

ITERATIVE DATA DETECTION

In this section, we first derive the proposed scheme assum-
ing a quasi-static channel. Then we extend the analysis to time-
varying fading channels, where ICI needs to be considered.

A. MAP channel estimation with low-rank approximation and
EM implementation

1) LS estimation: As mentioned in Section I, the LS
scheme is a pilot-assisted approach to obtain the initial es-
timates. Let ps and M denote the pilot subcarrier spacing
and the number of subcarriers dedicated to pilot symbols,
respectively. The received pilot vector at receive antenna v,
Y v(p), and the transmitted pilot matrix Du(p) from antenna u

are written as Y v(p) = [Yv(0), Yv(ps), · · · , Yv((M − 1)ps)]T ,
Du(p) = diag[du(0), du(ps), · · · , du((M − 1)ps)], where
diag[·] denotes a diagonal matrix. Applying Eq. (3) to pilot
signals, we obtain

Y v(p) = Q(p)hv + W v(p) (4)

where Q(p) = [D1(p)F (p),D2(p)F (p), · · · ,DNT (p)F (p)],
hv = [hT

v,1,h
T
v,2, · · · ,hT

v,NT
]T , and F (p) is an M × (L + 1)

matrix with F (p)[k, l] = e−j2πkl/N , k = 0, ps, 2ps, · · · , (M−
1)ps, 0 ≤ l ≤ L, Wv(k) is the k-th element of M × 1 vector
W v(p).

The LS estimate of hv is simply obtained as ĥv =
(Q(p))+Y v(p), where (·)+ denotes the pseudo-inverse. Since
Q(p) is an M × NT (L + 1) matrix, a unique LS solution
exists if the number of pilot subcarriers M is not less than NT

times the number of channel delay taps (L + 1). Calculating
the inverse of an NT (L + 1) × NT (L + 1) matrix could be
computationally extensive. Thus, it is favorable to ignore the
channel taps whose magnitudes are small, like the method
of significant tap catching (STC) proposed in [14]. With Lr

significant taps (Lr < L + 1), the required computation is
reduced to the inversion of an NT Lr×NT Lr matrix. However,
an irreducible error floor is introduced since the power-delay
profile cannot be completely represented by the Lr taps [18],
[20].

An EM-based scheme that provides a more reliable chan-
nel estimate than the STC scheme while avoiding the in-
version of large-size matrices is introduced and compared
with the SAGE algorithm in terms of convergence rate in
[17], [18]. This algorithm transforms the estimation process
of multiple-input channels into the estimation of a series
of independent single-input single-output (SISO) channels.

In the E-step, Ŷ
(κ)

v,u(p) = Du(p)F (p)ĥ
(κ)

v,u and r̂
(κ)
v,u(p) =

Ŷ
(κ)

v,u(p) + βu

[
Y v(p) −

∑NT

u=1 Ŷ
(κ)

v,u(p)

]
are computed for u =

1, 2, . . . , NT , where superscript (κ) represents the κ-th sub-
iteration and

∑NT

u=1 βu = 1. Typically, βu, u = 1, · · · , NT ,
are chosen as β1 = · · · = βNT

. In the M-step, channel

coefficients are estimated as ĥ
(κ+1)

v,u = F H
(p)D

−1
u(p)r̂

(κ)
v,u(p).

Since Du(p) is a diagonal matrix, D−1
u(p) can be obtained via

division only. The channel estimates can be initially set as

ĥ
(0)

v,u = 1L+1, (1 ≤ v ≤ NR, 1 ≤ u ≤ NT ), where 1L+1 is an
(L + 1) × 1 vector whose elements are all 1’s.

With the channel coefficients ĥv,u estimated by the LS
algorithm, the estimate of the channel frequency response for
subcarrier k, Ĥv,u(k), is simply the k-th element of F ĥv,u,
where F is an N × (L + 1) matrix given below (2).

The received signals across all receive antennas on the
k-th subcarrier, Y (k), is expressed in a vector form as
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Y (k) = [Y1(k), Y2(k), · · · , YNR
(k)]T . With Ĥv,u(k), data

symbols d1(k), · · · , dNT
(k) can be detected after spatial de-

multiplexing using a linear zero-forcing (ZF) filter or mini-
mum mean square error (MMSE) scheme.

2) MAP estimation: Although the transmitted data could
be detected by employing the LS estimates of the channel
coefficients, the performance will be significantly improved by
employing a MAP channel estimator. The received signal vec-
tor on all subcarriers at antenna v, Y v = [Yv(0), · · · , Yv(N −
1)]T , can be expressed as

Y v = DHv + W v, v = 1, · · · , NR (5)

where D = [D1, · · · ,DNT
], Du = diag[du(0), · · · , du(N −

1)], W v = [Wv(0), · · · ,Wv(N − 1)]T , and Hv =
[(Hv,1)T , · · · , (Hv,NT

)T ]T , whose u-th block is expressed
as Hv,u = Fhv,u.

As mentioned in Section I, the major problem with the
MAP estimator is that it needs to invert an NNT × NNT

data-dependent correlation matrix and an N × (NNT ) data
matrix D, where the data-dependency requires the inversion
be carried out for each OFDM symbol. The computational
load becomes prohibitively high when NNT is large. This
partly motivates us to apply the EM algorithm to be described
at the end of Section III to decompose the MIMO channel
into NT SISO channels. After the decomposition, the data
matrix reduces to an N ×N diagonal matrix whose inversion
is trivial. The data-dependent correlation matrix also reduces
to size N × N , and we derive a low-rank approximation to
practically avoid matrix inversion. It is more convenient to
write the received vector at antenna v as: Y v =

∑NT

u=1 Y v,u

and Y v,u = DuHv,u + Wv,u. Since the EM algorithm can
decompose the NT spatialy multiplexed channels given in Y v ,
we develop the MAP estimator based on above expression.

With the received signal at antenna v, the optimal MAP
estimator maximizes the probability density function (pdf) of
Hv,u conditioned on the received signal and the transmitted
data matrix as [21]

Ĥv,u = arg max
Hv,u

f
(
Hv,u|Y v,u,Du

)
= arg max

Hv,u

f
(
Y v,u|Hv,u,Du

)
f (Hv,u|Du) (6)

where

f(Y v,u|Hv,u,Du) = π−1|RN |−1·
exp(−(Y v,u − DuHv,u)HR−1

N (Y v,u − DuHv,u)) (7a)

f(Hv,u|Du) = π−1|RH |−1 exp(−HH
v,uR−1

H Hv,u). (7b)

It was shown in [21], [22] that the MAP estimate of Hv,u

can be expressed as

Ĥv,u = μ+RHDH
u

(
DuRHDH

u + RN

)−1 (
Y v,u − Duμ

)
(8)

where RN is the correlation matrix of the zero-mean noise
vector, and μ and RH denote, respectively, the mean and
corrrelation matrix of Hv,u. In a quasi-static channel, RN

is expressed as RN = σ2IN , where IN is the N × N
identity matrix and σ2 = σ2

AWGN/NT . Considering that the

channel coefficients have a mean zero (i.e., μ = 0), it is
straightforward to rewrite (8) as

Ĥv,u = RH(RH + σ2(DH
u Du)−1)−1D−1

u Y v,u. (9)

Clearly, the inversion of the N×N data-dependent correlation
matrix and the multiplication of two N ×N matrices must be
done for all sub-channels during each OFDM symbol interval.

3) Complexity reduction via low-rank approximation: It
was shown in [24] that matrix (DH

u Du)−1 could be replaced
by E{(DH

u Du)−1} at the expense of a slight performance
degradation. Assuming a normalized constellation power and
equally probable constellation points and independent data
symbols, we can easily show that E{(DH

u Du)−1} = αIN ,
where α equals 1, 1.8889, and 2.6854 for QPSK, 16-QAM,
and 64-QAM, respectively. Thus, Eq. (9) can be approximated
as

Ĥv,u ≈ RH(RH + σ2αIN )−1D−1
u Y v,u. (10)

The approximation in (10) effectively avoids the frequent
inversion and multiplication of N × N matrices for every
OFDM symbol (note again that D−1

u is a diagonal matrix).
The complexity can be further reduced by exploiting low-

rank approximation to the matrices involved in the MAP
estimation process. Let Γ = RH(RH + σ2αIN )−1. It was
shown in [25] that Γ can be optimally approximated by
an N × N matrix Γm with low rank. The optimal rank
reduction can be achieved by minimizing the trace of the extra
covariance as min

Γm

tr[(Γ − Γm)(RH + σ2αIN )(Γ − Γm)T ].

The solution will make Γm(RH + σ2αIN )1/2 the best low-
rank approximation for Γ(RH + σ2αIN )1/2.

Since the correlation matrix RH is Hermitian and positive
semidefinite, we can write RH = UΛUH , where U is a
unitary matrix and Λ is a diagonal matrix whose diagonal el-
ements λm, m = 0, 1, · · · , N−1, are the eigen values of RH .
The MAP channel estimate given in (10) can be expressed as
Ĥv,u = UΛ(Λ + σ2αIN )−1UHD−1

u Y v,u. We also have
Γ(RH +σ2αIN )1/2 = UΛUH(U(Λ+σ2αIN )UH)−1/2 =
UΛ

(
Λ + σ2αIN

)−1/2
UH , where we have applied the prop-

erty (U(Λ + σ2αIN )UH)1/2 = U(Λ + σ2αIN )1/2UH in
obtaining the second equality.

Let Δ = Λ(Λ+σ2αIN )−1. The optimal low-rank approx-
imation for Δ would then be

Δm = diag

[
λ0

λ0 + σ2α
· · · λL

λL + σ2α
0 · · · 0

]
. (11)

Therefore, the low-rank approximated channel estimate based
on (10) is expressed as

Ĥv,u ≈ UΔmUHD−1
u Y v,u. (12)

As shown in the Appendix, given the channel length L, the
(m,n)-th element of the correlation matrix RH can be derived
to be [RH ]m,n = ε

∑L
l=0 e−l/Le−j2π(m−n)l/N .

4) Decomposition using EM algorithm: To estimate the
coefficients for the channel vectors from all transmit antennas,
the EM algorithm to decompose the MIMO channel into SISO
channels can be efficiently implemented as



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 3, MARCH 2008 777

E-step: for u = 1, 2, . . . , NT ,

Ŷ
(g)

v,u = DuUΔ+
mUHF ĥ

(g)

v,u (13a)

r̂(g)
v,u = Ŷ

(g)

v,u + βu

[
Y v −

NT∑
u=1

Ŷ
(g)

v,u

]
(13b)

where, as the EM-LS scheme, superscript (g) represents the g-
th sub-iteration and βu, u = 1, · · · , NT , satisfy

∑NT

u=1 βu = 1
and are typically chosen as β1 = · · · = βNT

. Note that the
L + 1 non-zero diagonal elements of Δ+

m is easily obtained
to be λm+σ2α

λm
,m = 0, 1, 2, · · · , L.

M-step: in order to minimize the detection error, the esti-
mated channel coefficients are updated as

ĥ
(g+1)

v,u = F HUΔmUHD−1
u r̂(g)

v,u. (14)

Since Du is a diagonal matrix, D−1
u can be obtained by

division only; thus practically no matrix inversion is required
for the proposed EM-based MAP channel estimator. Also,
for practical scenarios, the SVD of RH can be calculated
in advance and updated infrequently. Increasing the number
of sub-iterations G will result in better quality of the channel
estimates. However, as will be shown in Section IV, for most
common MIMO-OFDM configurations and fading rates, the
performance saturates quickly as G increases; thus, a large G
is typically unnecessary.

B. Implementation in time-varying fading channels

The proposed scheme can be easily extended and ap-
plied to the time-varying channels. In this case the chan-
nel coefficients at time nTs, hv,u(n, l), are assumed to
be constant in one sampling interval Ts, which is related
to the OFDM symbol duration T as Ts = T/N , and
change over different sampling intervals according to the
channel correlation property E

{
hv,u(n1, l1)h∗

v,u(n2, l2)
}

=
εJ0 (2πfdTs(n2 − n1)) e−l1/Lδl1l2 , where J0(·) is the zeroth
order Bessel function of the first kind, fd is the maximum
Doppler shift of the channel.

Time-varying fading causes ICI; thus (3) must be modified
as

Yv(k) =
NT∑
u=1

du(k)H̄v,u(k) + ζv(k) + Wv(k) (15)

where H̄v,u(k) = 1
N

∑N−1
n=0 Hv,u(k, n) denotes the mean

value of the channel response for the k-th subcarrier,

Hv,u(k, n) =
L∑

l=0

hv,u(n, l)e−j2πkl/N , ζv(k) =
NT∑
u=1

ζv,u(k),

and ζv,u(k) =
1
N

N−1∑
m=0
m �=k

du(m)
N−1∑
n=0

Hv,u(m,n)ej2πn(m−k)/N

represents the ICI component. For most common OFDM
systems, the number of subcarrier is a large number (e.g.,
128 or greater). Therefore, the ICI component ζv,u(k) can
be approximated as a zero-mean Gaussian random variable
by invoking the central limit theorem [23]. The variance of

ζv,u(k) is given as [4]

σ2
ICI =

1
N2

N−1∑
m=0, m �=k

[
N +

2
N−1∑
n=1

(N−n)J0 (2πfdTsn) cos
(
2π(m−k)

n

N

)]
. (16)

Therefore, with the modification of the noise variance in
(9)−(11) as σ2 = σ2

ICI + σ2
AWGN/NT , the proposed scheme

can be readily applied for time-varying channels.
When ICI is severe, it is necessary to cancel it in the

detection process. The channel transfer function can be ap-
proximated using the first-order Taylor series expansion as
[5] Hv,u(k, n) = Hv,u(k, n0)+H

′
v,u(k, n0)(n−n0). The ICI

component ζv,u(k), k = 0, 1, · · · , N − 1, defined in (15) can
be rewritten as

ζv,u(k) =
N−1∑
m=0

Hv,u(m,n0)
′
Ξk(m)d(m) (17)

where Ξk(m) = 1
N

∑N−1
n=0 (n − n0)ej2πn(m−k)/N . Let Ξ be

an N ×N matrix whose (k,m)-th element is Ξk(m), k,m =
0, 1, · · · , N − 1. With the initial estimate of the channel and
the temporary symbol decisions for all the subcarriers, the ICI
component is approximated as

ζ̂v,u = ΞH
′
v,ud̂u (18)

where ζ̂v,u = [ζ̂v,u(0), ζ̂v,u(1), · · · , ζ̂v,u(N − 1)]T ,

d̂u = [d̂u(0), d̂u(1), · · · , d̂u(N − 1)]T , and H
′
v,u =

diag[H
′
v,u(0, n0),H

′
v,u(1, n0), · · · ,H

′
v,u(N − 1, n0)]. The

first-order derivative of the channel response, H
′
v,u(k, n0),

can be estimated by calculating the difference of H̄v,u(k)
between two consecutive OFDM symbols [5]. The ICI
component is then canceled before the next iteration of data
detection as Ŷ v = Y v − ∑NT

u=1 ζ̂v,u, where Y v was given in
(5). Once the ICI component is canceled from the received
signal, both channel estimation and data detection should be
significantly improved.

The block diagram of the proposed MAP channel estimator
with iterative data detection for MIMO-OFDM systems is
shown in Fig. 1. The receiver employs an LS channel estimator
to obtain the initial estimate of the channel coefficients for all
the sub-channels by exploiting only the pilot signals, followed
by an MMSE data detector. Once the temporary data decisions
(Du) are available, the ICI component can be approximated
and canceled from the received signal. The received signals
after ICI cancellation, the temporary symbol decisions, and
the statistical information of the channel are then processed by
the proposed MAP estimator to obtain more accurate channel
parameters (Ĥv,u). In the next iteration, the temporary data
decisions are used to estimate the ICI component given by
(18), which is subsequently canceled from the received signal.
The channel parameters are then updated following (13) and
(14).

The MAP estimator can be derived using (5). Its com-
plexity is approximately as follows. For each OFDM symbol,
the pseudo-inverse of a data matrix of size N × NNT :
O(N3)); inversion of a data-dependent correlation matrix of
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Fig. 1. Block diagram of the iterative channel estimation and data detection scheme.
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Fig. 2. The effect of the number of sub-iterations in the EM process (NT =
2, NR = 3).

size NNT × NNT : O((NNT )3); and multiplication of two
NNT ×NNT matrices: O((NNT )3). The significance of (12)
as a result of the approximation in (10) and the low-rank
approximation and the EM algorithm is that the inversion
and multiplication of matrices mentioned above are practically
eliminated (note that Du and Δm are diagonal matrices).
Additionally, as mentioned at the end of Section III-A.3, even
if fd changes, an SVD to re-calculate U is not needed, as long
as fdT is not unrealistically large. The only change needed
to reflect the change in fd is to re-calculate Δm given in
(11), which is trivial due to the special form of Δm, once
the variance of ICI as a result of fast fading is estimated.
However, in the EM process, steps given in (13) and (14) need
to be executed g times (e.g., g = 9) for each OFDM symbol.
Although the exact complexity of these steps are difficult to
quantify, it is far lower than O((NNT )3)) since all matrices
involved are either fixed (e.g., U and F , which do not need to
be updated on a per OFDM symbol basis) or diagonal (e.g.,
Δm and Du).

IV. SIMULATION RESULTS AND DISCUSSION

Simulation results are obtained for MIMO-OFDM systems
with N = 128 subcarriers employing QPSK modulation. A

cyclic prefix of 16 samples is inserted at the beginning of
each OFDM symbol. The pilot subcarrier spacing ps is 4;
thus the absolute pilot spacing in the frequency domain equals
4/(NTs). Note that data symbol energy Es for all simulation
results is the energy spent in information-bearing symbols
only and is not adjusted by the energy spent in pilots. Since
the multipath spread of the channel is assumed to be LTs,
the channel coherence bandwidth is approximately equal to
1/(LTs). Let R be the ratio of the absolute pilot spacing
to the channel coherence bandwidth, i.e., R = 4L

N . Since
the grid density of the pilot symbols must satisfy the 2-D
sampling theorem in order to recover channel parameters [26],
the pilot spacing must be less than or equal to half of the
coherence bandwidth of the channel, which results in R ≤ 0.5.
The channel is assumed to have 15 multipath components
(L = 14).

We use the normalized Doppler shift fdT to measure fading
rates. In terrestrial digital video broadcasting 2k mode (DVB-
T) systems, if the vehicle speed is v = 134.8 km/h, the
normalized Doppler shift is obtained to be fdT = 0.02 [5]
(the maximum absolute Doppler shift fd = fcv/c is applied),
which is considered to be a fairly fast-fading scenario for
mobile environments.

Fading processes are piecewise-constant approximated, al-
lowing the channel coefficients to be constant in one sampling
interval and change over different sampling intervals within
one OFDM symbol period according to the correlation func-
tion described in Section III-B. There are many methods to
generate the fading coefficients [27]–[30], and we adopt the
one described in [28] since it gives a better autocorrelation
property of the fading process than the one in [27].

The number of sub-iterations in the EM process, G, affects
the receiver bit error rate (BER). Fig. 2 shows that, for
the common set of system parameters chosen, BER does
not further improve after G = 9 sub-iterations. Hence, in
obtaining the rest of the simulation results, G = 9 with
step sizes of β1 = β2 = . . . = βNT

= 1/NT will be
adopted. Fig. 3 compares the error performance of receivers
that employ the LS, the MAP, and the proposed scheme for
(2, 2) (i.e., NT = 2, NR = 2) and (2, 3) MIMO-OFDM
systems. Performance of the ideal case that assumes perfect
CSI is used as the baseline performance. The proposed EM-
MAP scheme performs almost the same as the normal MAP
scheme; the performance degradation as a result of reducing
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Fig. 3. Performance comparison of various channel estimation schemes
(fdT = 0.02, pilot subcarrier spacing ps = 4).
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Fig. 4. The effect of the ratio of pilot spacing to channel coherence bandwidth
(NT = 2, NR = 3).

complexity using (10) and the low-rank approximation in (12)
is negligible. Compared with the LS estimator, the proposed
scheme achieves an improvement of approximately 2 dB.
For the cases simulated, the performance gap between the
proposed scheme and the ideal case is within about 2 dB.

The effect of the ratio of pilot spacing to the channel coher-
ent bandwidth on the BER performance of a (2, 3) MIMO-
OFDM system operating at a fading rate of fdT = 0.02 is
shown in Fig. 4. As expected, the lower the ratio, the better
the performance. However, with the same channel scenario
and system configuration, a lower value of R results in a
lower spectral efficiency. The performance gap between the
proposed scheme and the ideal case increases as R increases.

V. CONCLUSION

We have derived an EM-based MAP channel estimator with
iterative estimation and detection for MIMO-OFDM systems,

which works well in fast-fading channels. The estimator does
not need to invert large-size matrices, resulting in a much
lower complexity than existing schemes, while achieving
the optimal performance of MAP channel estimation. The
iterative process also enables one to incorporate approximation
and cancellation of the ICI component for high-performance
detection. Simulation results demonstrate the great robustness
of the proposed scheme to fast time-varying fading. With a
fading rate as high as fdT = 0.02, the proposed scheme
achieves an error performance that is 2 dB better than the
LS estimator and is about 2 dB worse than the ideal case that
assumes perfect channel estimates.

APPENDIX: APPROXIMATION OF THE CHANNEL

CORRELATION MATRIX

Recall that H̄v,u(k) = 1
N

∑N−1
n=0 Hv,u(k, n) and

Hv,u(k, n) =
∑L

l=0 hv,u(n, l)e−j2πkl/N . Applying Eq.
(1), we obtain the (m,n)-th element of the correlation matrix
RH as

[RH ]m,n = E
{
H̄v,u(m)H̄∗

v,u(n)
}

=
1

N2
E

{
L∑

l1=0

N−1∑
n1=0

e
−j2πml1

N hv,u(n1, l1)·

L∑
l2=0

N−1∑
n2=0

hv,u(n2, l2)e
j2πnl2

N

}

= ε
L∑

l=0

e−l/Le
−j2π(m−n)l

N
1

N2
·

N−1∑
n1=0

N−1∑
n2=0

J0 (2πfdTs(n2 − n1)) . (19)

For most application scenarios, the normalized Doppler shift
fdT is smaller than 0.05. In such a case, and noting that Ts =
T/N , J0 (2πfdTs(n2 − n1)) ≈ 1. Thus

[RH ]m,n ≈ ε

L∑
l=0

e−l/Le
−j2π(m−n)l

N . (20)
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