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Decision-Directed Estimation of MIMO Time-Varying
Rayleigh Fading Channels
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Abstract—This paper presents a decision-directed (DD) maxi-
mum a posteriori probability (MAP) channel-estimation scheme
for multiple-input multiple-output (MIMO) time-varying fading
channels. With the estimate of the channel matrix for the current
symbol interval, a zero-forcing (ZF) receiver is applied to detect
the spatially multiplexed data on a symbol-by-symbol basis. Sym-
bol decisions are then fed to the channel predictor for estimation
of channel coefficients in future symbol intervals. Simulated error
performance of a ZF receiver with the DD MAP and perfect
channel estimates is provided and compared.

Index Terms—Decision feedback, MAP channel estimation,
multiple-input multiple-output (MIMO) systems, time-varying
fading.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) communica-
tion systems have been shown to provide high spectral

efficiencies [1]. If perfect channel coefficients are available at
the receiver, a linear increase in ergodic capacity is achiev-
able with MIMO systems [2], [3]. Perfect channel estimates,
however, can be obtained only if the channel is either static
for a long time (noise can be averaged out) or perfect (no
noise). The rapid phase and amplitude variations inherent in
a time-varying fading channel render perfect estimates impos-
sible, regardless of the type of channel-estimation method used.
Channel estimation has been studied extensively for single-
antenna systems (e.g., [4]–[8]). For MIMO systems, channel-
estimation schemes have been mostly based on pilot-assisted
approaches, assuming a quasi-static fading model that allows
the channel to be constant for a block of symbols and change
independently to a new realization. In [9], a pilot-embedding
method, where low-level pilots are transmitted concurrently
with data, was proposed for turbo decoding in an MIMO
system. The effects of pilot-assisted channel estimation on the
achievable data rates (capacity lower bound) over a frequency-
nonselective, quasi-static fading channel were analyzed in [10].
In this scheme, periodic pilot signals assigned to different trans-
mit antennas are assumed to be mutually orthogonal. Although
it avoids interantenna interference within the pilot periods, such
scheme could significantly lower the spectral efficiency of the
system. Throughput of a system with a maximum-likelihood
(ML) channel estimator that employs periodic optimal training
sequences for block and continuous flat-fading channels was
studied in [11]. In [12], an iterative method was derived to
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improve the estimation of channel parameters for an MIMO
system, based on the assumption that data decisions have
already been made. This method needs to invert a matrix of
size L × L, with L being the frame length per transmit antenna,
for every frame. With practical frame lengths (e.g., L = 130, as
applied in simulations in [12]), the computational load could be
prohibitively high.

In this paper, we derive a decision-directed (DD) maximum
a posteriori probability (MAP) channel-estimation scheme for
MIMO systems over time-varying fading channels. A zero-
forcing (ZF) receiver is applied to detect the spatially multi-
plexed symbols transmitted in the current symbol interval.
The estimated symbols are then incorporated in the DD MAP
channel predictor to obtain estimates of the channel coefficients
in future symbol intervals. The proposed scheme does not
rely on the assumption of a quasi-static fading model and can
be applied in a time-varying environment. Compared to most
existing schemes, it has a lower complexity and is capable of
operating with significantly less pilot symbols.

II. SYSTEM MODEL

Consider a communication system with M transmit and N
receive antennas, denoted as an (M,N) system, over a time-
varying, frequency-nonselective Rayleigh fading channel. In
the transmitter, data are serial-to-parallel converted and sent to
M transmit antennas for simultaneous transmission. Each re-
ceive antenna responds to each transmit antenna through a sta-
tistically independent fading coefficient. The received signals
are corrupted by additive white Gaussian noise, which is statis-
tically independent among different receive antennas. We focus
on the baseband model of a system, which employs M -ary
phase-shift keying (PSK) with zero intersymbol-interference
design. The results can be easily extended to an MIMO system
employing a more general pulse-amplitude modulation scheme.
The mth transmitted data stream (the signal from the mth trans-
mit antenna) is expressed as

xm(t) =
∞∑

i=−∞

√
Essm(i)g(t − iT ), m = 1, . . . , M (1)

where sm(i) is the ith symbol of the mth data stream, Es is the
energy per symbol, T is the symbol interval, and g(t)
is the transmitted Nyquist pulse applied to all transmitted
data streams. Energy of g(t) is normalized to unity, i.e.,∫ ∞
−∞ g2(t)dt = 1.

The time-varying fading channel introduces a random am-
plitude and phase shift to the transmitted signal. The fading-
channel process h(t) is modeled as a normalized, zero-mean
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complex wide-sense stationary Gaussian process with a
spaced-time correlation function Φ(∆t) expressed as Φ(∆t) =
E{h(t)h∗(t + ∆t)}, where E{·} denotes statistical expectation
and (·)∗ represents complex conjugate. In a typical mobile-
communication environment, the spaced-time correlation func-
tion of the channel can be modeled as Φ(∆t) = J0(2πfd∆t)
[13], where fd represents the maximum Doppler shift of the
channel and J0(·) is the zeroth-order Bessel function of the
first kind.

The received signal of the nth antenna rn(t), n = 1, . . . , N ,
is the sum of signals transmitted from M transmit antennas and
is expressed as

rn(t) =
M∑

m=1

√
Eshn,m(t)xm(t) + νn(t), n = 1, . . . , N

(2)

where hn,m(t) represents the fading process for signals from
the mth transmit antenna to the nth receive antenna and νn(t)
is a complex zero-mean white Gaussian noise process with
power spectral density N0. The received signal rn(t) is filtered
by a matched filter, matched to g(t), and then sampled at
the symbol rate of each data stream.

Let the M × 1 transmitted signal vector in the ith symbol
interval be s(i) = [s1(i)s2(i) · · · sM (i)]T, where [·]T denotes
transpose. The N × 1 received signal vector at the ith discrete-
time interval is obtained as

r(i) =
√

EsH(i)s(i) + ν(i) (3)

where ν(i) is the complex zero-mean noise vector. The channel
matrix H(i)(N × M) is expressed as

H(i) = [h1(i) h2(i) . . . hM (i) ]

=




h1,1(i) h1,2(i) · · · h1,M (i)
h2,1(i) h2,2(i) · · · h2,M (i)
...

...
hN,1(i) hN,2(i) · · · hN,M (i)


 (4)

where N × 1 column vectors hm(i) = [h1,m(i) h2,m(i) . . .
hN,m(i)]T, m = 1, . . . , M , represent the channel coefficients
from the mth transmit antenna to all N receive antennas.
Each element of H(i) is a zero-mean complex Gaussian ran-
dom variable of unit variance. In the discrete-time channel
formulation adopted above, the fading process is piecewise
constant approximated in each symbol interval. It is assumed
that the temporal variations of the fading processes hn,m(t) are
such that the piecewise-constant, discrete-time approximation
is valid. The nth component of r(i) represents the received
signal from the nth receive antenna and is expressed as rn(i) =∑M

m=1

√
Eshn,m(i)sm(i) + νn(i). Let us assume that Ĥ(i −

L), . . . , Ĥ(i − 1), estimates of H(i − L), . . . ,H(i − 1), and
ŝ(i − L), . . . , ŝ(i − 1), estimates of s(i − L), . . . , s(i − 1),
have been obtained. At the beginning of the transmission,
these channel coefficients could be obtained by using pilot sym-
bols. In the proposed channel estimation and data detection
scheme, H(i) is obtained using Ĥ(i − L), . . . , Ĥ(i − 1) and

ŝ(i − L), . . . , ŝ(i − 1). Then, s(i) is detected using Ĥ(i). Af-
ter that, Ĥ(i − L + 1), . . . , Ĥ(i) and ŝ(i − L + 1), . . . , ŝ(i)
are used to estimate H(i + 1). Periodic pilot blocks can be
inserted in the data stream to improve estimation quality and
to stop error propagation when the receiver is operating in the
DD mode.

III. CHANNEL ESTIMATION AND DATA DETECTION

A. DD MAP Channel Estimation

Due to interantenna interference, it is impossible to solve for
Ĥ(i) based on the received signal model given in (3), even if
an estimate of symbol vector s(i) is available. Let us assume
that estimates of previous symbols ŝm(i − L), ŝm(i − L + 1),
. . . , ŝm(i − 1) and channel coefficients in previous sym-
bol intervals ĥn,m(i − L), ĥn,m(i − L + 1), . . . , ĥn,m(i − 1)
have been made. To estimate hn,m(i), m = 1, . . . ,M , n = 1,
. . . , N , we consider a sliding-window approach in which
ĥn,m(i) is derived from the received signals r(l), l = i −
L, . . . , i − 1, and symbol decisions within a window of L
symbols preceding the current symbol. Specifically, yn,m(l) is
constructed as

yn,m(l) =


rn(l) −

M∑
k=1
k �=m

√
Esĥn,k(l)ŝk(l)




ŝm(l)
m = 1, . . . , M, n = 1, . . . , N,

l = (i − L), (i − L + 1), . . . , (i − 1). (5)

Note that the nth element of r(l), rn(l), consists of the desired
signal, the interantenna interference, and a noise term. Ideally,
if the channel is noiseless, feedback symbol decisions are
correct, and channel estimates are perfect, then yn,m(l) in (5)
equals exactly

√
Eshn,m(l), the desired component needed for

the DD channel estimation. In a practical time-varying fading
environment, there will be decision and channel-estimation
errors, and yn,m(l) does not perfectly represent the desired
signal component

√
Eshn,m(l).

Let us define an L × 1 vector ynm(i, L) and an (L + 1) × 1
vector x(i, L) as

ynm(i, L)=[yn,m(i−L) yn,m(i − L+1) · · · yn,m(i−1)]T

(6)

x(i, L) =
[

ynm(i, L)
hn,m(i)

]
. (7)

The covariance matrix of zero-mean vector x(i, L) can be

written as F x = E{x(i, L)xH(i, L)} =
[

F x11 fx12

fx21 fx22

]
,

where (·)H denotes conjugate transpose and

F x11 = E
{
ynm(i, L)yH

nm(i, L)
}

(8a)

fx12 = E
{
ynm(i, L)hH

n,m(i)
}

(8b)

fx21 = E
{
hn,m(i)yH

nm(i, L)
}

= fH
x12 (8c)

fx22 = E
{
hn,m(i)hH

n,m(i)
}

. (8d)
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Fig. 1. The DD MAP channel predictor for MIMO systems.

Given the availability of ynm(i, L), the estimate of hn,m(i)
can be obtained by maximizing its conditional-probability den-
sity function p{hn,m(i)|ynm(i, L)} as

ĥn,m(i) ∆= max
hn,m(i)

p {hn,m(i)|ynm(i, L)} . (9)

For the Rayleigh channels being considered, the (L +
1) × 1 vector x(i, L) is complex Gaussian.1 Therefore, the
conditional-probability density function can be written as

p {hn,m(i)|ynm(i, L)}

=
p {ynm(i, L), hn,m(i)}

p {ynm(i, L)}

=
1

πL+1|F x| exp
[−xH(i, L)F−1

x x(i, L)
]

1
πL|F x11| exp

[−yH
nm(i, L)F−1

x11ynm(i, L)
] (10)

where | · | denotes the determinant of a matrix. By using the
matrix-inversion lemma [14], F−1

x is expressed as

F−1
x =

[
F x11 fx12

fx21 fx22

]−1

=
[

F xi11 fxi12

fxi21 fxi22

]
(11)

where

F xi11 =
(
F x11 − fx12 f−1

x22fx21

)−1
(12a)

fxi22 =
(
fx22 − fx21F

−1
x11 fx12

)−1
(12b)

fxi12 = − F xi11 fx12 f−1
x22 (12c)

fxi21 = − fxi22 fx21F
−1
x11. (12d)

1Under normal-operation conditions, there will be occasional erroneous
decisions on previously sent symbols ŝm(l). However, a decision error does not
affect the Gaussian distribution of x(i, L). This is because both the channel and
noise components are zero-mean complex Gaussian (Rayleigh magnitude and
uniform phase between 0 to 2π) and a feedback-decision error only introduces
a rotation to the phase of the channel coefficient and noise component of
yn,m(l).

Note that F x and F x11 are fixed, and thus, independent of
x(i, L). Therefore, maximizing the conditional probability den-
sity function is equivalent to minimizing the following qua-
dratic function:

λ = xH(i, L)F−1
x x(i, L) − yH

nm(i, L)F−1
x11ynm(i, L). (13)

By letting the conjugate derivative of λ with respect to
hn,m(i) be equal to zero, we obtain the DD MAP estimate of
hn,m(i) as2

ĥn,m(i) = wHynm(i, L) (14)

where w = (fx21F
−1
x11)

H is the L × 1 tap-weight vector. This
procedure needs to be done for all elements of H(i) to form
the estimated channel matrix Ĥ(i). Because all elements of
H(i) are identically distributed, tap weight w is common for
all coefficients (any combination of n and m). If significant
changes in the channel statistics (e.g., the Doppler shift) have
occurred, however, fx21 and F x11 (and thus w) must be
updated to reflect such changes.

The DD MAP channel-prediction procedure is illustrated in
Fig. 1. When applied to the special case of a single-antenna
system, the channel estimate derived in this paper is similar
to the linear minimum mean-square error (MMSE) estimate
[4], [6]. The tap weight is the same, but the MAP predictor
estimate derived in this paper combines previous received sig-
nals scaled by the corresponding symbol decisions that form
ĥn,m(i), whereas the MMSE estimate given in [4] and [6]
combines estimates (e.g., obtained via an ML approach) of past
channel trajectory up to time i − 1.

2Because received signals and decisions of symbols in previous symbol
periods are used to predict the current channel state, the scheme derived is
actually a channel predictor. Although the term “channel estimation” is usually
used to broadly refer to the procedure from which the channel state is obtained
through either prediction or estimation [4], it is more precise to describe the
ĥn,m(i) derived in this paper as a “predictor channel estimate,” a term adopted
in [5].
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B. Detection

Given the received signal in (3), s(i) can be detected using
several algorithms, such as the ML detection [15], [16], MMSE
detection, ZF detection [17], [18], and the Bell Labs layered
space–time architecture (BLAST) scheme [19], [20]. The ZF
scheme has the lowest complexity and supports orthogonal-
matrix triangularization (QR decomposition) implementation.
Moreover, at high signal-to-noise ratios (SNR), performance of
the ZF scheme approaches that of the MMSE scheme. For these
reasons, the ZF scheme will be adopted in this paper for data
detection.

In the ZF scheme, the decision vector for the M spatially
multiplexed symbols in the ith interval is written as

β(i) = Ĥ+
(i)r(i) (15)

where (·)+ denotes the pseudoinverse. Because we consider an

overdetermined system (N ≥ M), Ĥ+
(i), omitting symbol

index i, can be calculated as Ĥ+
= [ĤHĤ]−1ĤH

. If channel
estimates are perfect (i.e., Ĥ = H), then β(i) =

√
Ess(i) +

ξ(i), where ξ(i) = H+(i)ν(i) is the noise component after the
ZF operation.

IV. NUMERICAL EXAMPLES AND DISCUSSION

For all numerical examples, binary phase-shift keying
(BPSK) with a data rate of Rb = 1 Mb/s is chosen. Bit deci-
sions for the BPSK system are obtained by slicing the real
part of β(i) given in (15) as ŝ(i) = sgn{�[β(i)]}, where �(·)
denotes the real part. The Doppler shift is calculated based
on a center frequency fc = 2.0 GHz. Fading processes among
all transmit and receive antennas are assumed independent
and identically distributed; their first- and second-order sta-
tistics do not change over the entire transmission horizon.
Although the proposed DD MAP scheme does not require
periodic pilot bits in principle, errors introduced in applying
(5) will accumulate over bits. Therefore, periodic pilot bits
are added, but with a large block length of K = 600 bits,
unless explicitly specified otherwise. Let P (M ≤ P � K)
represent the number of pilot bits in each pilot period. For
small values of P , the fading rates of interest are such that
the channel remains approximately constant during one pilot
period. The received signals in the pilot period are written in an
N × P matrix as Y p = [r(1)r(2) · · · r(P )] = HpSp + V p,
where r(p) was given in (3), Hp is the channel coefficient
matrix in the pilot period, Sp = [s(1)s(2) . . . s(P )], and V p =
[ν(1)ν(2) . . . ν(P )]. Hence, channel estimates in the pilot pe-
riod are obtained as Ĥp = Y pS

+
p .

Memory depth (window length) L for the DD MAP chan-
nel predictor affects the error performance. Fig. 2 shows the
bit-error rate (BER) versus bit-energy-to-noise-density ratio
(Eb/N0) curves of a (2, 3) system with different values
of L. The maximum Doppler shift is fd = 74 Hz ( fdTb =
7.4 × 10−5), which is obtained based on a vehicular speed
of v = 40 km/h. BER curves shown are for memory depths
of L = 3, 5, 7, and 9. For comparison purposes, the error-
rate curve with perfect channel estimates is also shown in

Fig. 2. BER versus Eb/N0 with different memory depth L.

Fig. 3. BER versus Eb/N0 for a different number of transmit and receive
antennas.

the aforementioned figure. With the set of system parameters
applied, error performance improves significantly when L in-
creases from 3 to 7. However, when L increases to over 7,
performance improvement is negligible. With L = 9 and other
parameters adopted for a target BER of 10−3, the proposed
scheme performs approximately 2.5 dB worse than the case
when all coefficients of the matrix channel are perfectly known
to the receiver.

Since channel estimation depends on the accuracy of inter-
antenna interference cancellation using (5), it is expected that
the performance will degrade when the number of transmit
antennas increases. Fig. 3 shows the BER versus Eb/N0 curves
with L = 7 and (N,M) = (2, 2), (2, 3), (3, 3), and (3, 4).
Other parameters applied are the same as adopted for Fig. 2.
Under ideal conditions, the ZF detection should yield the same
error performance for cases of (M,N) = (2, 2) and (M,N) =
(3, 3), if the received signal energy per symbol per antenna is
the same [21]. With actual channel estimates, it is observed
that a (3, 3) system performs worse than a (2, 2) system.
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Fig. 4. BER versus Eb/N0 with different fading rates.

Fig. 5. Performance comparison of the proposed scheme and the scheme with
the channel treated as block fading.

The fading rate quantified by the Doppler shift affects the
performance of any channel-estimation schemes. If channel
phase and magnitude remain constant over a number of bits,
accurate channel estimates are possible. As the fading rate
increases, estimation quality deteriorates. Fig. 4 shows BER
versus Eb/N0 curves of a (2, 3) system with L = 7 and v = 30,
50, and 70 km/h. Performance degradation from v = 30 km/h
to v = 50 km/h is considerably less significant than that from
v = 50 km/h to v = 70 km/h.

The rationale behind the quasi-static fading model is that
the channel remains approximately constant over one block of
data. If this were true, a simple method would be to apply the
channel estimates obtained using pilot symbols embedded with
data for data detection in the whole block. This scheme may
not work well when the system is operating over a time-varying
fading channel. Fig. 5 compares the performance of a (2, 3)
system employing the proposed scheme with that of the scheme
based on the quasi-static fading model described above. Fading
rate is calculated based on v = 50 km/h and block lengths of

K = 400, 700, and 1000 are evaluated. The proposed scheme
performs worse in the low Eb/N0 region (high BER values),
but the scheme based on the quasi-static model reaches an error
floor between 10−2 to 10−3 with the set of system parameters
applied. The major factor causing this behavior of the proposed
scheme in the low Eb/N0 region is that higher error rates result
in worse estimates of ynm(i, L).

V. CONCLUSION

A DD MAP channel-estimation scheme for symbol-by-
symbol detection in MIMO systems has been derived. This
scheme has low complexity and can be applied to time-varying
Rayleigh fading channels with an arbitrary spaced-time corre-
lation function. Numerical results indicate that a long memory
depth is unnecessary for a system to work well. The channel-
estimation quality deteriorates as the number of transmit an-
tennas increases. The fading rate seems to have a high impact
on system performance, and the proposed scheme is more ap-
propriate for channels with low to medium normalized Doppler
shifts. Large block length between adjacent pilot blocks can be
deployed with the proposed scheme. This results in minimum
overhead for pilot symbols. The scheme based on the quasi-
static channel model may reach an error floor whereas the
proposed scheme works very well at high Eb/N0 values.
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