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1 Introduction

Advances in low-power digital integration and
Micro-Electro-Mechanical Systems (MEMS) have paved
the way for micro-sensors (Akkaya and Younis, 2005;
Akyildiz et al., 2002; Katz et al., 1999; Min et al., 2001;

Rabaey et al., 2000). These sensors are equipped with
data processing capabilities along with sensory circuits.
Sensor data are processed on these individual sensors and
transmitted to the target (sink). Low-cost integration and
small sizes of these sensors have generated special interest
in the area of disposable-sensors. These are randomly
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deployed, infrastructure-less, data-centric sensors that cannot
be charged or replaced. Queries to these sensors are addressed
to nodes which have data satisfying the same condition. These
disposable sensors find their uses in the areas of disaster
recovery, target identification, reconnaissance, medical
applications (Celler et al., 1994), defence applications
(Marcy et al., 1999) and intrusion detection, etc. However,
these sensors are constrained in energy, bandwidth, storage
and processing capabilities. Large number of such sensors
along with these constraints creates a sensor-management
problem. At the network layer it amounts to setting up the
energy-efficient route that transmits the non-redundant data
from source to the sink in order to maximise the battery
(and sensor’s) life. This is done while adapting to changing
connectivity due to failure of some nodes and new nodes
powering up.

Clustering of a network to minimise the distance is an
NP-hard problem (Fudenberg and Tirole, 1991; Pardalos
and Wolkowicz, 1994). In this paper we develop an
evolutionary algorithm (Goldber, 1989) that divides the
randomly deployed sensors into an optimal number of
independent clusters with Cluster-Head (CH) and optimal
route. CH collects data from those sensors that belong to the
cluster and sends them to the sink in a compressed manner
via the most cost-effective route. It is assumed that while the
sensors may be deployed in a non-hospitable environment,
the sink is a stationary component that is located at a safe
location.

Genetic Algorithm (GA) is a stochastic search technique
that mimics the natural evolution proposed by Charles
Darwin in 1858. GA has been successfully applied to a wide
range of combination problems. They are particularly useful
in applications involving design and optimisation, where
there are a large number of variables and where procedural
algorithms are either non-existent or extremely complicated.

In this paper, we undertake energy-efficient
sensor-network design using GA approach. Deployment
of this network can be done, for example, by dropping
a large number of disposable Sensor Nodes (SNs) in a
random fashion. The goal is to develop a long-lasting sensor
network containing nodes with non-renewal and limited
energy resource. To achieve this goal we discover clustered
topology with optimal routes to the sink. These clusters have
the ability to fuse the collected data at the CH, which are then
routed to the sink using one or more hops. Therefore, GAs
are designed with two objectives:

1 discover the optimal clusters with cluster members and
CH and

2 discover low-cost path to the sink using one or more
hops.

2 Proposed GA solution

The system consists of an initialisation module and an
adaptation module. The initialisation module helps in coding
of gene for each sensor. This gene contains the identification
of each sensor and any other specific information. This
information may be related to sensor objectivity, next-
hop, cluster-domain, etc. The initialisation module also

initiates temporary clusters of the sensors with a domain
identification and CHs. The adaptation module is responsible
for cluster adaptation and load adaptation. Cluster adaptation
is responsible for creating accurate cluster boundaries due
to addition, deletion or modified sensor objectives. Load
adaptation is responsible for creating optimal routes from
CHs to the sink. Adaptation modules are governed by a
fitness function that is specific to the network objective in
a load-balanced network. It prevents the flow of redundant
information while maximising the network bandwidth usage
and battery life.

It is interesting to note that two competing objectives are
required to create an energy-efficient sensor network. While
cluster membership will keep on changing because of dead or
depleted nodes, routes to sink will keep on changing to avoid
high-cost paths (like multiple clusters using the same CH to
route the data to the sink). Therefore, we use Multiobjective
GAs (MOGAs) (Horn et al., 1994). Simple GA converges to
a single solution. In problems where there are several, often
conflicting objectives, a MOGA is used which evolves a set
of solutions (the population) towards the Pareto-optimal front
where trade-off analysis can be performed to select a suitable
solution.

2.1 Node selection chromosome representation

The chromosome of the GA contains all the building blocks to
a solution of the problem at hand in a form that is suitable for
the genetic operators and the fitness function. Each individual
SN is represented by a 3-bit binary number called ‘gene’.
These three-bit genes which define the feature of the node
are called ‘allele’ and are represented as follows:

000 – Node Inactive (powered off).

001 – Node chosen as CH.

010 – Node chosen as Inter-Cluster Router (ICR).

100 – Node chosen as Sensor (NS).

Each cluster is represented by a CH and cluster-members
are represented by inactive/active sensors and ICRs. CH is
responsible for data-fusion from various node-sensors and
ICR is responsible for routing cluster data (from CH) to the
sink.

For example, in a 25-node system, the number of bits
required to represent the complete system would be 3×25 =
75. Therefore, the size of the string would be 60-bits. For the
scenario shown in Figure 1, this string likes as follows:

100 000 001 100 001 100 100 100 001 100 100 001 100

100 100 000 001 100 100 001 010 010 010 010 010

Upon completion of the GA, a function is assigned to each
node. Once the functions are assigned, each type of nodes
then performs the following functions:

2.1.1 Inter-cluster routers

a Each router starts listening to ‘sink’ or ‘Lx router’,
where x = 0, 1, 2, . . ., represents the number of hops
between sink and itself.
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b Each router finds out the next-hop energy requirements
to the sink and/or Lx routers that it can listen to by
exchanging data and bounds checking. This step also
involves exchanging a conflict-free Proximity Unique
ID (PUID) with other neighbouring routers (Section 3).

c Each router temporarily designates itself as Lx, where
x = 0, 1, 2, . . ., based on the next hop it sends the
data to. L(x) can send data to only an L(x − 1) that is
closer to the sink.

d Each router then sends the neighbouring routers (and/
or sink) information (from step-b) to the sink using the
temporary router chosen in step-c.

e Upon cost-analysis using a parallel GA, the sink will
designate a primary and fail-over path to each router
and send this information using the node it received that
information from. This is a periodic process that repeats
at a pre-defined interval.

f Lx routers will update its next-hop information by
replacing the temporary next-hop with that provided
by the sink. Lx routers will receive this information
periodically from the sink.

g Lx routers will start advertising (router advertisement)
its presence with the cost of using this path at regular
intervals. This cost is evaluated using the following
metrics:

i average data flowing through this router (dynamic)

ii energy requirements to reach next hop (static).

h Average cost of using the next-hop (static) Lx routers
will trigger an attention message when the battery
reaches an attention state (battery condition in
quantized steps). This attention message is carried to
the sink using the current path (updated in step-f).
The sink will use this message as a trigger point
for re-configuration and running a new instance of
node-selection GA. In the new instance, the
failing node is permanently marked ‘Powered
Off (000b)’.

2.1.2 Sensor nodes

a Each SN starts listening to the available
(CH advertisement).

b Each SN will calculate the cost of communicating with
the available CHs.

c Each sensor will attach to a CH based on the cost as
calculated in step-b and become the part of that cluster.
This step also involves receiving the unique PUID from
the CH (Section 3).

d Each sensor will update the chosen CH with the sensor
data. These data include the SN-CH cost of all CHs it
evaluated in step-b.

e SN will trigger an attention message when the battery
reaches an attention state (battery condition in
quantised steps). This attention message is carried to

the sink using the CH (step-b). Sink will use this
message as a trigger point to reconfiguration and
running a new instance of node-selection GA.

Figure 1 SN clustering. Each node is assigned function as a
result of GA and the resulting chromosome structure.
For the example below, chromosome structure is 100
000 001 100 001 100 100 100 001 100 100 001 100
100 100 000 001 100 100 001 010 010 010 010 010.
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2.1.3 Cluster head

a Each CH starts CH advertisement to invite nodes (SN).

b Each CH sends the NS-ICR data received from the
sensors to the sink.

c Each CH listens to the router advertisement and selects
the ICR en-route to the sink. This step also involves
receiving the unique PUID from the ICR (Section 3).

d These CHs can participate in data fusion. The resulting
information is then communicated to the sink using the
selected router. Sink returns back the Application
Unique ID (AUID) (Section 3) to the CH during the
set-up (or reinitialisation) phase.

2.1.4 Sink

Sink is an entity where all the event data collection and
dissemination take place. This information is then processed
for sensor related functions.

Sink also receives the statistical and status information
from routers and CHs. This information is processed in the
following manner:

a It collects the information regarding valid router-router
(ICR-ICR) communication. This information includes
energy requirements for communication and the
corresponding Globally Unique Identification Number
(GUID).

b It evaluates the average data that pass through each
router by processing the data received by the sink
(from SN).
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c It evaluates the cost of NS-CH communication for
all valid links. This information is passed by the CH
during the setup-operation.

d It allocates an application specific AUID (Section 3) to
the CH to uniquely identify the message trace.

e Listens to any alert message (battery conditions).

f Performs a GA to evaluate the optimal route using the
fitness function based on parameters obtained in steps a
and b. This is triggered based on periodicity or an alert
event.

g Performs a GA to designate functional unit to each
node using the fitness function based on the parameters
obtained in step-c. This is triggered based on alert event.

2.2 Route selection chromosome representation

Route-selection GA uses a different chromosome structure
than that used in node-selection GA. Characteristics of route-
selection chromosomes are given as follows: Each node (CH
and ICR) is represented by log2(N) bits, where N is the
maximum number of ICR nodes that can be reached by this
node. Hence an individual in this case is represented by a
string that consists of all such nodes with representation to the
next ICR. For example, (0010) (0010) (001) (010) represents
R12, R22, R31, R42 connections, where Rxy are the yth route
of the xth node (Figure 2).

Figure 2 Chromosome structure of the route. For example, for
nodes 1,2,3,4, chromosome string is represented by
(0010) (0010) (001) (010); for node 1, route 2 is
selected that connects to ICR 4; for node 2, route 2 is
selected that connects to ICR 5; for node 3, route 1 is
selected that connects to ICR 6
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2.3 Node selection fitness function

The node selection fitness function is a weighted function
that measures the quality or performance of a solution,
in this case a specific sensor network design. This function is
maximised by the GA system in the process of evolutionary
optimisation. A fitness function must include and correctly
represent all or at least the most important factors that affect
the performance of the system. The major issue in developing
a fitness function is the decision on which factors are the most
important ones. We use the following measure.

2.3.1 Coverage fitness

A SN has an objective to maximise the blanket coverage
where the objective is to maximise the total detection
area. In many applications of sensor networks, the
number of neighbouring nodes plays an important role.
If the network is to be connected, the number of neighbours of
each node needs to grow at �(log n), where n is the number
of nodes in the network (Xue and Kumar, 2004). Based on
the density of deployment ρ, each node will have at least K

neighbours and optimal isotropic communication range (Rc)
with its neighbours (SNs and CHs) (Poduri and Sukhatme,
2004). Coverage Fitness (CF) depends on the percentage of
nodes that have atleast K neighbours.

CF =
∑

i

(
min

(
1,

Ni

K

))
(1)

where Ni is the number of fully connected SNs in cluster i.

2.3.2 Cluster-head fitness

SNs connected to each CH should be uniformly distributed.
This prevents CH overloading. Cluster-Head-Fitness (CHF)
defines the fitness based on the uniformity of the SNs and
CHs:

CHF = 1 − min

(
1,

(∑
n

|ρn − ρ|
ρ

)
/N

)
(2)

where n is the CH number, N is the number of CHs in the
system, ρn is the number of nodes attached to this CH and
ρ is the average number of nodes per cluster in a system
calculated as

ρ = Total SNs

Total CHs
(3)

Any cluster consisting of more than ρ SNs will be penalised.

2.3.3 Node communication fitness

A node needs power p to communicate with another node
that is d distance away. The power required to communicate
with the CH can be computed using the path loss expressed
as (Li et al., 2001)

PL(d) = PL0 + 10µ log10

(
d

d0

)
+ S (4)

where d is the distance between the sensors, d0 is a reference
distance typically chosen as 1m for sensor networks, PL0 is
the path loss at the reference distance d0, µ is the path loss
exponent, typical in the range of 2−4 and S is a zero-mean
Gaussian random variable that gives the deviation in path loss
from its average value.

For example, SNs calculates these values p by responding
to CH advertisements that it can listen to during setup-
operation. These values are then sent to the sink via a
temporary low-cost path chosen by the SN during the set
up phase. The Node Communication Fitness (NCF) function
is obtained as

NCF=1−min

⎛
⎝1,

∑
i

∑
j

(
max

(
0,

pij − pt

pt

))/
N

⎞
⎠ (5)
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where pij represents inter-node communication energy
relationship (as measured by individual SN), pt represents
energy threshold, and N is the number of SNs in the system.

2.3.4 Battery status fitness

Anytime SN communicates with the CH or CH communicates
with ICR, there is a penalty paid in terms of battery usage.
Battery is also consumed during the sensing operation or
other related functions. Each node alerts the sink about its
battery status (Q) when it crosses the quantised limit (or
thresholds). These thresholds will be used to penalise the
use of those nodes for operations that consume more battery
power. Penalty for using the node with a low battery capacity
depends upon the type of node and its usage. For example, a
node with low battery capacity will have a greater penalty for
ICRs than the CH. Similarly CH will have a greater penalty
than the SN. Therefore penalty suffered by each node depends
upon the battery status and the type of node assignment. The
battery status fitness function is expressed as

BF = 1 − F(Q, Node Type) (6)

where F(·) is the penalty with 0 ≤ F(Q, Node Type) ≤ 1.

2.3.5 Router load fitness

ICRs participate in routing the traffic originating from CHs
or other ICR to the sink. Routers are penalised if they cater
to more than the average number of CH and ICR. This avoids
overloading routers. The Router Load Fitness (RLF) function
is expressed as

RLF = 1 −
∑

n

|�−�n|
�

N
(7)

where n is the ICR index, N is the number of ICR in this
system, and � and �n are given as

� = Total (CH + ICR)

Total ICR
(8a)

�n = Connected CH + ICRCostn (8b)

where ICRCostn (nth ICR) is updated as a result of GA
function (part of MOGA) that evaluates the cost of using
a router using route selection fitness function (Section 2.4).

2.3.6 Sensor effector fitness

Sensor Effector Fitness (SEF) is the fitness measure that
interprets the power consumed by the sensory action of
clusters. The net effect of SEF is to rearrange the SNs so that
the sensor data transmission is uniformly optimised by fusion,
elimination or compression methods. Similar packets from
multiple nodes can generate large amount of redundant data
that can be aggregated to reduce transmissions. Aggregation
is done by clustering or reclustering the nodes in order to
perform data aggregation to save energy and is influenced by
the following factors:

a Eliminating the duplicate data within the cluster
(Heidemann et al., 2001). Furthermore, the sensor

generating the duplicate data transitions to a
low-duty-cycle state based on a leaky bucket
hurestics.

b Compressing the data by fusing the correlated
information within the cluster. This operation is
performed by the CH that also updates the SN’s
spatial or temporal policy parameters.

c Compressing the data by correlating the information
across the clusters. Wirelessly transmitting and
receiving bits is the most energy consuming operation
done by the nodes; therefore, by reducing the amount of
bits that must be sent can significantly extend their
lifetime (Chou et al., 2002). Mechanisms such as
Slepian-Wolf Distributed Source Coding (DSC) (Cover
and Thomas, 1991) can compress the content at the
original sources in a distributed manner without explicit
routing-based aggregation. This operation can only be
performed using the sink mediation. Sink identifies the
extent of correlation and updates the CH with new NS
policy coding parameters. CH then applies these coding
parameters to the respective NS in the associated
cluster. This operation is performed using a
predetermined update timer to avoid excessive
transmissions from the sink while helping to adapt to
the changing correlations. Higher inter-cluster
correlations introduces extra communication overhead
for mediated traffic (Figure 3).

d Reducing the data globally by eliminating the duplicate
paths, turning off the sensors with high degree of
redundancy or simply reclustering.

Figure 3 An example of DSC, where an object is monitored
from two SNs encapsulated across different clusters.
Coding parameters are exchanged with the help of the
sink that also monitors the correlation between packets
arriving from different clusters. This also introduces
the transmission overhead on intermediate routers and
CHs
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It is possible with certain probability that sensors which
belong to the different clusters may have high degree of
correlation. This can cause redundant information to traverse
through CH and ICR to the sink. The degree of correlation
is calculated by analysing the historical data from the SN.
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This analysis is done in spatial, temporal or spatio-temporal
domain. Such analysis will rank the sensor based on the power
usage for sensory functions. NS power usage depends on the
following factors:

a Degree of correlation within local sensors.

b Degree of correlation between CHs carrying the fused
data.

c Compression credit that reduces the redundancy
in the information with some overhead. This overhead
is calculated by measuring the extra information
carried as side-bands or additional communication
required to convey the compression parameters to the
NS. Various compression schemes are addressed by
Goel and Imielinski (2001) and Lindsey and
Raghavendra (2002).

By exploiting the redundancy between various sensors in
spatial, temporal or spatio-temporal dimensions, the average
energy consumption per cluster can be optimised greatly. This
energy has to be uniformly distributed among clusters. For
example, a cluster allocated on the blind side of the sensory
environment may not have much use as a SN. Sensors in that
clusters may very well belong to a different clusters and be
used as a CH or an ICR.

SEF=λ1

⎛
⎝1 −

(∑
j

min

(
1,

|∑i (Eij ) − Eavg|
Eavg

))
/N

⎞
⎠

+ λ2

⎛
⎝1 −

(∑
j

∑
i

(
IijHij /Hmax

))
/M

⎞
⎠ (9)

where Eij is the average sensory power consumption of the
ith SN in j th cluster, Eavg is the average sensory power
consumed by all clusters, N and M are the total number of
clusters and SNs, respectively, Hij is the number of hops
between j th cluster and the sink, Hmax is the maximum
number of hops possible in the SN, Iij = 1 if SN i of cluster
j is correlated with another SN in a different cluster and
Iij = 0 otherwise. λ1 and λ2, which satisfy λ1 + λ2 = 0.5,
are the contributions to the SEF fitness due to sensory power
consumption and overhead traffic, respectively.

2.3.7 Total node fitness

Total Node Fitness (TNF) is the final fitness that is evaluated
in the GA for the appropriate node assignment. It is described
by

TNF = α1CHF + α2NCF + α3BF + α4RFL +
α5SEF + α6CF (10)

where α1 +α2 +α3 +α4 +α5 +α6 = 1 and αi depends upon
the relative significance of the component. These values can
be made adaptive using an external heuristics.

2.4 Route selection fitness function

The second objective of the MOGA is to generate balanced
routes based on node allocation using GA based on node

fitness function. During setup-operation, both CHs and ICRs
start sending the data on the most cost effective ICR. It
is not guaranteed that the set-up connection will remain
cost-effective over a period of time. GA predicts the optimal
route topology based on the cost of using an ICR for the
next sampling period. CH and ICR are updated with this
information in each sampling period. Route fitness function
takes into account the traffic patterns, battery capacity and
transmission energy. This is accomplished because of the
following properties of the sink:

a It is aware of the static routes that are either formed
during the setup operations or updated during GA
operations during a sampling period. This will help GA
evaluate average load on each router (since destination
of all communication is the sink).

b It is aware of the amount of data (bits) received from
each cluster which then traverse through a static routes
as in (a).

c Each ICR updates the sink of its battery capacity as
soon as it crosses a threshold value.

d It is aware of the energy-cost of transmission to its
nearest neighbours. This is proportional to the distance
between ICH and its next hop (or sink). This
information is sent by the router during the
set-up phase.

Based on the predicted optimal route fitness, the sink will
update the cost of using this ICR for the next sampling period.
The Total Route Fitness (TRF) is given by:

TRF=BF + NCF +
(∑

k

((max(ICR(j, k))

− Curr(ICR(j, k)))/ max(ICR(j, k)))

)
/N (11)

where

ICR(j, k) = Average bit-rate handled by ICR j that can

communicate with node k (CH or ICR)

max(ICR(j, k)) = ICR with the highest bit-rate that can be

communicated by node k

Curr(ICR(j, k)) = Current ICR that has been designated to

communicate with node k

N = Total number of nodes (CH and ICR)

BF = Battery Fitness (BF) of the router in

question

NCF = Node (CH-ICR or ICR-ICR)

communication fitness

ICRCostn =1 −
(∑

k

((max(ICR(j, k))−

ICR(j = n, k))/ max(ICR(j, k)))

)
/M

where k = all the nodes that can communicate with ICR n.
For example in Figure 4, for ICR-2, k = {CH1, CH2, CH3,
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ICR1, ICR3}, M equals the total number of k nodes that can
communicate with ICR n; for ICR-2, M = 5.

Figure 4 Sample output of the route-selection GA. Thick lines
represent the low-cost selected route. Dotted lines
represent other possible routes, but with higher relative
cost (lower fitness). As the system conditions change,
low-cost routes can become high-cost routes and vice
versa. There is a high likelihood that ICR 3 may turn
out to be a high-cost path if CH 2 becomes highly
active
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2.5 Node selection GA

Now that we have defined a node selection fitness, we can
design the GA for node-selection that can be represented with
the following steps using the GA operators. The process of
GA takes place in the sink (or a similar centralized identity).
This algorithm repeats itself upon multiple triggers. These
triggers are related to battery alert, deteriorating route fitness
alert, periodic action. Once the optimal fitness is achieved,
the topology corresponding to that fitness is committed and
the sensors are instructed to assume the new functions by
relinquishing the old functions.

a Initial population: initial chromosomes strings are
seeded partially randomly using a Random Number
Generator (RNG) and partially using population of
previous samples. Population uses the gene structure as
defined in Section 2.1. This population is coded with
gene structure as defined in Section 2.1.

b Evaluation: each chromosome string is evaluated for
the fitness using the TNF function (for node
assignment) as defined in Section 2.2.

c Reproduction: reproduction is a process in which
individual strings are copied according to there fitness
function values, which also means that individuals with
larger fitness value will have a higher probability of
contributing an offspring in the next generation. The
algorithm uses the standard weighted roulette wheel
method to select n individuals for reproduction to the
mating pool. Since the TNF defines the fitness value,
the chromosome with the highest fitness value means
represents a better chromosome to take part in
reproduction. N chromosomes will again be reproduced
from the n chromosomes selected for reproduction

using a crossover probability. During reproduction, we
choose multiple cross-over points. Cross-over points
and the locations are calculated using an RNG. As in
this example, two chromosome strings having three
random cross-over points will create a resultant
chromosome after cross-over as below:

Parents:

100 000 001 100 001 100 100 100 001 100 100 001 100
100 100 000 001 100 100 001 010 010 010 010 010
100 010 010 100 100 010 100 010 001 001 001 001 010
001 001 000 100 010 001 100 010 000 001 100 010

Children:

100 000 001 100 001 010 100 010 001 001 100 001 100
100 100 000 001 010 001 100 010 000 001 100 010
100 010 010 100 100 100 100 100 001 100 001 001 010
001 001 000 100 100 100 001 010 010 010 010 010

d Mutation: newly reproduced N chromosomes are
transferred to the mutation pool. The mutation operator
mutates chromosome in the mutation pool according to
mutation probability which will make it adaptive. We
will choose a maximum mutation probability pm. In
any generation, mutation probability will be inversely
proportional to the average fitness of the standard
number of population in any generation. Therefore

pg = pm1 − (N × TNFavg)

TNFtotal
. (13)

Mutation function uses function flip (toss of a coin) to
decide whether to invert the bit or not.

e Selection: finally N chromosomes are chosen out of 2N

chromosomes according to their fitness values. These
chromosomes are carried over to the next generation.
2N chromosomes consist of N parent chromosomes
and N children.

2.6 Route selection GA

Route selection GA is similar to the node selection GA
with the following exceptions and an extra trigger point.
This algorithm repeats itself at a regular interval to ascertain
the acceptable thresholds of route-loads during the constant
usage of the sensor-system.

a Initial population: initial population is chosen partially
randomly using an RNG and partially using population
of previous samples. Population uses the gene structure
as defined above.

b Evaluation: each chromosome is evaluated for the
fitness using the TRF function (for route selection) as
defined in Section 2.4.

c Node selection trigger point: route-selection GA keeps
on making attempts to achieve the most cost-effective
path for a given topology (as selected in node-selection)
in which there can be multiple paths. At certain point
certain fitness threshold is reached beyond which
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further conversion to higher fitness may not be possible.
This condition can happen due to battery condition
and bad node assignments. This will cause a
node-reassignment alert, which in turn will cause
the node-selection GA to run again with changed
conditions.

As seen above, the route selection can sometimes act as a
resisting factor for the node-selection. While nodes may have
been assigned the functions based on a high fitness factor, it
may not be suitable for routing the packets in a multihop
system. This will cause a reconfiguration (running route
selection GA) again until both objectives reach an acceptable
convergence point. This is a dynamic process and keeps on
repeating over the life-time of the system.

3 Naming convention

Naming convention is an important ingredient of the sensor
network system architecture. An optimal naming convention
will reduce the messaging overhead as well as facilitate
collaborative signal processing. Each sensor supports three
types of naming conventions:

a Globally Unique Sensor ID is the uniquely identifiable
node identification number that is hard-coded in the
sensor hardware. This ID is used during the set-up
phase (or reinitialisation phase).

b PUID is the unique identification of the nodes
contained within the neighbourhood of a cluster (NS ID
, CH ID, and ICR ID). This ID is used among the
neighbouring nodes for link-layer data exchange and
collaborative signal processing. These IDs are allocated
dynamically in the following manner:

i ICR(s) self-allocate its own PUID during the set-up
(or reinitialisation) phase that involves negotiation
between the neighbouring ICR(s). This ID is used
for ICR-ICR link-layer forwarding and not
contained in the message header.

ii CH(s) receives its PUID from ICR(s) during the
CH-ICR binding operation (Section 2.1.3). This ID
is used for CH-ICR link-layer forwarding and not
contained in the message header.

iii NS(s) receives its PUID from CH(s) during the
NS-CH binding operation (Section 2.1.2). This ID
is used for NS-CH link-layer forwarding. This ID
can optionally be carried in the message header
when the message flows through the ICR.

c AUID is allocated by the sink to the CH for message
identification. This ID enables the sink to uniquely
identify the origin of the message up to the node level.
This is a data-layer ID that is carried in the message
header and filled in by the CH. This ID is for application
use only and system topology has no visibility into its
construction or usage. AUID can be attribute-named
data that can enable in-network processing with filters,
supporting data aggregation, nested queries and similar

techniques that are critical to reduce network traffic and
conserve energy (Heidemann et al., 2001).

The addressing in this manner reduces the overhead due
to addressing bits during the message transmission. This
method is scalable to the size of the network. Smaller
networks with fewer nodes will use less addressing bits than
the larger networks.

4 Overhead traffic

The GA used to perform Node Selection and Route Selection
is targeted with two competitive objectives running at the
sink. The introduction of this layer as a separate protocol
aids in using the snoop data for predicting the fitness
data. It is important to note that the sink builds up the
Node Database tree by snooping the routed data and the
setup-data (initialisation step) consisting of node ID,
transmission distance (to ICR and other neighbouring
nodes), associated CH and routes to the sink (primary and
fail-over routes). This data is further evaluated at the sink for
the creation of additional data-points consisting of various
fitness categories defined in Sections 2.3 and 2.4. While
most of the fitness data can be indirectly inferred from the
regular data (normal data and setup data), battery loss due to
coverage cannot be measured using this method. Moreover,
changes in the associations and designations require extra
messaging between sink and nodes. Hence various sources
of the overhead traffic are:

i Set-up messaging: this is mandatory messaging [2.1]
required for initial set-up of the network. These
messages are exchanged once during initialisation-step
and in extreme cases can also be triggered by sink.

ii Sink alert messaging: this message is performed when
sink determines the need for new allocations for nodes
and routes as a result of performing GA.

iii Node alert messaging: this messaging is initiated by the
nodes towards sink, in order to identify critical
information. Currently, this messaging is used for
alerting when:

a Battery levels falls below the thresholds.

b A fail-over route is chosen for future routings. Each
ICR identifies itself (starting with the failed over
ICR).

iv Node battery status: the node battery status data flow
through the preestablished path using the extra bits in
the SN messaging data. Three extra bits in the header
gives eight quantisation levels.

v Correlation data timer: this timer updates the spatial
or temporal correlation parameters of the SNs that
compresses the overall data in a distributed coding
(Cover and Thomas, 1991). An update has to traverse
through all the ICR(s) en-route to the cooperating nodes
residing in different clusters. This is a low duty-cycle
operation that can adapt to the changing environment
thus limiting the expenditure involved in update
overhead.
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As described, most of the overhead traffic is caused during
the setup-operation. A small percentage of messages also
flow as Alerts between source and sink. Most of the cost of
indirect inference and GA execution is pushed to the sink.
As a result, cost of overhead-traffic on the nodes is greatly
reduced. Increase in the number of nodes (large networks)
shows a longer delay in Initialisation Setup and Message
Propagation. Longer delays are mitigated by subdividing
a large network into smaller domains with identifiable
boundaries (Figure 5).

Figure 5 Percentage of nodes connected to the sink in the
event of node failure
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5 Sensor construction

A self-organisation mechanism using a contention-free
TDMA medium access protocol can be used for sensor
networks (Sohrabi and Pottie, 1999). During the set-up
phase, nodes interact in a random access manner. As the
clusters are formed during the set-up phase or reclustering
event (upon GA trigger), incremental TDMA schedules are
formed for SNs, CHs, and ICRs. Reclustering as a result
of GA evaluation (and the corresponding alert) will modify
the existing TDMA schedules to accommodate the newly
formed clusters. Incremental determination of the TDMA
schedules is based on the known range limitations on the
radio where certain nodes are expected to be outside the
region of radio interference with the current node. At the
same time, as a result of distributed scheduling, some nodes
with similar schedules may interfere with each other. This
can be remedied by using multiple channels or spreading
codes, that will reduce the overhead due to transmission
management. Typical sensors used in this scenario have the
following characteristics (Figure 6):

a Transmitter: transmits the data at various power levels.
It should have the ability to quickly enter and exit from
one power-state to another.

b Receiver: receives the data targeted toward it.
It additionally comprises of a low-power listening
engine. Sensor radio consumes almost the same energy
as when transmitting, searching for the next packet. To
reduce energy consumption during the non-transmitting
periods, energy-aware protocols are used. These
protocols involve extra transmission overhead in terms
of extra attention bits and reduced sampling of the radio
channel.

c Power control: controls the power to be transmitted
according to the function assigned.

d Function control: performs the protocol actions related
to the function. These actions are related to
identification, advertising, power-control, performing
bindings and associations with other nodes and
sensing, etc.

e Test control: performs the test functions. Test control is
transparent to the function control and does not interfere
with its working. This control is required to simulate a
future topology while not interfering with the current
one. GA will make use of this function to evaluate the
fitness before committing this topology to all nodes.

f Alert generation: generates an alert action to the sink
upon any critical/warning or quantised event (like
battery depletion). Alert data are used by the sink in the
evaluation of the fitness parameters.

g Memory: limited memory is required to collect the data
payload related to sensing, test-data or route-queues.
A buffer overflow can cause the packets to be dropped.
A temporary overflow memory allocation can be
received from the neighbouring node that belongs to the
same cluster. Such allocation can be expensive as it
comes at the cost of transmission overhead.

h Adaptive duty cycling: all ICR nodes put themselves in
a low-duty-cycle state when they are not required to
transmit any data through them. A Wake-on-Wireless
(WoW) signal (Shih et al., 2002) can wake a sensor
from the low-power state to the high-power state.

These characteristics are required for proper functioning of
the self-organising sensor network using GAs. Most of these
characteristics are related to the functional adaptation of
the sensor based on function allocation by the sink without
interrupting the sensing operation.

Figure 6 Illustration of sensor construction
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6 Numerical results

Experimental set-up consists of 100, 225, 400, 625 nodes
placed at random positions in a 30 × 30 space. Each of
the nodes picks up a random coordinate between (0, 0) and
(30, 30) and assigns itself an UUID and a random battery
capacity between 0 and 15. Once all the nodes have placed
themselves in the listen mode, GA is run with the following
parameters:

• Population size = 0.75 (number of nodes)

• Crossover rate = 0.8 (n − point cross-over)
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• Mutation rate = 0.004

• Number of generations = 1000.

The experiment is simulated in an environment where each
node acts as a Linux thread. Once GA run has completed, it
assigns a function to each of these threads. These threads then
start acting as independent nodes and initiate the node specific
protocol. Each of these independent threads is capable of
simulating battery depletion and transmission energy. In the
experiment, it is assumed that there are no obstructions in the
sensor transmit/receive path.

As seen in Figure 7(b), convergence points are dependent
upon the number of nodes being optimised. In all four
cases convergence is reached within the first 500 generations.
After that point improvement in the fitness is minimal. We
can call this an 80% fitness point. After this point we
may use a deterministic approach to achieve further fitness.
As seen in Figure 7(a), CH fitness, NCF and battery fitness
increase monotonically with the number of generations. The
same is true for the total fitness (Figure 7(b)), which is a
function of all the individual fitness. Also, as seen in Figure 5,
complete connectivity between non-extinct nodes and the
sink can be maintained until 65% of the nodes die. While
the death of sensors will reduce the coverage, the presence
of efficient routing will reduce the number of orphan nodes.

Figure 7 (a) Fitness chart for CHF/NCF/BF for 100 nodes;
(b) Total fitness chart for 100, 225, 400 and 625 nodes
set-up (right)
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Another important data point is the effect of isotropic
communication range Rc of SNs on the average power
consumption as a result of cluster set-up. Since the clustering
decision is based on the density of the sensor deployment and
the non-overlapping communication distance, a non-optimal
distance can be expensive. This is due to the fact that the non-
optimal distance will cause multiple collision, extra address
bits (PUID) for unique identification in a denser environment
and increased messaging. As seen in Figure 8, the optimal
communication distance is reached at the minimum point in
the valley. If the distance is less than the optimal, it requires
more sensors to fulfill the coverage requirements. At the
same time, we also observe an increased ICR messaging
due to increase in the number of hops (ICR). If the distance
is more than the optimal, then it reduces the coverage by
turning off the neighbouring sensors. This in turn increases
the communication traffic due to decrease in data aggregation
and fusion.

Longterm network sustainability depends upon the
function distribution based on the total residual energy of
the nodes. A bad allocation create pockets of no connectivity
or connectivity with limited coverage. A suboptimal

function allocation can also cause frequent reclustering
and a practically unstable system. This can also result in
non-useful energy expenditure. Average residual energy of
the CH is good measure of the effectiveness of the functional
allocation of the nodes that tries to optimise the available
power in the system. Reclustering process ensures that a
node functioning as a CH is reprovisioned with a different
function with less energy requirements. This mechanism
prevents CH from depleting its energy levels quickly by
exchanging the roles with its neighbouring nodes. In
Figure 9, node population is increased from 100 nodes to 625
nodes for the same area. Average residual energy of the
CH varies between 61% to 79% of its total energy. For
each population, measurements are made at regular intervals
till the system loses its connectivity (Figure 5). In all 18%
change in residual energy is recorded for 600% change in the
node density.

Figure 8 Average power consumption of the network with
respect to variation in the communication distance
Rc of the SNs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Communication Distance

A
ve

ra
g

e
P

o
w

er
C

o
n

su
m

p
tio

n
625 Nodes

Figure 9 Normalised plot of node density (100–625 nodes) and
the average residual energy of the CH over the period
of full connectivity
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GA tries to balance the routes by optimally generating
new routes based on the overall fitness (Section 2.4).
This increases the overall lifetime of the system. ICR,
CH and NS roles are exchanged by performing GA
re-evaluation using a static timer or NODE alerts. This
re-evaluation tries to rebalance the energy allocations based
on the functional requirements as well as the historical traffic
patterns, although with a set-up transmission penalty. This
penalty decreases with the overall system usage, because
SINK is able to calculate the NODE parameters based on
the side-band information (Section 4). Figure 10 shows the
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effect of reclustering timer (re-evaluate GA) on the overall
life expectancy of the network. Once the optimal set-up is
reached, we do not observe any significant improvement
in the life expectancy. At the same time we see a slow
degradation in the life expectancy because of the increased
transmission overhead. Therefore GA re-evaluation can
be optimised by adapting the timer period based on the
fitness matrix. We can evaluate the periodicity based on the
following equation.

Period = K

(
1 −

(
α1

n=t∑
n=t−x

|TNFn − T NFn−1|

+α2

n=t∑
n=t−x

|T RFn − T RFn−1|
)

/x

)
(14)

where, K is the Maximum Timer period, t is the Current
Instance, x is the number of past instances, TNFn is the
Total Node Fitness at the instance n of the GA re-evaluation
(Equation 10), TRFn is the Total Route Fitness at instance n

of the GA re-evaluation (Equation 11) and α1 and α2 are the
relative contributions and α1 + α2 = 1.

Figure 10 Normalised plot of Re-Clustering timer and the
effect on the lifetime of the sensor network. Lifetime
is measured from the start to the point where first
sensor becomes unusable
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7 Conclusion

In this paper we have presented a novel approach to design
a self-organising network based on GAs. Sensors that are
placed at random are assigned functions (sensing node,
CH, router, or inactive-node) based upon the results of
GA. The GA approach optimises the network to maximise
energy usage along with battery conservation with route
optimisation. It can be shown that the periodic run of a
GA will help conserve the overall energy of the system
with maximum operability. As it can be seen from Figure
7(b), individual components tends toward maximising their
fitness with the passing generations in a uniform manner.
That shows that the goal of maximising the system fitness
along with individual component fitness can be achieved
with a considerably reduced complexity. The algorithm
also prevents the over-optimisation of an individual fitness
component at the cost of other components. One of the
challenges in GA is to be able to converge in the shortest
time possible. As an extension of this paper, we will show
the applicability of demand-based, mixed model where we

run GA until convergence and then run traditional algorithms
(e.g. TABU, directed diffusion, etc.) to achieve the target
fitness. We will also research the prediction of system usage
and the resulting topologies based on historical trends. The
derivatives of these trends can then be used to define an
individual fitness along with the current fitness parameters
which will improve upon the uniform SN usage assumption.
As a part of future research, we will continue to work on
improvements related to the security and the corresponding
overhead. We also plan to address the challenges involved
in the identification of domain boundaries in large networks
which can be partitioned into multiple small network
domains capable of performing GA. Another aspect that
needs research is the ability to reduce the ICR traffic on
cross-cluster aggregation (or fusion). While aggregation
parameters are conveyed to the CHs using sink mediation,
this is less effective in a fast-changing environment because
of overhead traffic originating from the sink.
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