
INTRODUCTION

An intrusion detection system (IDS) protects
data integrity and manages system availability
during an intrusion. In a mobile ad hoc network
(MANET) with self-regulating properties [1] it
must deal with challenges related to resource-
constrained fully mobile, self-configuring multi-
hop wireless networks with varying resources
and limited bandwidth. This mechanism should
be able to detect intrusion by monitoring unusu-
al activities in the system and comparing them to
a user’s profile and evolving trends. While
threshold-based mechanisms may not be suffi-
cient to prevent malicious attacks if the attacker
operates below the threshold, it can be modified
to monitor trends in the related system compo-
nents to predict an attack. The distributed and
cooperative nature of ad hoc network nodes
makes it possible for a malicious node to exploit
the weakest node by hijacking it or launching an
attack through it. This inherent vulnerability can

disable the whole network cluster and further
compromise security by impersonating, message
contamination, hijacking, passive listening, or
acting as a malicious router. Various routing
techniques have been researched in this area of
trying to resist attacks [2]. Intrusion can be
thought of as a pattern of an observed sequence.
Its detection is similar to an immune system that
identifies and eliminates anomalies by measuring
deviations from normal processes using distribut-
ed identifiers over the system with an identifi-
able and adaptable relationship. This can be
supported using a model where each state has
probabilistic distribution of producing identifi-
able observations and a transition matrix to
other states.

A hidden Markov model (HMM) [3] is one
such model that correlates observations (param-
eters changes, fault frequency, etc.) [4] to predict
hidden states that factor in the system design.
Observation points are optimized using an
acceptable set of system-wide intrusion check-
points (ICs) while hidden states are created
using explicit knowledge of probabilistic rela-
tionships with these observations. For modeling
a large number of temporal sequences, HMM
acts as an excellent alternative, as it has been
widely used for pattern matching in speech
recognition and image identification. Some of
the previous work on IDS using HMM includes
an HMM-based predictive model capable of dis-
criminating between normal and abnormal
behaviors of network traffic [5], a framework for
handling multiple sensors implemented by repre-
senting each of the sensors monitoring a host
with an HMM [6], HMM-based detection of
complex Internet attacks consisting of several
steps that occur over an extended period of time
[7], HMM-based anomaly decisions at the sys-
tem call level using sequences of system call
traces as observable [8], and HMM-based algo-
rithms for building behavior classifiers capable
of detecting intrusion attempts on computer sys-
tems [9]. Other work in this area includes a sta-
tistical approach [10] that monitors the system
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ABSTRACT

Cooperative ad hoc wireless networks are
more vulnerable to malicious attacks than tradi-
tional wired networks. Many of these attacks are
silent in nature and cannot be detected by con-
ventional intrusion detection methods such as
traffic monitoring, port scanning, or protocol
violations. These sophisticated attacks operate
under the threshold boundaries during an intru-
sion attempt and can only be identified by profil-
ing the complete system activity in relation to
normal behavior. In this article we discuss a con-
trol-theoretic hidden Markov modelstrategy for
intrusion detection using distributed observation
across multiple nodes. This model comprises a
distributed HMM engine that executes in a ran-
domly selected monitor node and functions as a
part of the feedback control engine. This drives
the defensive response based on hysteresis to
reduce the frequency of false positives, thereby
avoiding inappropriate ad hoc responses.
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call trace of a program’s execution for compli-
ance with the precomputed model and an alert-
based policy mechanism [11] that associates an
alert with multiple events frequently occurring
together.

In this article we extend the traditional
HMM-based IDS approach by using a control-
theoretic distributed HMM to make it suitable
for ad hoc networks in which nodes could have
very limited power and processing capabilities.
The basic ingredient of this approach is the pro-
portional-integral differential (PID) control
engine and the distributed HMM processor on a
randomly selected monitor node. While the PID
control engine drives the defensive response
based on feature hysteresis to reduce the fre-
quency of false positives, distributed HMM pro-
cessing distributes the computational load of
training and state estimation among member
nodes of the ad hoc node cluster. Monitor nodes
are selected periodically and randomly using a
cost function that favors long-term relationships,
average battery conditions, estimation trends,
and fair loading. PID controllers do not require
advanced mathematics to characterize the model
underlying the checkpoint measurements and
can easily be adjusted to the desired response.
These controllers can easily be implemented as
silicon hooks coupled to the monitored intrusion
checkpoints.

IDS MODELING INGREDIENTS

The objective of the modeling scheme is to iden-
tify the intrusion while reducing the number of
false positives. An instantaneous deviation from a
normal profile can be construed as an intrusion
due to a momentary change in the system envi-
ronment. Such deviations may be legal, as also
seen during installation of new patches in operat-
ing systems. Therefore, in an IDS we have to ful-
fill multiple objectives related to accurate
intrusion detection using various ingredients like:

Intrusion checkpoints to analyze the sensor
activity that predicts the transition from normal
state to an intrusion state. Intrusion checkpoints
also represent the observable states of the IDS.

Creation of an activity profile that identifies
abnormal activity of the observable states by
measuring the sensor deviation from normal
behavior. It characterizes the behavior of a given
subject with respect to a given object, thereby
serving as a signature or description of normal
activity for its respective subject(s) and object(s).

Concept drift that measures the change in
user behavior over a period of time.

Control loop that adapts the IC trigger based
on the weighted sum of proportional, average,
and derivative sensor measurements over deriva-
tive and integral time window.

Model that predicts the most probable state
based on previous state (normal/intrusion) as
well as observed states. This can be accom-
plished using the HMM, as described later in
this section.

HIDDEN MARKOV MODEL
HMM-based approaches correlate the system
observations (usage and activity profile) and
state transitions to predict the most probable

intrusion state sequence. An HMM is a stochastic
model of discrete events and a variation of the
Markov chain. Like a conventional Markov
chain, an HMM consists of a set of discrete
states and a matrix A = {aij} of state transition
probabilities. The states of the HMM can only be
inferred from the observed symbols; hence, it is
called hidden. HMM modeling schemes consist
of observed (intrusion checkpoints) states, hidden
(intrusion) states, and HMM (activity) profiles.
HMM training using initial data and continuous
re-estimation creates a profile that consists of
transition probabilities and observation symbol
probabilities. Steps involved in HMM modeling
include:

Measuring observed states that are analytical-
ly or logically derived from the intrusion indica-
tors. These indicators are test points spread all
over the system representing competing risks
derived analytically or logically using IC indica-
tors. Machine intrusion can be considered to be
a result of several components competing for the
occurrences of the intrusion. In this model an IC
engine derives continuous multivariate observa-
tion, which is similar to the mean and standard
deviation model except that it is based on corre-
lations among two or more metrics:
• Resource activity trend: the measure of a

resource activity monitored over a larger sam-
pling period, it has characteristics that repeat
over that sampling period. For example, CPU
activity changes depending on the time of the
day. Each period of activity can be thought of
as an extra dimension of activity measure.

• Event interval: a measure of an interval
between two successive activities. For exam-
ple, logging attempts between two successive
intervals fall in this category.

• Event trend: the measure of events monitored
over a large sampling period with an objective
to calculate the event behavior with a built-in
repeatability. For example, the count of log-
ging attempts in a day falls in this category.
Estimating an instantaneous observation prob-

ability matrix that indicates the probability of
an observation, given a hidden state p(Si|Oi).
This density function can be estimated using an
explicit parametric model (multivariate Gaus-
sian) or implicitly from data via nonparametric
methods (multivariate kernel density emission).

Estimating hidden states by clustering the
homogeneous behavior of single or multiple
components together. These states are indicative
of various intrusion activities that need to be
identified to the administrator. Hidden states S
= {S1, S2, · · ·, SN–1, SN} are the set of states
that are not visible, but each randomly generates
a mixture of the M observations (or visible states
O). The probability of the subsequent state
depends only on the previous state.

Estimating a hidden state transition probabili-
ty matrix using prior knowledge or random
data. This prior knowledge and long-term tem-
poral characteristics are an approximate proba-
bility of state components transitioning from one
intrusion state to another.

The complete HMM model is defined by the
following probabilities: transition probability
matrix A = {aij}, where aij = p(Si|Sj), observation
probability matrix B = (bi(vm)), where bi(vm) =
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p(vm|Si), and an initial probability vector π =
p(Si). The observation probability represents an
attribute that is observed with some probability
if a particular failure state is anticipated. The
model is represented by M = (A, B, π). The
transition probability matrix is a square matrix of
size equal to the number of states and represents
the state transition probabilities. The observa-
tion probability distribution is a non-square
matrix whose dimension equals the number of
states by the number of observable states, and
represents the probability of an observation for a
given state. The IDS has the following states:
• Normal (N) state indicates profile compliance.
• Intrusion in progress (IP) indicates an intru-

sion activity that is setting itself up. This
includes attempts to gain privileged resources,
acceleration in resource usage, and so on.

• Intrusion successful (IS) indicates a successful
intrusion. A successful intrusion will be accom-
panied with unusual resource usage (CPU,
memory, IO activity, etc.).

INTRUSION CHECKPOINT CONTROL
In this section we discuss the applicability of the
control-theoretic architecture shown in Fig. 1
that drives a defensive response based on hys-
teresis to reduce the frequency of false positives,
thereby avoiding inappropriate ad hoc responses.
Excessive responses can slow down the system
and negatively impact the effectiveness of the
IDS. IDS control responses are related to adjust-
ing component functionality (e.g., throttling),

alert generation (to predict intrusion state), and
analyzing concept drift. An appropriate response
is built into the IC process that predicts the
attack pattern and triggers the selective response
in a PID control. The PID controller takes a
measured value from an IC and compares it to a
reference value. The difference is then used to
trigger an alert (abnormal activity) to the pro-
cess in order to bring the process’ measured
value back to its desired setpoint. The PID con-
troller can adjust the process outputs based on
the history and rate of change of the error sig-
nal, which gives more accurate and stable con-
trol. This avoids a situation where alerts may not
be true representations of intrusion activity due
to false positives. Such miscalculations can result
in either disproportionate and costly defensive
measures or complete security failure. It is there-
fore essential to build a weighted integral and
differential response to the trigger mechanism
instead of reacting to an instantaneous measure-
ment. While an integral response measures the
amount of time the error has continued uncor-
rected, differential response anticipates future
errors from the rate of change of error over a
period of time. The reference (setpoint) values
are dynamic in nature and set as a part of coarse-
grained settings that are estimated over long
periods of time. These re-estimates are required
to account for changing user behavior, also
referred to as concept drift.

The checkpoint control loop is the first state
of a multistage sequential IDS. The process out-

n Figure 1. PID control loop for intrusion checkpoint. The process output (alert) constitutes the observation
(emission) in an HMM. A true-positive response is fed back to the process response unit of the PID control
to aid runtime retraining. Concept drift analysis aids in resetting the reference point.
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put of the control loop provides observability of
an individual IC that aids in state estimation.
Collective observations from multiple check-
points are fed into the statistical model (in this
case HMM) responsible for predicting the state
transition. It is imperative that any such output
should be stable and free of oscillations.
Response measures are delayed to account for
delay involved in estimation of intrusion state
based on observations from other checkpoints.
While the setpoint (reference) is constant over a
long period of time, it can change due to user
behavior of system policy driven by a temporary
change in the operating environment. System
data and the process feedback provide hints that
are then used to change the setpoint (or setpoint
weights) in steps based on system policy. System
policy is driven by long-term hysteresis based on
the system’s behavior and the well-known rela-
tionship with various checkpoints.

IDS ARCHITECTURE

In this section we define components of the IDS
that cooperate with each other to predict an
attack state. In ad hoc networks an IDS is
deployed at the nodes to detect signs of intru-
sion locally and independent of other nodes,
instead of at routers, gateways, or firewalls. The
IDS architecture comprises multiple stages with
information feedback mechanismd between
stages. These stages can be roughly defined as:

•Intrusion checkpoint control stage (ICCS),
shown in Fig. 2, is the observability stage with an
objective to produce stable emissions using con-
tinuous estimations. This stage is also responsi-
ble for detecting temporary changes due to legal

activity and concept drift, signifying changing
long-term user behaviors. This decision is impor-
tant because a drift in the user’s normal behav-
ior may also falsely predict an attack situation.
Observation can be rejected as noise, or classi-
fied to a valid state based on trending, similarity
between unclassified states tending toward cer-
tain classification, and feedback from a state
machine based on other independent observa-
tions.

•Intrusion state detection stage (ISDS)
receives the observability data from multiple
checkpoints and predicts the transition to one of
the hidden states (normal, intrusion) based on a
trained statistical model. An estimated intrusion
decision is fed back to ICCS, which helps re-esti-
mate the usage trends while avoiding any false
positive preemptive responses.

•Intrusion response stage (IRS) is responsi-
ble for initiating the corrective (healing) actions
due to state transition. These actions may scale
back any abnormal activity as seen in the observ-
ability data. A mispredicted state transition may
initiate an inappropriate response and will have
a negative effect on checkpoint activity.

After various components of the model are
trained, it enters a runtime state where it exam-
ines and classifies each valid observation. Vari-
ous components of an IDS are explained in the
following subsections.

INTRUSION CHECKPOINT CONTROL STAGE
The ICCS represents the feedback control com-
ponent for an individual IC. It comprises a mea-
surement port, a PID controller, an observation
profiler, a concept drift detector (CDD), and a
feedback path to the process input.

n Figure 2. ICCS is responsible for providing the stable observability data to the intrusion state detection
stage. This data is profiled for variances due to changing user behavior and temporary changes in system
environment (also referred to as disturbances).
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The measurement port comprises fast acting
software and silicon hooks that are capable of
identifying, counting, thresholding, timestamp-
ing, eventing, and clearing an activity. Examples
of such hooks are performance counters, flip
counters (or transaction counters), header snif-
fers, fault alerts (page faults etc.), bandwidth
usage monitors, session activity, system call
usage between various processes and applica-
tions, file system usage, and swap-in/swap-out
usage. Measured data is analyzed as it is collect-
ed or afterward to provide real-time alert notifi-
cation for suspected intrusive behaviors. These
fast acting hooks are clustered to enact an obser-
vation. Measurements can be sampled at regular
intervals or cause an alert based on a user-set-
table threshold.

The observation profiler monitors various
inputs for maintaining/re-estimating an activity
profile that ascertains a rough (partially perfect)
boundary between normal and abnormal activity
characterized in terms of a statistical metric and
model. A metric is a random variable represent-
ing a quantitative measure accumulated over a
period. Measurements obtained from audit
records used together with a statistical model ana-
lyze any deviation from a standard profile. The
observation profiler receives multiple feedbacks
from the PID control output, event trigger, and
ISDS, and performs recursive estimations that
generate successive probabilistic profile data esti-
mates with closed-form solution. Trigger activity
is generally followed by a change in the PID con-
trol output that initiates a recovery response. A
true positive recovery response will scale back the
checkpoint activity to normal. A false positive
action will instead cause oscillations, degraded
system performance, or little change in the mea-
sured error. Activity profile data consists of prob-
ability distribution function (pdf) parameters
represented by λj = (σj, µj, ηj), where σj, µj, and
ηj represent variance, mean, and activity drift fac-
tor, respectively. Successive observations are eval-
uated against this profile, which results in its new
profiles and drift detection. An observation (emis-
sion) can also be a set of correlated measure-
ments but represented by a single pdf. Each of
these measurements carries different weights as in
multivariate probability distribution. Such a rela-
tionship is incorporated into the profile for com-
pleteness of the observation and reduces the
dimensionality for effective runtime handling.
Observability in this case is derived out of the
profile that represents a consolidated and single
representation of activity. A sample profile data
structure is defined as follows:

NFS Activity Profile {
Observation Name = NFS Activity
Input Events = {Disk I/O, Network I/O, ···}
Observation Trigger = Function (Input Events)
PDF Parameter = {D[N], D[IS]}
Unclassified Observation = {U[t1], U[t2], ···, U[tn]}
Concept Drift Data = {ηt1, ηt2, ···}

}

The concept drift detector detects and ana-
lyzes concept drifting [12] in the profile where
the training data set alone is not sufficient, and
the model (profile) needs to be updated continu-

ally. When there is a time-evolving concept drift,
using old data unselectively helps if the new and
old concepts still have consistencies, and the
amount of old data chosen arbitrarily just hap-
pens to be right [13]. This requires an efficient
approach to data mining that helps select a com-
bination of new and old (historical) data to
make accurate reprofiling and further classifica-
tion. The mechanism used is the measurement
of Kullback-Leibler (KL) divergence [14], or rel-
ative entropy measures the kernel distance
between two probability distributions of genera-
tive models. KL divergence is also the gain in
Shannon information involved in going from a
priori to a posteriori, expressed as

αt = KL(b(v|θt′), b(v|θt)), (1)

where αt is KL divergence measure, θt′ is the
new Gaussian component, and θt is the old Gaus-
sian component at time t.

We can evaluate divergence by a Monte Carlo
simulation using the law of large numbers [15]
that draws an observation vi from the estimated
Gaussian component θt′, computes the t log-
ratio, and averages this over M samples as

(2)

KL divergence data calculated in the tempo-
ral domain are used to evaluate the speed of the
drift, also called drift factor, 0 ≤ η ≤ 1. These
data are then used to assign weights to the his-
torical parameters, which are then used for
reprofiling.

The feedback path is responsible for feeding
back the current state information to the profile
estimator. The current state information is calcu-
lated by running the ISDS module using the cur-
rent model parameters. This information is then
used by the profiler to filter out any noise and
re-estimate the activity profile data. If a trigger
activity is not followed by a state transition, a
corrective action is performed to minimize the
false positives in the future.

The PID controller generates an output that
initiates a corrective response applied to a pro-
cess in order to drive a measurable process vari-
able toward a reference value (setpoint). It is
assumed that any intrusion activity will cause
variations in the checkpoint activity, thereby
causing a large error. Errors occur when a dis-
turbance (intrusion) or load on the process
(changes in environment) changes the process
variable. The controller’s mission is to eliminate
the error automatically. The discrete form of
PID controller is represented by the following
equation:

(3)

where e(t) is the error represented by the differ-
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ence between measured value and setpoint, w is
the integral sampling window, nT is the nth sam-
pling period, and Kp, Ki, and Kd are the propor-
tional, integral, and derivative gains, respectively.

Stability is ensured using the proportional
term, the integral term permits the rejection of a
step disturbance, and the derivative term is used
to provide damping or shaping of the response.
The desired closed-loop dynamics are obtained
by adjusting these parameters iteratively by tun-
ing and without specific knowledge of an intru-
sion detection model. Control parameters are
continuously tuned to ensure the stability of the
control loop in a control-theoretic sense, over a
wide range of variations in the checkpoint mea-
surements. While control parameters are evalu-
ated frequently, they are updated only when
improvement in stability is anticipated. These
updates can be periodic over a long period of
time.

INTRUSION STATE DETECTION STAGE
The ISDS defines the statistical model responsi-
ble for predicting the current intrusion state
based on observability data received from ICCS
modules. In this context we choose HMM as
described earlier. The HMM states are hidden
and indirectly evaluated based on model param-
eters. ICCS trigger output acts as an emission to
a specific HMM model and allocates a weight
according to their confidence. Observation prob-
ability is expressed as a mixture of individual
observation probabilities from multiple check-
points and improves the performance of an IDS.
A mixture model is a model in which the inde-
pendent variables are measured as fractions of a
total. The mixture model can be represented as

(4)

where p(x) is the modeled probability distribu-
tion function, K is the number of components in
the mixture model, and ak is the mixture propor-
tion of component k.

Observations from multiple checkpoints are
distributed among a mixture of models with
weights given to each model based on trivial
knowledge and continuous training. This
approach is advantageous as it allows one to
model the intrusion states at varying degrees of
granularity while retaining the advantages of
each model. Depending on the data characteris-
tics (amount of data, frequency), models can be
adapted by modifying weights such that complex
models are favored for complex inputs and vice
versa.

In Fig. 3 the HMMx subblock is responsible
for receiving the abnormal activity alert and pro-
cesses the interrupt to service the hidden state
(intrusion) estimation. It maintains the HMM
data and interacts with the expectation-maxi-
mization (EM) block and state-estimation (SE)
block for retraining and state prediction flows.
This block also implements reduced dimension-
ality by combining multiple inputs into a single
observation with its own pdf. This observation is
then fed into the EM and SE blocks for state
estimation.

The EM algorithm [16] provides a general
approach to the problem of maximum likelihood
(ML) parameter estimation in statistical models
with variables that are not observed. The evalua-
tion process yields a parameter set it uses to
assign observations points to new states. The
EM subblock is responsible for finding the ML
estimates of parameters in the HMM model as
well as mixture densities (or model weights) and
relies on the intermediate variables (also called
latent data) represented by state sequence. EM
alternates between performing an E-step, which
computes an expectation of the likelihood, and
an M-step, which computes the ML estimates of
the parameters by maximizing the expected like-
lihood found on the E-step. The parameters
found on the M-step are then used to begin
another E-step, and the process is repeated. In
the HMM mixture modeling, intrusion check-
point events under consideration have member-
ship in one of the distributions we are using to
model the data. The job of estimation is to
devise appropriate parameters for the model
functions we choose, with the connection to the
data points being represented as their member-
ship in the individual model distributions.

SE is responsible for modeling the underlying
state and observation sequence of the HMM
mixture to predict state sequences for new intru-
sion states using the Viterbi algorithm (to find
the most likely path through the HMM). A
trained mixture appears to be a single HMM for
all purposes and can be applied as a standard
HMM algorithm to extract the most probable
state sequence given a set of observations. Esti-
mates for the transition and emission probabili-
ties are based on multiple HMM models and are
transparent to the standard HMM models. The
Viterbi algorithm is a dynamic algorithm requir-
ing time O(TS2) (T is the number of time steps
and S is the number of states) where at each
time step it computes the most probable path for
each state given that the most probable path for
all previous time steps has been computed. The
state feedback subblock feeds back the estimated
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n Figure 3. Intrusion state detection stage.
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state to the observation profiler in ICCS (Fig. 2),
which then uses this data for recalibrating the
profile.

As part of the proactive approach in an active
IDS, the response unit encapsulates various
actions that are undertaken upon a suspected
intrusion. These actions can be automated or
manual based on complexity and prior knowl-
edge. The response unit modifies the state of the
attacked system to thwart or mitigate the effects
of the attack. Such control can take the form of
terminating network connections, increasing
security logging, killing errant processes, APR
poisoning, using decoys (false IP address), and
so on. This action is also important because after
raising the abnormal activity alert, the profiler
(ICCS) constantly monitors the abnormal activi-
ty (PID control output) and expects it to be
reduced based on some external actions (auto-
mated or manual). This action is equivalent to
the process control function that influences the
process variable in the feedback control system
with an objective to reduce the abnormal activi-
ty. Selecting an appropriate response for differ-
ent intrusions cannot be handled by a simple
policy decision. This requires complete under-
standing of active intrusion responses, which is
still an open problem. An overreactive response
can turn into a denial of service (DoS) attack.

INTRUSION DETECTION IN AN
AD HOC NETWORK

Unlike wired networks, MANETs present new
challenges to mobile hosts that are resource-con-
strained and have limited battery power. Addi-
tionally, these mobile nodes have inherent
vulnerabilities due to lack of fixed infrastructure,
cooperative algorithms, dynamically changing
topology, and open physical access. Some of the
common attacks that exploit these limitations
are route messages and route information tam-
pering, selective forwarding, sybil attack, sink-
hole attack, wormhole attack, spoofing, packet
flooding, packet dropping, location exposure,
sleep deprivation (battery exhaustion), and radio
jamming (medium access layer [MAC] layer
attack). Adding to the problem, constantly
changing topologies, an open medium, and
volatile physical environments make it difficult
to discriminate between an intrusion and normal
operation. Intrusion detection thus requires
extensive evidence gathering and comprehensive
analysis. HMM provides such a mechanism and
also overcomes the limitations of a signature-
based technique of detecting unknown attacks by
identifying changes in the system dynamics. Still,
an HMM-based mechanism is computationally
intensive and requires mechanisms to reduce the
algorithmic overhead. We overcome this short-
coming by distributing the computational load
among member nodes of MANETs that share a
similar environment and operating conditions
due to proximity.

In this section we discuss a cooperative IDS
that involves participation of the member nodes
in a global decision process. This involves dis-
tributed processing among local nodes and ran-
domly elected monitoring nodes. While the

ICCS is implemented locally using silicon and
software hooks, ISDS operations execute on the
monitoring nodes. Monitoring nodes are at a sin-
gle-hop distance and elected randomly at period-
ic intervals using a fairness and risk cost
evaluation. Various factors such as the number
of refusals, membership period, and voting pat-
terns are considered for making this evaluation.
While local nodes contribute trigger data locally
and externally, monitor nodes consume this data
to estimate the intrusion state through the con-
tribution of observations from all member nodes.
Whenever suspected activity is detected, it initi-
ates an intrusion detection event that is propa-
gated to monitor nodes. Monitor nodes in turn
request sharable observation data from individu-
al nodes. Based on multiple observations with
node-level dimensionality, an HMM mixture
algorithm is executed to predict the possible
intrusion state.

IDS NODE
Intrusion detection in a mobile local host is
limited to profiling its local activity using float-
ing ICCS modules. The intent is to reduce the
system complexity and the possibility of soft-
ware reuse. These hooks are presented to
accelerate the combined measurements of the
clustered components with an ability to send
alerts based on a system-level policy. It con-
tains the hardware and software that act as
glue between transducers and a control pro-
gram capable of measuring the event interval
and event trend with an ability to generate
alerts on deviation from normal behaviors
(represented by system policy). In this specific
case, the feedback control loop is implemented
partially in the silicon (ICCS block) with con-
figurable control parameters (Fig. 2). To fur-
ther enhance auto-discoverability, modularity,
and reusability, configuration and status regis-
ters are mapped into the capability pointer of
the PCI express configuration space. Similar
mechanisms exist today in very basic form as
performance counters (PerfMon), leaky bucket
counters, and so on. These counters need to be
coupled with ICCS modules that contain the
PID controller, profilers, threshold detectors,
drift detectors, and coarse-grained tuners.
ICCS modules are implemented in isolation
from the measured components such that a sin-
gle ICCS component can multiplex between
multiple measurement modules. While some of
the checkpoints are used for local consump-
tion, others are shared with the monitor nodes
to aid in cooperative state estimation. Exam-
ples of such checkpoints are packet drop rate,
route request rate, and route reply rate. These
checkpoints share the trigger data with the
monitor nodes and constitute the node’s con-
tribution to the mixture of HMMs.

IDS MONITOR
An IDS monitor is required to offload from the
member nodes performing redundant computa-
tion by distributing the computational load and
selecting a new monitor periodically. The moni-
tor function is performed by sharing individual
nodes’ observations by either exchanging data or
overhearing the node traffic on all the members
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of the cluster (Fig. 4). Some static information
related to route and location still needs to be
transmitted to the monitors. There can be more
than one monitor in the cluster executing inde-
pendent of each other and yielding this role to
another node on cost evaluation. This allows
accurate evaluation using multiple samples.
Node monitors implement the HMM mixture
model using multiple observations from all mem-
ber nodes as defined by ISDS (Fig. 3). The mon-
itor node is responsible for:
• Estimating the current state of the cluster

(state estimation)
• Retraining the model based on cluster dynam-

ics (expectation maximization)
• Initiating a trigger response to allow all mem-

ber nodes to update any sharable information
(location, routes, trigger data, etc.)

• Listening to member nodes who may be expe-
riencing abnormal activity

• Yielding the monitor role to another monitor
using a handoff mechanism

• Alerting the nodes of a change in intrusion
state
Hence, the node monitor completes the feed-

back loop by initiating the response action in
case the state transitioned to an intrusion state.
It is expected that the response action will help
scale back abnormal activity to normal activity
and therefore reduce the control feedback error.
In case of multiple monitors, each monitor votes
on the estimated state, and the majority vote
prevails. Cooperative IDS provides us not only
with lower battery consumption, but also with a
hierarchical approach where local abnormalities
are substantiated using shared processing among
the member nodes of the ad hoc cluster. This
evolves into an IDS tree where host nodes act as
leaf structures, and the monitor nodes act as the

node structure with a cooperative decision pro-
cess. These decisions can be accepted/rejected
according to the host node’s local policy.

EXPERIMENTAL RESULT

As an experiment, we set up an IC for received
signal strength (RSS), round-trip time (RTT),
bandwidth, and rate of packet drop on three
mobile clients (laptops) running on an 802.11g
wireless controller (Fig. 4). These clients are
authenticated using SSL and kept stationary for
experimental purposes. These clients exchange
among themselves a 2-Mbyte training sequence
periodically that is fragmented at tunable inter-
vals with client 3 always acting as a monitor.
This tunes the PID controller, profiler, and
CDD for nominal operating conditions for the
given condition. Additionally, the model con-
sists of a traffic generator, an environment dis-
rupter (changing signal strength), and an attack
module that simulates different types of attacks.
The traffic generator simulates real-time
audio/video and TFTP traffic under random
disruption. Upon event trigger by ICCS, all
nodes transmit RSS, RTT, bandwidth, and
packet drop rate data to the monitor node
(node 3), which executes the HMM mixture
model and returns the estimated status. As part
of the recovery action, the attack is scaled back
upon positive intrusion detection to allow the
feedback control loop error to converge to set-
point. Figure 5 shows the ROC characteristics
under attack conditions by varying the sampling
period parameter. In a disruptive environment
(simulated by changing signal strength), the
results are substantially better with a positive
detection rate of 83–89 percent for sample
intervals of 33–36 s.

n Figure 4. Distributed state estimation using HMM. Similar observations from each node act as a com-
bined observation at the monitor node according to its weight. Each node contributes multiple observa-
tions to the monitor node. The monitor node then executes the HMM mixture algorithm and returns the
estimated state back to the host.
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Traditional approaches like signature detec-
tion are very efficient for known attacks and
reduce the number of false positives, but are
incapable of detecting new or modified attack
patterns. HMM-based techniques [4–8] solve this
problem to a greater extent, but suffer from
computational overhead [17]. In addition, tradi-
tional approaches lack the feedback mechanism
that can correlate the corrective response to
changes in system dynamics. Moreover, wireless
mobility presents a unique case where redundan-
cy in the environment can be exploited by reduc-
ing the redundant computation between ad hoc
nodes. The new approach tries to solve these
problems in a single model that uses HMM with
distributed emissions between member nodes
and a PID-based feedback control loop. In the
absence of a PID controller, the false positive
rate increases between 10–13 percent because of
premature responses to transients.

CONCLUSION

While intrusion prevention may be the first line
of defense, it is not foolproof. An exploit may
use the weakest link (or node) to attack a net-
work. This is more so in ad hoc networks, where
the wireless interface and MAC protocol make
the node more prone to attacks. Real network
traffic is also not perfect since legitimate traffic
often contains the kinds of patterns typically
associated with attacks, which can significantly
increase the false positive rate. It is therefore
essential to reduce the rate of false positives for
any IDS to be effective. Since the intrusion state
cannot be inferred directly by monitoring any
specific parameters, we need to predict an attack
based on a mixture of observable data points,
events, and current states. This leads to a statis-
tical mechanism for intrusion prediction using
HMM where observed data are represented as a
weighted mixture component. Using this mecha-
nism, an observed deviation from normal behav-
ior carries a higher probability of being in a

non-normal state (or one of the attack states).
Given the computational complexity of the
HMM models, it is not practical to execute them
on all battery-limited host nodes. Therefore, we
enhanced the model by distributing the HMM
processing such that all nodes contribute to the
HMM processing in a periodic manner. We also
contributed to the concept of a feedback control
mechanism that regulates the defensive response
to every perceived abnormality. As explained
earlier, this helps reduce the false positive rate,
which is one of the major problems in modern
IDSs. Modern silicon (CPU, I/O hubs, PCI
express devices) contains performance counters
that can be measured at moderate granularity.
To avoid software overhead, these counters can
be mapped to the feedback control modules.
These modules can multiplex multiple measure-
ments that help in battery and cost savings.
While this methodology effectively solves some
issues of IDSs, especially IDSs for MANET, it is
not a complete solution; mechanisms that can
provide more lead time in identifying early signs
of attacker activities to minimize the damage are
still needed.

Modern IDSs also lack automated response
due to the high potential for inappropriate
response and misdiagnosis. Damage recovery is
another area for improvement, lack of which will
make it difficult to create closed-loop control.
High false positive rates is a serious issue
because it can cause a situation where an admin-
istrator (or a user) can ignore all warnings.
While a feedback control mechanism tackles this
problem, future research in diagnostic accuracy
are critically needed. Due to computational com-
plexity, resource/battery limitations, and wire-
less-based vulnerabilities, we need IDS-friendly
silicon. Various functional units of the silicon
should be able to profile the activity trends sup-
ported by an eventing mechanism in a power-
efficient manner. Physical layer design should
support protocols related to optimal monitor
node selection using user-defined policies and
authentication. Additionally, industry needs to
define advanced techniques related to node fin-
gerprinting that profiles a remote system based
on factors like received signal characteristics.
This, in cooperation with the method defined in
this article, can reduce false positives to a greater
extent by profiling physical deployment of indi-
viduals to identify the attacker. Furthermore, it
is no myth that the future of IDSs lies in data
correlation that produces results by observing
several different sources in a short timeframe.
IDSs need to understand relationships, rele-
vance, and correlation between multiple triggers
(or emissions) in a computationally efficient
manner. Control-oriented distributed HMM is
the first step toward that goal. Trust manage-
ment is another research area needed for suc-
cessful implementation of IDSs in MANETs for
generation and distribution of mutual data.
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