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Abstract—In this paper we propose a reduced-complexity
genetic algorithm for optimization of multi-hop sensor networks.
The goal of the system is to generate optimal number of sensor-
clusters with cluster-heads. It results in minimization of the
power-consumption of the sensor-system while maximizing the
sensor objectives (coverage and exposure). The genetic algorithm
is used to adaptively create various components such as cluster-
members, cluster-heads, and next-cluster. These components are
then used to evaluate the average fitness of the system based on
the sequence of communication links towards the sink.

I. INTRODUCTION
Advances in low-power digital integration and micro-

electro-mechanical systems (MEMS) have paved the way
for micro-sensors [1]–[5]. These sensors are equipped with
data processing capabilities along with sensory circuits. Sen-
sor data are processed on these individual sensors and
transmitted to the target (sink). Low-cost integration and
small sizes of these sensors have generated special interest
in the area of disposable-sensors. These are randomly de-
ployed, infrastructure-less, data-centric sensors that cannot be
charged or replaced. Queries to these sensors are addressed to
nodes which have data satisfying the same condition. These
disposable-sensors find their uses in the areas of disaster-
recovery, target-identification, reconnaissance, and intrusion-
detection, etc. However, these sensors are constrained in
energy, bandwidth, storage, and processing-capabilities. Large
number of such sensors along with these constraints creates a
sensor-management problem. At the network-layer it amounts
to setting up the energy-efficient route that transmits the non-
redundant data from source to the sink in order to maximize
the battery (and sensor’s) life. This is done while adapting to
changing connectivity due to failure of some nodes and new
nodes powering up.
Clustering of a network to minimize the distance is an NP-

hard problem [6], [7]. In this paper we develop an evolutionary
algorithm [8] that divides the randomly deployed sensors
into an optimal number of independent clusters with cluster-
head and optimal route. Cluster-head collects data from those
sensors belong to the cluster and sends them to the sink in
a compressed manner via the most cost-effective router. It is
assumed that while the sensors may be deployed in a non-
hospitable environment, the sink is a stationary component
that is located at a safe location.
Genetic algorithm (GA) is a stochastic search technique that

mimics the natural evolution proposed by Charles Darwin in
1858. GA has been successfully applied to a wide range of
combination problems. They are particularly useful in appli-
cations involving design and optimization, where there are
large numbers of variables and where procedural algorithms
are either non-existent or extremely complicated.

This work was supported in part by the National Science Foundation under
Grant DBI 0529223.

In this paper, we undertake energy-efficient sensor-network
design using GA approach. Deployment of this network can be
done, for example, by dropping a large number of disposable
sensor nodes in a random fashion. The goal is to develop
a long-lasting sensor network containing nodes with non-
renewal and limited energy resource. To achieve this goal we
discover clustered topology with optimal routes to the sink.
These clusters have the ability to fuse the collected data at
the cluster head, which are then routed to the sink using one
or more hops. Therefore, GA algorithms are designed with
two objectives: (1) discover the optimal clusters with cluster
members and cluster head, and (2) discover low-cost path to
the sink using one or more hops.

II. PROPOSED GA SOLUTION
The system consists of an initialization module and an

adaptation module. The initialization module helps in coding
of gene for each sensor. This gene contains the identification
of each sensor and any other specific information. This
information may be related to sensor objectivity, next-hop,
cluster-domain, etc. The initialization module also initiates
temporary clusters of the sensors with a domain identification
and cluster-heads. The adaptation module is responsible for
cluster adaptation and load adaptation. Cluster adaptation
is responsible for creating accurate cluster boundaries due
to addition, deletion, or modified sensor objectives. Load
adaptation is responsible for creating optimal routes from
cluster-heads to the sink. Adaptation modules are governed
by a fitness function that is specific to the network objective
in a load-balanced network. It prevents the flow of redundant
information while maximizing the network bandwidth usage
and battery life.
It is interesting to note that two competing objectives are

required to create an energy-efficient sensor-network. While
cluster membership will keep on changing because of dead
or depleted nodes, routes to sink will keep on changing
to avoid high-cost paths (like multiple clusters using the
same cluster-head to route the data to the sink). Therefore,
we use multi-objective genetic algorithms [9]. Simple GA
converges to a single solution. In problems where there are
several, often conflicting objectives, a multi-objective genetic
algorithm (MOGA) is used which evolves a set of solutions
(the population) towards the Pareto-optimal front where trade-
off analysis can be performed to select a suitable solution.

A. Node Selection Chromosome Representation
The chromosome of the GA contains all the building blocks

to a solution of the problem at hand in a form that is
suitable for the genetic operators and the fitness function. Each
individual sensor node is represented by a 3-bit binary number
called ‘gene’. These three-bit genes which define the feature
of the node are called ‘allele’ and are represented as follows:

000 - Node Inactive (powered off).
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001 - Node chosen as Cluster-Head (CH).
010 - Node chosen as Inter-Cluster Router (ICR).
100 - Node chosen as Sensor (NS).

Each cluster is represented by a cluster-head, and cluster-
members are represented by inactive/active sensors and inter-
cluster routers. Cluster-head is responsible for data-fusion
from various node-sensors and inter-cluster router is respon-
sible for routing cluster data (from cluster-head) to the sink.
For example, in a 25-node system, the number of bits

required to represent the complete system would be 3× 25 =
75. Therefore, the size of the string would be 60-bits. For the
scenario shown in Fig. 1, this string likes as follows:
100 000 001 100 001 100 100 100 001 100 100 001 100 100
100 000 001 100 100 001 010 010 010 010 010
Upon completion of the GA algorithm, a function is as-

signed to each node. Once the functions are assigned, each
type of nodes then performs the following functions:
1) Inter-Cluster Routers (ICR):
(a) Each router starts listening to ‘sink’ or ‘Lx router’,

where x = 0, 1, 2, · · · represents the number of hops
between sink and itself.

(b) Each router finds out the next-hop energy requirements
to the sink and/or Lx routers that it can listen to by
exchanging data and bounds checking.

(c) Each router temporarily designates itself as Lx, where
x = 0, 1, 2, · · · , based on the next hop it sends the data
to. L(x) can send data to only an L(x−1) that is closer
to the sink.

(d) Each router then sends the neighboring routers (and/or
sink) information (from step-b) to the sink using the
temporary router chosen in step-c.

(e) Upon cost-analysis using a parallel GA algorithm, the
sink will designate a primary and fail-over path to
each router and send this information using the node
it received that information from. This is a periodic
process that repeats at a pre-defined interval.

(f) Lx routers will update its next-hop information by
replacing the temporary next-hop to that provided by
the sink. Lx routers will receive this information peri-
odically from the sink.

(g) Lx routers will start advertising (router advertisement)
its presence with the cost of using this path at regular
intervals. This cost is evaluated using the following:
(i) Average data flowing through this router (dy-
namic).

(ii) Energy requirements to reach next hop (static).
(h) Average cost of using the next-hop (static) Lx routers

will trigger an attention message when the battery
reaches an attention state (battery condition in quantized
steps). This attention message is carried to the sink
using the current path (updated in step-f). The sink will
use this message as a trigger point to re-configuration
and running a new instance of node-selection genetic
algorithm. In the new instance, the failing node is
permanently marked “Powered Off (000b)”.

2) Sensor-Nodes (SN):
(a) Each sensor node starts listening to the available cluster-

heads (CH advertisement).
(b) Each sensor node will calculate the cost of communi-

cating with the available cluster-heads.
(c) Each sensor will attach to a cluster-head based on the

cost as calculated in step-b and become the part of that
cluster.

(d) Each sensor will update the chosen cluster-head with

the sensor data. These data include the SN-CH cost of
all cluster-heads it evaluated in step-b.

(e) Sensor node will trigger an attention message when
the battery reaches an attention state (battery condition
in quantized steps). This attention message is carried
to the sink using the cluster-head (step-b). Sink will
use this message as a trigger point to re-configuration
and running a new instance of node-selection genetic
algorithm.
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 Fig. 1. Sensor node clustering. Each node is assigned function as a result of

genetic algorithm and the resulting chromosome structure. For the example
below, chromosome structure is 100 000 001 100 001 100 100 100 001 100
100 001 100 100 100 000 001 100 100 001 010 010 010 010 010.

3) Cluster-Head (CH):
(a) Each cluster-head starts CH advertisement to invite

nodes (SN).
(b) Each cluster-head sends the SN-ICR data received from

the sensors to the sink.
(c) Each cluster-head listens to the router advertisement and

selects the low-cost router en-route to the sink.
(d) These cluster-heads can participate in data fusion. The

resulting information is then communicated to the sink
using the selected router.

4) Sink: Sink is an entity where all the event data collec-
tion and dissemination take place. This information is then
processed for sensor related functions.
Sink also receives the statistical and status information from

routers and cluster-heads. This information is processed in the
following manner:
(a) It collects the information regarding valid router-router

(ICR-ICR) communication. This information includes
energy requirements for communication and the corre-
sponding unique identification number (UUID).

(b) It evaluates the average data that pass through each
router by processing the data received by the sink (from
SN).

(c) It evaluates the cost of SN-CH communication for all
valid links. This information is passed by the cluster-
head during the setup-operation.

(d) Listens to any alert message (battery conditions).
(e) Performs a GA to evaluate the optimal route using the

fitness function based on parameters obtained in step-a
and step-b. This is triggered based on periodicity or an
alert event.

(f) Performs a GA to designate functional unit to each
node using the fitness function based on the parameters
obtained in step-c. This is triggered based on alert event.
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B. Route Selection Chromosome Representation
Route selection GA uses a different chromosome structure

than that used in node-selection GA. Characteristics of route-
selection chromosomes are given as follows: Each node (CH
and ICR) is represented by log2(N) bits, where N is the
maximum number of ICR nodes that can be reached by this
node. Hence an individual in this case is represented by a
string that consists of all such nodes with representation to the
next ICR. For example, (0010) (0010) (001) (010) represents
R12, R22, R31, R42 connections, where Rxy are the y-th
route of the x-th node.
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 Fig. 2. Chromosome structure of the route. For example, for nodes 1,2,3,4,

chromosome string is represented by (0010) (0010) (001) (010); for node 1,
route 2 is selected that connects to ICR 4; for node 2, route 2 is selected that
connects to ICR 5; for node 3, route 1 is selected that connects to ICR 6.

C. Node Selection Fitness Function
The node selection fitness function is a weighted function

that measures the quality or performance of a solution, in
this case a specific sensor network design. This function is
maximized by the GA system in the process of evolutionary
optimization. A fitness function must include and correctly
represent all or at least the most important factors that affect
the performance of the system. The major issue in developing
a fitness function is the decision on which factors are the most
important ones. We use the following measure.
1) Cluster-Head Fitness (CHF): Sensor nodes connected

to each cluster-head should be uniformly distributed. This
prevents cluster-head overloading. CHF defines the fitness
based on the uniformity of the sensor nodes and cluster-heads:

CHF = 1−min
Ã
1,

ÃX
n

|ρn − ρ|
ρ

!
/N

!
(1)

where n is the cluster-head number, N is the number of
cluster-heads in this system, ρn is the number of nodes
attached to this cluster-head, and ρ is the average number
of nodes per cluster in a system calculated as

ρ = Total Sensor Nodes/Total Cluster Heads. (2)

Any cluster consisting of more than ρ number of sensor nodes
will be penalized.
2) Node Communication Fitness (NCF): A node needs

power p to communicate with another node that is d distance
away. The power required to communicate with the cluster-
head can be computed using the path loss expressed as [10]

PL(d) = PL0 + 10µ log10 (d/d0) + S (3)

where d is the distance between the sensors, d0 is a reference
distance typically chosen as 1m for sensor networks, PL0 is
the path loss at the reference distance d0, µ is the path loss

exponent, typical in the range of 2 ∼ 4, and S is a zero-mean
Gaussian random variable that gives the deviation in path loss
from its average value.
For example, sensor nodes calculates these values p by

responding to CH advertisements that it can listen to during
setup operation. These values are then sent to the sink via a
temporary low-cost path chosen by the sensor node during the
setup phase. The NCF function is obtained as

NCF = 1−min
1,X

i

X
j

µ
max

µ
0,
pij − pt

pt

¶¶
/N


(4)

where pij represents inter-node communication energy rela-
tionship (as measured by individual sensor node), pt repre-
sents energy threshold, and N is the number of sensor-nodes
in this system.
3) Battery Status Fitness (BF): Anytime sensor-node com-

municates with the cluster-head or cluster-head communicates
with inter-cluster router, there is a penalty paid in terms of
battery usage. Battery is also consumed during the sensing
operation or other related functions. Each node alerts the sink
about its battery status (Q) when it crosses the quantized limit
(or thresholds). These thresholds will be used to penalize the
use of those nodes for operations that consume more battery
power. Penalty for using the node with a low battery capacity
depends upon the type of node and its usage. For example, a
node with low battery capacity will have a greater penalty for
inter-cluster routers than the cluster-head. Similarly cluster-
head will have a greater penalty than the sensor-node. There-
fore penalty suffered by each node depends upon the battery
status (Q) and the type of node assignment. The battery status
fitness function is expressed as

BF = 1− F (Q,Node Type) (5)

where F (·) is the penalty with 0 ≤ F (Q,Node Type) ≤ 1.
4) Router Load Fitness (RLF): Inter-cluster routers partic-

ipate in routing the traffic originating from cluster-heads or
other ICR to the sink. Routers are penalized if they cater to
more than the average number of cluster-heads and ICR. This
avoids overloading routers. The RLF function is expressed as

RLF = 1−
X
n

| − n|
/N (6)

where n is the ICR number, N is the number of ICR in this
system, and and n are given as

=
Total(Cluster heads + ICR)

Total ICR
(7a)

n = Connected cluster-heads+ ICRCostn (7b)

where ICRCostn (n-th ICR) is updated as a result of GA
function (part of MOGA) that evaluates the cost of using a
router using route selection fitness function (Section II-D).
5) Total Node Fitness (TNF): TNF is the final fitness that

is evaluated in the GA algorithm for the appropriate node
assignment. It is described by

TNF = α1CHF+ α2NCF+ α3BF+ α4RFL (8)

where α1 + α2 + α3 + α4 = 1 and αi depends upon the
relative significance of the component. These values can be
made adaptive using an external heuristics.
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D. Route Selection Fitness Function
The second objective of the multiple objectives genetic

algorithm is to generate balanced routes based on node
allocation using GA based on node fitness function. During
setup operation, both cluster-heads and inter-cluster-routers
start sending the data on the most cost effective ICR. It is
not guaranteed that the setup connection will remain cost-
effective over a period of time. GA predicts the optimal route
topology based on the cost of using an ICR for the next
sampling period. Cluster-heads and ICR are updated with this
information in each sampling period. Route fitness function
takes into account the traffic patterns, battery capacity, and
transmission energy. This is accomplished because of the
following properties of the sink:
(a) It is aware of the static routes that are either formed

during the setup operations or updated during GA
operations during a sampling period. This will help GA
evaluate average load on each router (since destination
of all communication is the sink).

(b) It is aware of the amount of data (bits) received from
each cluster which then traverse through a static routes
as in (a).

(c) Each ICR updates the sink of its battery capacity as
soon as it crosses a threshold value.

(d) It is aware of the energy-cost of transmission to its
nearest neighbors. This is proportional to the distance
between ICH and its next hop (or sink). This informa-
tion is sent by the router during the setup phase.
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Fig. 3. Sample output of the route-selection GA. Thick lines represent the
low-cost selected route. Dotted lines represent other possible routes, but with
higher relative cost (lower fitness). As the system conditions change, low-cost
routes can become high-cost routes and vice versa. There is a high likelihood
that ICR 3 may turn out to be a high-cost path if CH 2 becomes highly active.

Based on the predicted optimal route fitness, the sink will
update the cost of using this ICR for the next sampling period.
The total route fitness (TRF) is given by:

TRF = BF+NCF+

ÃX
k

((max(ICR(j, k))

−Curr(ICR(j, k)))/max(ICR(j, k)))
¶
/N (9)

where

ICR(j, k) =Average bit-rate handled by the j-th ICR that
can communicate with node k (CH or ICR)

max(ICR(j, k)) =ICR with the highest bit-rate that can be
communicated by node k

Curr(ICR(j, k)) =Current ICR that has been designated to
communicate with node k

N =Total number of nodes (CH and ICR)
BF =Battery fitness of the router in question
NCF =Node (CH-ICR or ICR-ICR)

communication fitness

ICRCostn =1−
ÃX

k

((max(ICR(j, k))

− ICR(j = n, k))/max(ICR(j, k)))
¶
/M

where k = all the nodes that can communicate with ICR n.
For example in Fig. 3, for ICR-2, k = {CH1, CH2, CH3,
ICR1, ICR3}, M equals the total number of k nodes that can
communicate with ICR n; for ICR-2, M = 5.

E. Node Selection Genetic Algorithm
Now that we have defined a node selection fitness, we can

design the genetic algorithm for node-selection that can be
represented with the following steps using the GA operators.
The process of genetic algorithm takes place in the sink (or
a similar centralized identity). This algorithm repeats itself
upon multiple triggers. These triggers are related to battery
alert, deteriorating route fitness alert, periodic action. Once
the optimal fitness is achieved, the topology corresponding
to that fitness is committed and the sensors are instructed to
assume the new functions by relinquishing the old functions.
(a) Initial population: Initial chromosomes strings are

seeded partially randomly using a random number gen-
erator (RNG) and partially using population of previous
samples. Population uses the gene structure as defined
in Section II-A. This population is coded with gene
structure as defined in Section II-A.

(b) Evaluation: Each chromosome string is evaluated for
the fitness using the TNF function (for node assignment)
as defined in Section II-B.

(c) Reproduction: Reproduction is a process in which
individual strings are copied according to there fitness
function values, which also means that individuals with
larger fitness value will have a higher probability of
contributing an offspring in the next generation. The
algorithm uses the standard weighted roulette wheel
method to select n individuals for reproduction to the
mating pool. Since the TNF defines the fitness value,
the chromosome with the highest fitness value means
represents a better chromosome to take part in repro-
duction. N chromosomes will again be reproduced from
the n chromosomes selected for reproduction using a
crossover probability. During reproduction, we choose
multiple cross-over points. Cross-over points and the
locations are calculated using an RNG. As in this
example, two chromosome strings having three random
cross-over points will create a resultant chromosome
after cross-over as below:
Parents:
100 000 001 100 001 100 100 100 001 100 100 001 100 100
100 000 001 100 100 001 010 010 010 010 010
100 010 010 100 100 010 100 010 001 001 001 001 010 001
001 000 100 010 001 100 010 000 001 100 010
Children:
100 000 001 100 001 010 100 010 001 001 100 001 100 100
100 000 001 010 001 100 010 000 001 100 010
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100 010 010 100 100 100 100 100 001 100 001 001 010 001
001 000 100 100 100 001 010 010 010 010 010

(d) Mutation: Newly reproduced N chromosomes are
transferred to the mutation pool. The mutation operator
mutates chromosome in the mutation pool according to
mutation probability which will make it adaptive. We
will choose a maximum mutation probability pm. In any
generation, mutation probability will be inversely pro-
portional to the average fitness of the standard number
of population in any generation. Therefore

pg = pm(1− (N ∗ TNFavg)/TNFtotal). (10)

Mutation function uses function flip (toss of a coin) to
decide whether to invert the bit or not.

(e) Selection: Finally N chromosomes are chosen out of
2N chromosomes according to their fitness values.
These chromosomes are carried over to the next gen-
eration. 2N chromosomes consist of N parent chromo-
somes and N children.

F. Route Selection Genetic Algorithm
Route selection GA is similar to the node selection GA

with the following exceptions and an extra trigger point. This
algorithm repeats itself at a regular interval to ascertain the
acceptable thresholds of route-loads during the constant usage
of the sensor-system.
(a) Initial population: Initial population is chosen partially

randomly using an RNG and partially using population
of previous samples. Population uses the gene structure
as defined above.

(b) Evaluation: Each chromosome is evaluated for the
fitness using the TRF function (for route selection) as
defined in Section II-D.

(c) Node selection trigger point: Route-selection GA al-
gorithm keeps on making attempts to achieve the most
cost-effective path for a given topology (as selected in
node-selection) in which there can be multiple paths.
At certain point certain fitness threshold is reached
beyond which further conversion to higher fitness may
not be possible. This condition can happen due to
battery condition and bad node assignments. This will
cause a node-reassignment alert, which in turn will
cause the node-selection GA to run again with changed
conditions.

As seen above, the route selection can sometimes act as a
resisting factor for the node-selection. While nodes may have
been assigned the functions based on a high fitness factor,
it may not be suitable for routing the packets in a multi-
hop system. This will cause a re-configuration (running route
selection GA) again until both objectives reach an acceptable
convergence point. This is a dynamic process and keeps on
repeating over the life-time of the system.

III. OVERHEAD TRAFFIC
The GA used to perform Node Selection and Route Selec-

tion is targeted with two competitive objectives running at
the sink. The introduction of this layer as a separate protocol
aids in using the snoop data for predicting the fitness data.
It is important to note that the sink builds up the Node
Database tree by snooping the routed data and the setup-
data (Initialization Step) consisting of Node ID, Transmission
Distance (to ICR and other neighboring nodes), associated CH
and routes to the sink (primary and fail-over routes). This data
is further evaluated at the sink for the creation of additional
data-points consisting of various fitness categories defined in

Sections II-C and II-D. While most of the fitness data can
be indirectly inferred from the regular data (normal data and
setup data), battery loss due to coverage cannot be measured
using this method. Moreover, changes in the associations and
designations, require extra messaging between sink and nodes.
Hence various sources of the overhead traffic are:
(i) Setup Messaging - This is mandatory messaging [II-A]
required for initial setup of the network. These messages
are exchanged once during initialization-step and in
extreme cases can also be triggered by sink.

(ii) Sink Alert Messaging - This message is performed when
sink determines the need for new allocations for nodes
and routes as a result of performing GA.

(iii) Node Alert Messaging - This messaging is initiated by
the nodes towards sink, in order to identify critical in-
formation. Currently, this messaging is used for Alerting
when:
a) Battery levels falls below the bounds.
b) A fail-over route is chosen for future routings.
Each ICR identifies itself (starting with the failed
over ICR).

(iv) Node battery Status - The node battery status data flow
through the pre-established path using the extra bits in
the SN messaging data. Three extra bits in the header
gives eight quantization levels.

As described, most of the overhead traffic is caused during
the Setup-Operation. A small percentage of messages also
flow as Alerts between source and sink. Most of the cost of
indirect inference and GA execution is pushed to the sink.
As a result of this, cost of Overhead-Traffic on the nodes
is greatly reduced. Increase in the number of nodes (large
networks) shows a longer delay in Initialization Setup and
Message Propagation. Longer delays are mitigated by sub-
dividing a large network into smaller domains with identifiable
boundaries.
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Fig. 4. Percentage of nodes connected to the sink in the event of node
failure.

IV. SENSOR CONSTRUCTION
Typical sensors used in this scenario have the following

characteristics:
(a) Transmitter - Transmits the data at various power levels.
(b) Receiver - Receives the data targeted towards it.
(c) Power control - Controls the power to be transmitted

according to the function assigned.
(d) Function control - Performs the protocol actions related

to the function. These actions are related to identifi-
cation, advertising, power-control, performing bindings
and associations with other nodes, and sensing, etc.

(e) Test control - Performs the test functions. Test control is
transparent to the function control and does not interfere
with its working. This control is required to simulate a
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future topology while not interfering with the current
one. GA will make use of this function to evaluate the
fitness before committing this topology to all nodes.

(f) Alert generation - Generates an alert action to the
sink upon any critical/warning or quantized event (like
battery depletion).

(g) Memory - Limited memory is required to collect the
data payload related to sensing, test-data, or route-
queues.

These characteristics are required for proper functioning of the
self-organizing sensor network using genetic algorithms. Most
of these characteristics are related to the functional adaptation
of the sensor based on function allocation by the sink without
interrupting the sensing operation.
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 Fig. 5. Illustration of sensor construction.

V. NUMERICAL RESULTS
Experimental setup consists of 100, 225, 400, 625 nodes

placed at random positions in a 30 × 30 space. Each of
the nodes picks up a random coordinate between (0, 0) and
(30, 30) and assigns itself an UUID and a random battery
capacity between 0 and 15. Once all the nodes have placed
themselves in the listen mode, GA is run with the following
parameters:
• Population size = 0.75(number of nodes)
• Crossover rate = 0.8(n− point cross-over)
• Mutation rate = 0.004
• Number of generations = 1000.

The experiment is simulated in an environment where each
node acts as a Linux thread. Once GA run has completed,
it assigns a function to each of these threads. These threads
then start acting as independent nodes and initiate the node
specific protocol. Each of these independent threads is capable
of simulating battery depletion and transmission energy. In the
experiment, it is assumed that there are no obstructions in the
sensor transmit/receive path.
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Fig. 6. (a) Fitness chart for CHF/NCF/BF for 100 nodes; (b) Total fitness
chart for 100, 225, 400, and 625 nodes setup (right).

As seen in Fig. 6(b), convergence points are dependent
upon the number of nodes being optimized. In all four cases
convergence is reached within the first 500 generations. After
that point improvement in the fitness is minimal. We can
call this an 80% fitness point. After this point we may use
a deterministic approach to achieve further fitness. As seen
in Fig. 6(a), cluster-head fitness, node-communication fitness,

and battery fitness increase monotonically with the number
of generations. The same is true for the total fitness (Fig.
6(b)), which is a function of all the individual fitness. Also,
as seen in Fig. 4, complete connectivity between non-extinct
nodes and the sink can be maintained until 65% of the nodes
die. While the death of sensors will reduce the coverage, the
presence of efficient routing will reduce the number of orphan
nodes.

VI. CONCLUSION
In this paper we have presented a novel approach to design a

self-organizing network based on genetic algorithms. Sensors
that are placed at random are assigned functions (sensing
node, cluster-head, router, or inactive-node) based upon the
results of GA. The GA approach optimizes the network to
maximize energy usage along with battery conservation with
route optimization. It can be shown that the periodic run of a
genetic algorithm will help conserve the overall energy of the
system with maximum operability. As it can be seen from Fig.
6(b), individual components tend towards maximizing their
fitness with the passing generations in a uniform manner. That
shows that the goal of maximizing the system fitness along
with individual component fitness can be achieved with a
considerably reduced complexity. The algorithm also prevents
the over-optimization of an individual fitness component at the
cost of other components. One of the challenges in GA is to be
able to converge in the shortest time possible. As an extension
of this paper, we will show the applicability of demand-based,
mixed model where we run GA until convergence and then
run traditional algorithms (e.g., TABU, directed diffusion,
etc.) to achieve the target fitness. We will also research
the prediction of system usage and the resulting topologies
based on historical trends. The derivatives of these trends
can then be used to define an individual fitness along with
the current fitness parameters which will improve upon the
uniform sensor-node usage assumption. As a part of future
research, we will continue to work on improvements related to
the security and the corresponding overhead. We also plan to
address the challenges involved in the identification of domain
boundaries in large networks which can be partitioned into
multiple small network domains capable of performing GA.
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