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Abstract—We propose a reduced-complexity genetic algorithm
for dynamic deployment of resource constrained multi-hop mobile
sensor networks. The goal of this paper is to achieve optimal
coverage and improved battery life using dynamic power scaling
(DPS) and improved fitness function. DPS exploits idle times,
packet delay guarantees, performance and workload data using
additional controls related to sensor power states and transmission
power. The dynamic power scaling in conjunction with genetic
algorithm jointly optimizes power states and topologies by dy-
namically monitoring workloads, packet arrivals, utilization data
and quality-of-service compliance. This results in minimization of
the power consumption of the sensor system while maximizing the
sensor objectives.

I. INTRODUCTION

Low-cost integration and small-size micro-sensors [1]–[5]
have generated significant interest in the area of dispos-
able sensors. These are motion capable, randomly deployed,
infrastructure-less, data-centric sensors equipped with data pro-
cessing capabilities and sensory circuits that cannot be charged
(or rarely charged) or replaced. These sensors are constrained in
energy, bandwidth, storage, and processing-capabilities and find
their uses in the areas of homeland-security, disaster-recovery,
target-identification, reconnaissance, medical applications, de-
fense applications [6], and intrusion-detection, etc. Each sensors
process the sensory data and transmit to the target (sink) in a
secure manner.

This paper extends previous work that used an evolutionary
algorithm [7] to divide and position the randomly deployed mo-
bile sensors into an optimal number of independent clusters with
cluster-head and optimal route [8]. Once deployed, these sensors
maximize their coverage by moving (or re-orienting) themselves
at the expense of battery life and develop a long-lasting secure
sensor network with variable security attributes [9]. Cluster-
head collects data from its member sensors and sends them to
the sink in a compressed and secure manner via the most cost-
effective router. The energy dissipation of the sensor node is
the sum of sensor transceiver and micro computations. As an
extension to previous approach, we introduce Dynamic Power
Scaling (DPS) and Dynamic Transmission Scaling (DTS) that
uses the mix of proactive mechanisms and tuning parameters
derived from workloads, security attributes and idle periods to
optimize battery power.

Genetic Algorithm (GA) is a stochastic search technique that
mimics the natural evolution proposed by Charles Darwin in
1858. GA has been successfully applied to a wide range of
combination problems. They are particularly useful in applica-
tions involving design and optimization, where there are large
numbers of variables and where procedural algorithms are either
non-existent or extremely complicated.

Dynamic Voltage and Frequency Scaling (DVFS) [10], [12]
is key technique in exploiting the hardware characteristics of
processors to reduce energy dissipation by lowering the supply

voltage and operating frequency. Since performance is needed
only for a small fraction of the time, the DVFS algorithms
enables energy savings while providing the peak computation
power in general-purpose systems by optimizing performance
and battery life. The proactive scheme predicts the future work
requirements and sets up the power states according to the
dynamic policy with parameters related to minimum work,
and maximum deferment. These policies support data bursts,
runtime constraints and optimal power states.

II. RELATED WORK AND MOTIVATION

Mobile sensor networks consist of randomly deployed dis-
posable sensors where configurable objectives cooperate with
one another to maximize coverage and battery life. In this
paper we use DPS and DTS in conjunction with four competing
objectives [8], [9] that create an energy-efficient sensor network:
(i) dynamic cluster membership, (ii) dynamic routing, (iii)
dynamic sensor positioning, and (iv) dynamic sensor security
attributes.

Related work includes dynamic voltage scaling (DVS)
methodology that inserts additional information into the com-
munication channel to guide the selection of proper voltages for
data decryption (encryption) and processing in order to reduce
the total computational energy consumption [11], real-time DVS
(RT-DVS) that modifies the OS’s real-time scheduler, and task
management service to provide significant energy savings while
maintaining real-time deadline guarantees [12], PowerTOSSIM
that proposes efficient emulation of the sensor node hardware
platform coupled with careful instrumentation of the power
states which generates an event-driven simulator directly from
TinyOS code and emits power state transitions [13], Bult et
al. present advances in low-power systems spanning network
design, through power management, low power mixed signal
circuits, and highly integrated RF network interfaces [14], Xing
et al. present that significant energy reduction can be achieved
by jointly optimizing the transmission power and sleep time
of nodes based on the network workload [15]. DVFS is an
important power optimization feature in Intel and AMD class
of micro-processors that provide multiple performance states
using voltage and frequency scaling. ARM’s Intelligent Energy
Manager (IEM) voltage and frequency scaling reduces system-
level power and energy consumption by as much as 15 to 20%.

III. SENSOR REPRESENTATION AND GA APPROACH

In our previous work on sensor network optimization [8],
each sensor node is allocated a functional assignment using
using genetic algorithm. These functions are represented as
(a) inactive node (powered off), (b) cluster-head (CH), (c)
inter-cluster router (ICR), and (d) sensor node (NS). Each
cluster is represented by a cluster-head, and cluster-members are
represented by inactive/active node sensors and ICRs. Cluster-
head performs data-fusion from various node-sensors while
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inter-cluster router routes cluster data (from cluster-head) to the
sink. Algorithmic details regarding clustering, naming, routing
using GA can be found in [8]. Sensor Network implements a
multi-objective genetic algorithm (MOGA) with the following
fitness functions defined as follows [8], [9]:
(1) Total Node Fitness (TNF) forms weighted sum of Coverage
Fitness (CF), Cluster-Head Fitness (CHF), Node Communica-
tion Fitness (NCF), Battery Status Fitness (BF), Router Load
Fitness (RLF), and Sensor Effector Fitness (SEF)

TNF = α1CHF + α2NCF + α3BF + α4RFL + α5SEF + α6CF (1)

(2) Route Selection Fitness Function (RSFF) generates bal-
anced routes based on node allocation using GA based on node
fitness function. During setup operation, both CH and ICR start
sending data on the most cost effective routers.
(3) Total Node Motion Fitness (TNMF) is weighted sum
of Coverage Uniformity Fitness (CUF), Cluster-Node Migra-
tion Fitness (CNMF), Cluster-Head Migration Fitness (CHMF),
Node Motion Fitness (NMF) and Sensor Data Fitness (SDF).
Fitness associated with node motion is given by

TNMF = α1CUF+α2CNMF+α3NMF+α4CHMF+α5SDF (2)

(4) Secure Node Fitness (SNF) rewards energy efficient en-
ablement of security attributes that are measured against battery
quantization levels and rate of battery usage. While routes
(CH→sink) are penalized for carrying malformed and retried
packets, they are rewarded for enabling authentication on routers
(ICR) and encryption on cluster-heads. Additional penalty is
awarded if the authentication is enabled disproportional to threat
level quantized to M levels.

IV. POWER SCALING APPROACH

Power scaling optimizes the functional blocks of the sensors
for a given Quality-of-Service (QoS) as perceived by the sink.
QoS policy is defined as a function of (i) security attributes, (ii)
importance and accuracy of sensor data (packet Priority), and
(iii) maximum node-sink delay (sensor data, control data, etc.).
QoS policies along with quantifiable observations (workloads,
data arrival patterns, battery levels, node stability) adjusts the
power-scaling parameters of the functional blocks of the node
to enhance QoS compliance. For a given functional block,
these parameters assume static conditions within a tunable
observation period (Tobs). Following sections define various
functional blocks and corresponding controls.

A. Memory Buffer Subsystem

Memory subsystem (Fig. 1) comprises of Transmit/Receive
Buffer (TRB), Transmission Request Queue (TRQ), Perfor-
mance Counters (PC), and Tunable Registers (TR). Memory
buffer is divided into multiple blocks with independent power
control applied according to anticipated demand. Data received
by the receive buffer is processed for further action (authen-
tication, header manipulation, etc.) before committing to the
TRQ. Once in TRQ, data is transmitted to the next hop upon
inactivity timer expiration or reaching burst threshold. Number
of active memory blocks, observation timer, inactivity timer
and burst thresholds are estimated based on QoS policies,
sink feedback, and activity trends as measured by performance
counters. Performance counters measure mean number of packet
arrivals/serviced and IDC for packet arrivals [16] (index of
dispersion for count). IDC is defined as the variance of the

number of packet arrivals divided by the mean number of packet
arrivals in an interval of length t

IDC = var

(
n∑

k=0

λk

)/
E

(
n∑

k=0

λk

)
(3)

where λk is the number of packet arrivals between time interval
τk and τk+1. It provides a measure of fluctuation of the receiving
rate over a given interval, which reflects considerable burstness
in the received packets. Burstness is a direct indication of packet
loss and buffer occupancy.
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Fig. 1. Memory buffer subsystem: it contains four memory blocks that are
activated based on buffer requirements per HURST (H) parameter (updated by
sink). TRQ controls the number of fragments transmitted in a single burst based
on IIT and QTW parameters. P1 and P2 represent input ports, O represents
output port (next hop). IDC value is updated upon P1 + P2 traffic.

IDC slope is further used by sink to measure the HURST
parameter (H) which is the measure of the persistence of
a statistical phenomenon, or the measure of the long-range
dependence of a stochastic process. Buffer requirements are
much higher at lower levels of utilization for higher degrees of
self-similarity (higher H). Sink updates the H value periodically
which is then used by nodes to estimate the number of active
memory blocks.

Buffer (B) = ρ1/[2(1−H)]/(1 − ρ)H/(1−H) (4)

where ρ is the utilization factor given as

ρ(utilization) = E

(
n∑

k=0

λk

)/
E

(
n∑

k=0

µk

)
(5)

where µk is the number of packets serviced between times τk

and τk+1. Adequate buffer activation saves power by avoiding
excessive allocation or switching between ON/OFF states.

Additionally, TRQ schedule transmit requests according to
maximum transmission rate, Optimal Transmission Window
(OTW) (burst size), and QoS requirements relative to delay
tolerances. For burst size less than the OTW, TRQ defers the
transmit request for a duration equal to the inactivity interval
threshold (ηj

k) for nth node at tth time. IIT is programmed
according to QoS requirements of the sensor data.

βj
i (x) = max

(
−1,min

(
1,

T j
i (x) − Dj

i (x)
Dj

i (x)

))
(6)

ηj
t = ηj

t−1 +
ηmin

N

∑
i

βj
i (mem) (7)

where Dj
i (mem) and T j

i (mem) represent the expected delay
and measured delay, respectively, for i-th packet (route) on j-th
node. While Dj

i (mem) is updated using sink’s QoS feedback
(Section V-A), OTW is updated as a result of control message
sent by target node.
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B. Micro Controller (µC) Subsystem

Micro controller is an integral component of the sensor node.
In this section we consider the micro-controller and its effect
on sensor node power consumption. We review the factors
influencing the power consumption and calculate the expected
performance based on tunable parameters. Micro controllers are
optimized for functions related to:
(1) Message Handling - Operations related to message parsing,
data fragmentation, handling TRQ, data/header manipulation,
and buffer management heuristics.
(2) Security Protocols - Operations related to data encryp-
tion/decryption and authentication protocols to support con-
fidentiality, tamper protection, authenticity, replay prevention.
The computation load (and hence execution time and energy
consumption) for encryption and decryption provides an oppor-
tunity to optimize the power states.
(3) Event Handling - Operations related to events that are
routed to a PIN assertions or triggers due to threshold crossings,
periodic timers or hysteresis effects.
(4) Performance Monitoring - Operations related to synthesis
of performance data specific to the sub-system it is monitored
for. Performance data is polled at optimal sampling granularity
subject to sampling variances.

Processor’s dynamic power dissipation is proportional to
capacitance, clock frequency, and the square of supply voltage
(P ∝ CL.V 2

dd.f). This implies that to accumulate the same
amount of computation, using lower voltage will consume less
energy in longer time because the power level is much lower
[11]. We use discrete performance states using voltage scaling
represented by Pi, where i is the state number. For X discrete
states, P0 is the highest-power/least-latency state, whereas PX

is the performance state.
Since, upon packet arrival, we are uncertain about computa-

tional requirements, any unused cycles allotted would eventually
be wasted due to idling for extra processor cycles. DVS algo-
rithm avoids wasting cycles by reducing the operating frequency
and ensuring that deadline guarantees are not violated by doing
so [12]. Based on the QoS requirements of each message and its
respective security attributes, P-State ceiling is set for the period
of tunable interval (Tobs). The ceiling is adjusted according to
the delay targets of the ICR or CH nodes.

P j
t = min(X,P j

t−1) + (γ/N)
∑

i

βj
i (cpu) (8)

where X is the maximum number of discrete performance states
(P -States), γ is the scaling factor ranging between 1 and 2 and
βj

i (cpu) is the QoS compliance factor. CPU state of node j is
incremented or decremented according to QoS compliance of
all CH packets passing through it.

C. Wireless Link Subsystem

Transmission time decreases as direct consequence of in-
creasing bit-rate which, without increasing the data transmission
decreases the radio duty-cycle. But high turn-on-to-receive exit
latency can make it impossible to achieve the required duty-
cycle (< 1%). Furthermore, when the radio switches from sleep
mode to transmit mode to send a packet, a significant amount
of power is consumed for starting up the transmitter itself [17].
Therefore optimal tuning is needed to avoid reactive response
to an idle slot during transmission. Power savings are realized
by running micro-controller at the optimal P -State and radio at
optimal frequency which spreads the computations in time and

transmits the data in a quick burst. This requires decoupling be-
tween computational and transmission rate, where each can run
at its optimal point using rate-matching between computational
processing and data transmission. Since the instantaneous traffic
load is mostly lower than the peak value, transmissions can be
slowed down, to the optimal operating point. Similar to DVS
[Section IV-B], which uses voltage adaptation for an effective
CPU power management, Dynamic Modulation Scaling adapts
the modulation level to match the instantaneous traffic.
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Fig. 2. Performance counters monitor CPU power, modulation power and QoS
compliance. It transmits the performance data upon timer trigger. Sink uses this
data to generate performance targets for nodes. Rate controller uses this data
to distribute delay targets to CPU, link and buffer control.

In this paper we will use M -QAM as the adaptive multilevel
modulation scheme because of its lower symbol error probabil-
ity and bit energy consumption than M -PSK for a given SNR.
Sensor node adjusts constellation size (b) and symbol rate (Rs)
to reduce the overall energy. Schurgers et. al [18] define the
following expression for minimizing energy required to transmit
one bit by choosing the correct values of b and Rs:

Ebit =
[
CS · (2b − 1) + CE + CR · RS max

RS

]
1
b

(9)

where CE and CR are functional components that incorporate
electronic circuitry for filtering, up-converting and modulating.
Parts of the circuitry operates at frequencies proportional to
instantaneous symbol rate (RS), while other parts operate at
frequencies proportional to maximum symbol rate (RS max).
CS represents the function of target performance that is weakly
dependent upon b. Since high value of RS results in minimizing
delay and energy transmitted per bit, it is logical to maximize
this value to RS max. Hence, the constellation size b is the only
option required to trade off energy versus delay. bi

t is initially
set to the maximum for the i-th node at time t and tuned
dynamically according to the sink feedback and QoS targets.
Similar to η [eq. (6)], this parameter is tuned as a function of
target and measured QoS.

V. PARAMETER TUNING AND FITNESS FUNCTION

In this section we will discuss the aspects of coordinated
tuning and fitness function (Fig. 2) that uses the parameters
defined in Section IV. While tuning is necessary to maximize
the performance/energy ratio of given set of nodes for a given
topology (clustering, routing, etc.) and QoS, fitness function is
required to optimize the sensor network topology to achieve
the target performance/energy ratio for the entire network with
optimal battery utilization. GA utilizes the optimal operating
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points and performance feedback of the nodes of the instanta-
neous topology to calculate the output of the fitness function
which influences the cluster formation/placement, membership,
functional attributes, and routing decisions [8].

A. Coordinated Tuning

Coordinated tuning is necessary for identifying the operating
point in order to maximize the performance of the node with
respect to energy consumed. Performance is measured using
a QoS function that is dependent upon communication delay,
messaging priority, etc. Router node j estimates the QoS error
for cluster head packet i (ξj

i ) using:

ξj
i =

T j
i − max(ε, (1 − Qpi)) · T j

imax

max(ε, (1 − Qpi)) · T j
imax

, 0 ≤ Qpi ≤ 1 (10)

where T j
i represents the processing delay for packet i on ICR

j, Qpi is the priority of i-th packet, and T j
imax

is the maxi-
mum delay allowed for i-th packet on j-th ICR. Periodically,
sink sends the SYNC-sink message containing new parameters
(T j

imax
, Qpi and Hurst (H)) for all member nodes (R(i)) of

route catering CH i. Each ICR and CH node implements the
closed-loop-control function that minimizes the ξj

i by tuning
inactivity interval threshold (ηj) [eq. (6)], CPU P -state ceiling
(P j) [eq. (8)] and modulation scaling parameter (bj) [eq. (9)].
Each of these components contribute partially to the maximum
allowed delay T j

i max thereby operate within its QoS bounds.
QoS contribution of each tunable component can be expressed
using eq. (12):

Dj
i (x) = max(ε, (1 − Qpi)).T

j
imax

(x) (11)

ξj
i (x) = (T j

i (x) − Dj
i (x))/Dj

i (x) (12)

T j
imax

(x) = φxT j
imax

(13)

where φx is the delay contribution factor due to processing
element x =(Memory, CPU, Link). Each processing element
measures QoS compliance by calculating the differential be-
tween measured (T j

i (x)) and expected delay (Dj
i (x)). It scales

the parameters accordingly to reduce the QoS error.
While early arrivals can cause a bursty traffic and memory

pressures, late arrivals can cause performance issues. To avoid
that situation, φx is tuned by monitoring the transmit buffer for a
period of programmed interval (Tobs). For high bandwidth case
we limit the transmit buffer utilization to 70%. This is done
by first reducing the modulation delay factor φb to minimum
bounds, then increasing the CPU delay factor φcpu and finally
increasing memory delay factor φIIT. For low utilization case,
we reduce the CPU delay factor first, followed by modulation
delay factor and finally memory.

B. Power Scaling Fitness Function (PSFF)

In this section we define a new fitness function that rewards
the uniformity of the power states and QoS compliance within
an established route. This function also penalizes a dispropor-
tionate allocation of power-states with respect to other routes as
well as non-optimal provisioning of memory buffer. Elements of
fitness function are described as follows: (1) QoS Fitness (ω1

i ) is
defined as degree to which routes are compliant with respect to
allocated delay budget. A route i is considered compliant (βi)
if the measured delay (Di) falls within ±δ% of target delay

(Ti). Over-compliance as well as under-compliance are both
penalized though with a non-uniform penalty factor (λ̃, λ).

ω1
i = 1 −

∑
j(λ̃|max(0, βj

i − δ)| + λ|min(0, βj
i + δ)|)

N
. (14)

This parameter reflects the burst variability of multiple arrivals
multiplexed locally. Variability exists due to variable message
sizes, arrival rates, priorities and non-uniform compute require-
ments per security attributes [9].
(2) Buffer Optimization (ω2

i ) is the measure of effective
memory utilization. Packets from different sources (CH and
ICR) arrive at different times and are statistically multiplexed
into the common buffer. These packets can have variable rates
depending upon sampling variances and QoS. Buffer occupancy
is dependent upon service times of the CPU and wireless
subsystem which is optimized as a part of tuning process. It
penalizes non-optimal provisioning of the memory blocks that
can cause over allocation or reactive switching between memory
power-states. Furthermore, inadequate buffer between CPU and
transmit logic can cause coupling between CPU processing and
transmission rates.

ω2
i = 1 −

∑
j min(1, |Bj

i prid/Bj
i act − 1|)

N
. (15)

(3) Uniform Power-State Distribution (ω3
i ) penalizes the

routes that consume disproportionate amount of power as com-
pared to average power utilization by other routes. It uses
average P -state residency (P j

i ) [eq. (8)] and average modulation

scaling (bj
i ) [eq. (9)] as the measure of power consumption by

a node i. As described above, one of the many reasons for
non-uniform distribution is heterogeneous message priorities,
variable rates and security attributes.

ω3
i = 1 −

∑
j min

(
2,
(
|P − P j

i | + |b − bj
i |
))

2N
. (16)

Overall PSFF fitness function of route i is the weighted sum
of all contributing elements. While TNF (Section III) [8]
incorporates communication energy as a part of NCF, it lacks
the energy contribution due to other components like micro-
controller and wireless logic. We modify that equation by
adding PSFF contribution:

PSFFi = µ1ω
1
i + µ2ω

2
i + µ3ω

3
i (17)

TNF = α1CHF + α2NCF + α3BF + α4RFL +
α5SEF + α6CF + α7PSFF (18)

where α1 + α2 + α3 + α4 + α5 + α6 + α7 = 1 and αi depends
upon the relative significance of the component. These values
can be made adaptive using an external heuristics. Details of
GA is described in [8] [9].

VI. RESULTS AND DISCUSSION

Experimental setup consists of 100 nodes at random positions
in a 30×30 space. Individual node picks up a random coordinate
between (0, 0) and (30, 30) and assigns itself an UUID and a
random battery capacity between 0 and 15. For simplicity, each
node is given a coverage area of 3×3 and assumes line-of-sight
propagation. After nodes placement in the listen mode, GA is
run with the cross-over rate of 60% and an initial mutation of
6%. The software simulates the sink operation in conjunction
with NS-2 software that simulates the network traffic. It exe-
cutes the GA that generates re-clustering/re-assignment tasks. It
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also calculates the fitness parameters based on network traffic,
battery usage and power-performance parameters (PSFF). A
separate process in the sink simulator runs a predictive al-
gorithm that estimates the traffic and data patterns (sampling
rates, data Redundancies, Self-Similarity etc.) into the future
using past hysteresis. This is in conjunction with the closed-
loop self-optimization of the nodes itself that run optimization
heuristics to distribute the delay budget between buffer, CPU
and wireless link infrastructure using route-feedback (H, delay
budget) from sink. While each GA objective tends to compete
with others to converge at the system equilibrium, the end
result is to maximize the network life for optimal coverage. The
experimental scheme involves local optimizers that tunes them-
selves and GA optimizers that optimizes the complete topology
and node assignments. Guaranteed delays are maintained by
adjusting delay times between CPU and wireless link (Section
V-A).
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Fig. 3. (a) Percentage of nodes connected to sink in the event of node failure;
(b) QoS measure (of Route 1) as a function of variable sampling rates of the
neighboring clusters; (c) Percentage of nodes lost (due to battery) as a function
of n-th generation.

In a power scaling case (PSFF), delay guarantees benefit
between 10-20% over non-PSFF case (Fig. 3b). Due of high
sampling variances, we incur frequent buffer-overflows or empty
buffer queues in non-PSFF case. Furthermore, because high
power-states remain static (due to reactive ON/OFF) for longer
duration, it processes the traffic faster that make it burstier
towards the sink and causes packet drops. PSFF not only
improves the QoS guarantees, but also reduces average power
consumption/node by about 27% due to proactive state deter-
mination between CPU and Wireless Link subsystem. Fig. 3(c)
shows the node loss versus of the number of generations. It is
found the Power-Scaling (PSFF) case significantly outperforms
the static one with about 25% at 600-th generation. On an
average it shows about 12-15% reduction in the number of
nodes lost. Main power savings are realized due to voltage and
modulation scaling for given delay guarantees (QoS) as well
as re-clustering triggers due to disproportionate allocation of
packet priorities, multiplexing of heterogeneous traffic patterns
with variable rates and security attributes. Fig. 3(a) shows 5-
8% improvement in the number of nodes with a valid route
to sink because residual energy saved (using PSFF and local
power scaling) promotes nodes to act as ICR(s).

VII. CONCLUSION

We presented dynamic energy-efficient sensor deployment
using a multiple-objective genetic algorithm in conjunction

with local tuning of CPU, memory and wireless link power
states. This approach maximizes coverage, quality-of-service
and network life by exploiting dynamic power scaling meth-
ods and re-clustering based on those methods. We observe
incremental improvement over traditional approach [8] due to
proactive mechanisms that predicts the future power states and
buffer requirements to achieve the projected delay guarantees
(guaranteed QoS). As a result of power conservation due to
scaling, we also observe reduced clustering triggers as lesser
nodes reach there functional thresholds. In a multi-hop network,
heterogeneous traffic flows are multiplexed into an ICR which
causes variations in the resource consumption. Re-clustering
with power scaling fitness function bias reduce such variations
and enhances the QoS compliance (up to 20%) with guaranteed
delays. PSFF also prevents GA to converge to a local optimum
due to uniform load requirement by biasing PSFF to about
25%. Future work include tuning the optimal bias for various
components of TNF [eq. (17)] and an ability to optimize delay
guarantees to maximize the network life.
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