System Approach to Intrusion Detection Using Hidden
Markov Model

Rahul Khanna
Intel Corporation, 2111 NE 25th Ave., Hillsboro,
OR 97124, USA

rahul.khanna@intel.com

ABSTRACT

In an era of cooperating ad hoc networks and pervasive wire-
less connectivity, we are becoming more vulnerable to ma-
licious attacks. Many of these attacks are silent in nature
and cannot be detected by the conventional intrusion detec-
tion system (IDS) methods such as traffic monitoring, port
scanning, or protocol violations. These sophisticated attacks
operate under the threshold boundaries during an intrusion
attempt and can only be identified by profiling the complete
system activity in relation to a normal behavior. In this pa-
per we discuss a hidden Markov model (HMM) strategy for
intrusion detection using a multivariate Gaussian model for
observations that are then used to predict an attack that ex-
ists in a form of a hidden state. This model is comprised of a
self-organizing network for event clustering, an observation
classifier, a drift detector, a profile estimator, a Gaussian
mixture model (GMM) accelerator, and an HMM engine.
We use this method to predict the intrusion states based on
observation deviation from normal profiles or by fitting it
into an appropriate attack profile.

Categories and Subject Descriptors
G.3 [Probability and statistics]: Multivariate statistics

General Terms
Security Algorithms

Keywords
IDS, Hidden Markov Models, wireless ad hoc networks.

1. INTRODUCTION

Intrusion detection system (IDS) protects the data in-
tegrity and manages the system availability during intrusion.
In a mobile ad hoc network (MANET) it must deal with
challenges related to fully-mobile, self-configuring, multi-
hop wireless networks with varying resources and limited
bandwidth. Routing protocols like dynamic source routing
(DSR), destination sequenced distance vector (DSDV), ad

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

IWCMC' 06, July 3-6, 2006, Vancouver, British Columbia, Canada.
Copyright 2006 ACM 1-59593-306-9/06/0007 ...$5.00.

349

Huaping Liu
Oregon State University, School of EECS,
Corvallis, OR 97331 USA

hliu@eecs.oregonstate.edu

hoc on-demand distance vector (AODV), and secure ad hoc
on-demand distance vector (SAODV), etc., collaborate as-
suming a trustworthy communication without a standard
authentication and authorization mechanism thus exposing
weak nodes. Existing IDS schemes include adaptive intru-
sion system (AID), graph based intrusion detection system
(GrIDS), network anomaly detection and intrusion report-
ing (NADIR), and network intrusion detector (NID).

Unlike wired networks, ad hoc nodes coordinate between
member nodes to allow exclusive use of the communication
channel. A malicious node can exploit this distributed and
complex decision making property of cooperating nodes to
launch an attack or hijack the node [1]. This inherent vul-
nerability can disable the whole network cluster and further
compromise the security by impersonating, message conta-
mination, hijacking, passive listening, or acting as a mali-
cious router. An IDS mechanism should be able to detect
intrusion by monitoring unusual activities in the system by
comparing it to a user’s profile and evolving trends. While
threshold based mechanisms may not be sufficient to pre-
vent malicious attacks if the attacker operates below the
threshold, it can be modified to monitor trends in the re-
lated system components to predict an attack. This is sim-
ilar to a hidden Markov model (HMM), where the hidden
state (attack) can be predicted from relevant observations
(changes in system parameters, fault frequency, etc.). We
define the concept of profile that characterizes the behavior
of a given subject with respect to a given object, thereby
serving as a signature or description of normal activity for
its respective subject(s) and object(s). Observed behavior
is characterized in terms of a statistical metric and model.
A metric is a random variable representing a quantitative
measure accumulated over a period. Observations obtained
from the audit records when used together with a statistical
model analyzes any deviation from a standard profile and
triggers a possible intrusion state.

This paper proposes an HMM based approach that cor-
relates the system observations (usage and activity profile)
and state transitions to predict the most probable intrusion
state sequence. An HMM is a stochastic models of discrete
events and a variation of the Markov chain. Like a conven-
tional Markov chain, an HMM consists of a set of discrete
states and a matrix A = {a;;} of state transition probabili-
ties. In addition, every state has a vector of observed symbol
probabilities, B = b;(v) that corresponds to the probability
that the system will produce a symbol of type v when it is
in state j. The states of the HMM can only be inferred from
the observed symbols, hence called “hidden”.

2. RELATED WORK AND MOTIVATION

Intrusion detection could be be considered equivalent to

an immune system that identifies and eliminates any anom-
alies. This requires understanding the specifications of the
normal processes so that any anomalies can be identified.
The identifiers should be distributed over the system with
identifiable and adaptable relationship. We therefore need
a model that, in each state, has a probability of produc-
ing observable system outputs and a separate probability
indicating the next states. Ko et al. suggested a policy
specification language to test the behavior of the prevliged
programs [2] where any deviation from normal was tagged as
a misuse. Wagner et al. proposed a statistical approach [3]
which monitors the system call trace of a programs execution
for compliance to the precomputed model. Ye et al. used
system call frequencies and system call ordering from audit
data to predict an intrusion [4]. Manganaris et al. proposed
an alert based policy mechanism [5] that associates an alert
with multiple events frequently occurring together.

HMM correlates observations with hidden states that fac-
tor in the system design where observation points are op-
timized using an acceptable set of system-wide intrusion
checkpoints (IC) while hidden states are created using ex-
plicit knowledge of probabilistic relationships with these ob-
servations. These relationships, which are also called pro-
files, are hardened and evolved with the constant usage of
the multiple and independent systems. If observation points
can be standardized, then the problem of intrusion pre-
dictability can be reduced to profiling the existing and new
hidden states to standard observations. For modeling a large
number of temporal sequences, HMM can act as an excel-
lent alternative, because it has been widely used for pattern
matching in speech recognition [6], image identification [7],
and Internet attacks [8]. If we consider an attack to be a pat-
tern of an observed sequence, HMM should be appropriate
to map those patterns to one of many attack states.

3. MODELING SCHEME

HMM modeling schemes consist of observed states, hidden
(intrusion) states, and HMM profiles. HMM training using
initial data and continuous re-estimation creates profile that
consists of transition probabilities and observation symbol
probabilities. Steps involved in HMM modeling include:

(1) Measuring observed states that are analytically or logi-
cally derived from the intrusion indicators. These indicators
are test-points spread all over the system.

(2) Estimating instantaneous observation probability matrix
that indicates the probability of an observation, given a hid-
den state p(S;|O;). This density function can be estimated
using explicit parametric model (Multivariate Gaussian) or
implicitly from data via non-parametric methods (multivari-
ate kernel density emission).

(3) Estimating hidden states by clustering the homogeneous
behavior of single or multiple components together. These
states are indicative of various intrusion activities that need
to be identified to the administrator.

(4) Estimating hidden state transition probability matrix us-
ing prior knowledge or random data. This prior knowledge
and long term temporal characteristics are an approximate
probability of state components transitioning from one in-
trusion state to another.

4. EMISSION STATES

Observed states represent competing risks derived analyt-
ically or logically using intrusion checkpoint indicators. Ma-
chine intrusion can be considered to be a result of several
components competing for the occurrences of the intrusion.
In this model intrusion checkpoint engine derives continues
multivariate observation which is similar to the mean and

350

standard deviation model except that it is based on cor-
relations among two or more metrics. These observations
b;(v) have continuous pdf and are a mixture of multivariate
Gaussian (normal) distributions and expressed [9] as:

M 1
bi(v) = S ik <—
> o (s,

exp (*% (0= p) " B (v ujk))) (1)

where ()7 denote transpose and

M
cjr > 0and Z =1
k=1

3k = covariance matrix of the k-th mixture component
of the j-th state

W, = mean vector of the k-th mixture component of
the j-th state

v = observation vector
M = number of dimensions of an observation with

a multivariate Gaussian distribution

Oix = (Zjk, p;),) = Gaussian components

njr = drift factor of the k-th mixture component
of the j-th state

Xjk = (0jk, ¢k, njr) = user profile components.

It is the responsibility of the intrusion checkpoint engine
to re-estimate the \;i; parameters dynamically for all ma-
trices and all possible attack states. Various matrices that
represent dimensions of an observation are the following:
(1) Resource activity trend is the measure of a resource ac-
tivity that is monitored over a larger sampling period and
has characteristics that repeat over that sampling period.
For example, CPU activity changing depending upon the
time of the day. Each period of activity can be though of as
an extra dimension of activity measure.

(2) Ewvent interval is a measure of an interval between two
successive activities. For example, logging attempts between
two successive intervals falls in this category.

(3) Ewvent trend is the measure of events monitored over a
larger sampling period with an objective to calculate the
event behavior with a built-in repeatability. For example,
the count of logging attempts in a day falls in this category.

5. HIDDEN INTRUSION STATES

Hidden states S = {S1,S2, -+ ,Sn—_1,Sn} are the set of
states that are not visible but each state randomly generates
a mixture of the M observations (or visible states O). The
probability of the subsequent state depends only upon the
previous state. Complete model is defined by the following
probabilities; transition probability matriz A = {a;;} where
ai; = p(Si|Sj), observation probability matriz B = (b;(vym))
where b;(vm) = p(vm|Si), and an initial probability vec-
tor w = p(S;). Observation probability represents an at-
tribute that is observed with some probability if a particu-
lar failure state is anticipated. The model is represented by
M = (A, B,w). Transition probability matrix is a square
matrix of size equal to the number of states and represents
the state transition probabilities. The observation proba-
bility distribution is a non-square matrix whose dimension
equals the number of states by number of observables and
represents the probability of an observation for a given state.
The Intrusion Detection (IDS) as defined in this paper uses

the following states:

(1) Normal (N) state indicates the profile compliance.

(2) Hostile intrusion attempt (HI) indicates a hostile intru-
sion attempt that is in progress. This is typical of an exter-
nal agent trying to bypass the system security.

(3) Friendly intrusion attempt (FI) indicates a non-hostile
intrusion attempt that is in progress. This is typical of an
internal agent trying to bypass the system security.

(4) Intrusion in progress (IP) indicates an intrusion activity
that is setting itself up. This includes attempt to privileged
resources, acceleration in resource usage etc.

(5) Intrusion successful (IS) indicates a successful intrusion.
A successful intrusion will be accompanied with unusual re-
source usage (CPU, memory, 10 activity, etc.).

»w o~ "0

<

Figure 1: HMM model with five intrusion states
and four Gaussian distributions for each state. Each
Gaussian distribution can be represented as a mix-
ture component of an observation.

6. IDSARCHITECTURE

In ad hoc networks, an IDS system is deployed at the
nodes to detect the signs of intrusion locally and indepen-
dent of other nodes, instead of routers, gateways or firewalls.

In this section we will define components of the intrusion
detection system that cooperate with each other to predict
an attack state. After the model is trained, it enters a run-
time state where it examines and classifies each valid obser-
vation. It then decides to either add it to a profile update,
reject it, or mark it un-classified. This decision is impor-
tant because a drift in the user’s normal behavior may also
represent an attack situation. An un-classified observation
is monitored for classification in the future. This obser-
vation will later be rejected as a noise, or classified to a
valid state based on the trending, similarity between un-
classified states tending toward certain classification, and
feedback from state machine based on other independent
observations. Various components of an intrusion detection
system are explained as follows:

6.1 Profile Estimator (PE)

The profile estimator is responsible for maintaining/re-
estimating user profiles, classifying an observation to an at-
tack state, triggering an alert upon detecting suspicious ob-
servation, or acting on the HMM feedback for re-estimation
of profile. User profile data consist of pdf parameters repre-
sented by A\jix = (X;k, 4, Cjk, k) Where j represents the
intrusion state and k represents the GMM mixture compo-
nent. A new observation is evaluated against this profile
which results in its classification and drift detection.

6.2 Instrumentation

Instrumentation produces an event data that is processed
and used by clustering agent to estimate the profile. Com-

351

ponent identification and measurements involve setup to en-
sure whether events should be sampled at regular intervals
or be notified (or alerted) as an event vector upon record-
ing some changes in pattern. The sensor data should be
able to analyze data either as they are collected or after-
wards and be able to provide real-time alert notification
for suspected intrusive behavior. This will require fast act-
ing silicon hooks that are capable of identifying, counting,
thresholding, time-stamping, eventing, and clearing an ac-
tivity. Examples of such hooks are performance counters,
flip counters (or transaction counters), header sniffers, fault
alerts (page faults etc.), bandwidth usage monitors etc. At
the same time software instrumentation is also required to
sample software related measurements like session activity,
system call usage between various processes and applica-
tions, file-system usage, swap-in/swap-out usage, etc. Most
of the operating systems support these hooks in the form
of process tracking (e.g., PID in UNIX). The combination
of these fast-acting hooks along with sampling ability are
clustered together to enact an observation.

6.3 Data Clustering

Observation data are dependent upon the aggregation of
events that are active. For example, a resource fault event
generated by resource utilization engine is further catego-
rized into fault types like page fault. Page faults count and
invalid page faults in a sampled interval, represent instances
of measurement (m1,m2). An observation (emission) can be
a set of co-related measurements but represented by a single
probability distribution function. Each of these measure-
ment carries different weights as in multivariate Gaussian
distribution. For example, disk I/O usage may be related to
network I/O usage because of NFS. Such relationship is in-
corporated into the profile for the completeness of the obser-
vation and reduces the dimensionality for effective runtime
handling. To achieve this reduced dimensionality, model
uses the supervised self-organizing networks (sSOM) [10],
which is a clustering method to map similar data to nearby
function. HMM observation in this case is derived out of
profile that represents a consolidated and single representa-
tion of NFS activity (sSOM output). A sample profile data
structure is defined as follows.

NFS Profile {

Observation Name = NFS Activity

Input Events = {Disk I/O, Network I/O,---}
Output Emissions = Function (Input Events)

PDF Parameter = {D[N], D[HI], D|FI],D[IP], D[IS]}
Unclassified Observation = {U[t1],Ul[te], - ,U[tn]}
Concept Drift Data = {n¢1,me2, -+ }

}
6.4 Classifier

Observation data is analyzed for the purpose of sub clas-
sification to an appropriate attack state in a profile driven
by different probability distribution parameters. Observa-
tion are also analyzed for concept drift to compensate for
changes in user (or attack) behavior. Therefore, one of the
objectives of the IC engine is to build classifier for j (attack
states), that has the posterior probability p(j|v) close to
unity for one value of j and close to zero for all the others,
for each realization. This can be obtained by minimizing
the Shannon entropy given observed data v, which can be
evaluated for each observation as

M

E =3 p(lv) loa(n(ilv)).

v=1

(2)

Instrumentation Drift
M Detector | | |
(v e B Trioge
N «
| Data Clustering (SDM) | +
! I T = > HMM
A 4 \ 4
| (o 1 [i y
Observation Matrices » | IP Attack State
* Is +
(Co'aDSé;'ef Feedback
- Engine
Profile
Estimator

Figure 2: Intrusion checkpoint Engine - Re-
estimation of the profile uses an observation clas-
sifier and an HMM feedback to the profile. Pro-
file manager triggers an attention event if observa-
tion classifies to an attack state or cannot be clas-
sified (U). Attention event initiates an HMM state
sequence prediction based on other continuous ob-
servations (dotted arrows) extracted in conjunction
with profiles and state transition probabilities.

Each IC engine samples its observation independent from
other observations (or emissions). Whenever it suspects an
abnormal activity, it triggers an alert that causes an evalua-
tion of most likely state using the Viterbi algorithm. As sys-
tem changes its active behavior, the profile corresponding to
that behavior is updated to avoid false positive evaluations
by re-evaluating the model parameters using continuous es-
timation mechanism in real-time. New HMM parameters
are evaluated again against the historical HMM parameters
by comparing the entropy between old and retrained model.
The expectation-maximization (EM) algorithm [11] provides
a general approach to the problem of maximum likelihood
(ML) parameter estimation in statistical models with vari-
ables that are not observed. The evaluation process yields
a parameter set which it uses to assign observations points
to new states. The computational complexity of the EM al-
gorithm for GMMs is O(i x ND?) where i is the number of
iterations performed, N is the number of samples, and D is
the state dimensionality. A common implementation choice
is k-means algorithm in which k clusters are parameterized
by their centroids with a complexity of O(kND). A num-
ber of other algorithms can also be used of which X-means
clustering [12] is one that reduces the complexity to O(D).

6.5 Concept Drift Detector (CDD)

This module detects and analyzes the concept drifting [13]
in the profile where training data set alone is not sufficient,
and the model (profile) needs to be updated continually.
When there is a time-evolving concept drift, using old data
unselectively helps if the new concept and old concept still
have consistencies and the amount of old data chosen arbi-
trarily just happen to be right [14]. This requires an effi-
cient approach to data mining that helps select combination
of new and old data (historical) to make an accurate re-
profiling and further classification. The mechanism used is
the measurement of Kullback-Leibler (KL) divergence [15],

352

or relative entropy measures the kernel distance between
two probability distributions of generative models. KL di-
vergence is also the gain in Shannon information involved in
going from the a priori to the posteriori expressed as

ajkr = KL(b, (0]0]k¢), bj (v]0e)) ®3)

where ;i is KL divergence measure, 0;-,“ is new Gaussian
component, and 8;x; is old Gaussian component of the k-th
mixture of the j-th state at time ¢.

We can evaluate divergence by a Monte Carlo simulation
using the law of large numbers [16] that draws an observa-
tion v; from the estimated Gaussian component Qézm com-
putes the log-ratio and averages this over M samples as

(vil@
Ak ~ MZI ('U| Jkt)))

(vi|O;xt)

KL divergence data calculated in the temporal domain are
used to evaluate the speed of the drift, also called drift factor
0 < n < 1. These data are then used to assign weights to
the historical parameters that are then used for re-profiling.

6.6 Feedback Engine (FE)

This component is responsible for feeding back the current
state information to the profile estimator. The current state
information is calculated by running the Viterbi algorithm
using the current pdf model parameters. This information
is used by the EM algorithm that is a general method for
improving the descent algorithm for finding the maximum
likelihood estimation.

6.7 Reevant Profiles

In this section we will look into events that forms input
to the profile structure. We define the HMM emissions as
a processed observation derived from one or more temporal
input events using a processor function. Exploiting tem-
poral sequence information of event leads to better perfor-
mance [17] of profiles that are defined for individual users,
programs or classes. An abnormal activity in any of the
following forms is an indicator of an intrusion or a worm
activity:

(1) CPU activity is monitored by sampling faults, inter-
processor interrupt (IPI) calls, context switches, thread mi-
grations, spins on locks, and usage statistics.

(2) Network activity is monitored by sampling input error
rate, collision rate, RPC rejection rate, duplicate acknowl-
edgments (DUPACK), retransmission rate, timeout rate, re-
freshed authentications, bandwidth usage, active connec-
tions, connection establishment failure, header errors and
checksum failures etc.

(3) Interrupt activity is monitored by sampling device inter-
rupts (non-timer interrupts).

(4) I0 utilization is monitored by sampling the 1/0 requests
average queue lengths and busy percentage.

(5) Memory activity is monitored by sampling memory trans-
fer rate, page statistics (reclaim rate, swap-in rate, swap-out
rate), address translation faults, pages scanned and paging
averages over a short interval.

(6) Flile access activity is monitored by sampling file access
frequency, file usage overflow, and file access faults.

(7) System process activity is monitored by sampling processes
with inappropriate process priorities, CPU and memory re-
sources used by processes, processes length, processes that
are blocking 1/Os, zombie processes and command and ter-
minal that generated the process.

(8) System faults activity represents an illegal activity (or a

(4)

hardware error) and is sampled to detect abnormality in the
system usage. While rare faults represent a bad program-
ming, but spurts of activity indicate an attack.

(9) System calls activity are powerful tools to get computer
system privileges. An intrusion is accompanied with the
execution of non-expected system calls. If the system-call
execution pattern of a program can be collected before it is
executed and is used to compare with the run-time system-
call execution behavior, then non-expected execution of sys-
tem calls can be detected. During real-time operation, a
pattern-matching algorithm is applied to match on the fly
the system calls generated by the process examined with en-
tries of the pattern table. Based on how well the matching
can be done, it is decided whether the sequence of system
calls represents normal or anomalous behavior [18].

(10) Session activity is monitored by sampling the logging
frequency, un-successful logging attempts, session durations,
session time, and session resource usages, etc.

7. SYSTEM CONSIDERATIONS

Enormous amount of measurement data and computa-
tional complexity is an important consideration in the de-
sign of an effective IDS system. Various silicon hooks can be
added to speed up the intrusion detection. In this section
we describe some of these hooks:

7.1 Sensor data measurement (SDM)

hooks reduce the system complexity and increases the pos-
sibility of software reuse. SDM accelerates the combined
measurements of the clustered components with an ability
to send alerts using a systems policy. Hardware and software
acts as a glue between transducers and control program that
is capable of measuring the event interval, event trend (Sec-
tion 4) with an ability to generate alerts on deviation from
normal behavior (represented by system policy). The SDM
hardware exists as a multiple-instance entity that receives
alert vectors from various events spread all over the system.
A set of correlated events that forms a cluster are registered
against a common SDM instance. This instance represents
the bayes optimal decision boundaries between set of pat-
tern classes with each class represented by an SDM instance
and associated with a reference vector. Each SDM instance
is capable of trending and alerting and integrates the mea-
surements from the event sensors into a unified view. Cluster
trending analysis, is very sensitive to small signal variations
and capable of detecting the abnormal signals embedded in
the normal signals by supervised self-organizing maps [10]
using learning vector quantization (LVQ). The strategy be-
hind LVQ is to effectively train the reference vectors to
define the Bayes Optimal decision boundaries between the
SDM classes registered to an SDM instance.

7.2 Observation data classifier

(ODC) hooks accelerate the classification of an observa-
tion alert generated by SDM. This is a multiple-instance
hardware capable of handling multiple observations in par-
allel. Each registered observation instance of the ODC hook
consists of Gaussian probability distribution parameters of
each state. Upon receiving an SDM alert, the observation
corresponding to this alert is then classified to a specific
state (Section 6.4). Re-classification of observed data may
cause changes in the probability distribution parameters cor-
responding to the state. ODC is capable of maintaining the
historical parameters which are then used to calculate con-
cept drift properties (drift factor and drift speed, etc.) using
KL drift detector.

353

7.3 GMM calculator

calculates the probability of the Gaussian mixture for each
state, using the current observation. During the system
setup, event vectors are registered against SDM instance
(Fig. 3). These events are clustered and processed in its
individual SDM. The processing includes trigger properties
that initiates an observation. These observations then act
as single-dimensional events that are registered to its ODC.
Upon receiving the trigger, ODC performs re-classification
of the observation (derived from trigger) and calculates the
concept drift. It should be noted, that this hardware is ac-
tivated upon a trigger by its parent.

| SDM1
> SDM2
~—> SDM3

ODC1=(Z,1,C.77)

oDC2=(Z,p1,C.77)

ODC3=(X,p,C,77) |<

ODC4 = Empty
A 4 Yy v

GMM Calculator

Classification
Feedback

Figure 3: Illustration of the relationship be-
tween events (circles), sensors (SDM) and classifiers
(ODCQC). Clusters of events (marked by similar col-
ors) are registered to an SDM. SDM upon evaluat-
ing the event properties, generate an event to ODC.
ODC is responsible for classification, trend analysis
and drift calculation. Classification feedback acts as
a feedback mechanism for re-estimation.

| Reference Vector |

T

LVQI
Learning
Perceptron

| Input Event Vectors
Static Event

Vector
Processo

Euclidean
distance

Emission Data |—P| To ODC |

Figure 4: SDM instance functional block that uses
LVQ1 clustering algorithm. Static events are cre-
ated by routing an event vector and acts as principal
trend setter.

8. CONCLUSION

As an experiment, we set up profile trainer for CPU ac-
tivity, systems call activity, system process activity, network
activity, and session activity (Section 6.7). All these profiles
are related to the host activity for a specific user. This
profile was trained on an Linux system over a period of
1 week on the activities related to these profiles. On the
second week the same system then additionally ran subset
of DARPA/99 [19] that contains newer and stealthy ver-
sions [20] of DARPA /98 attacks. We ran this training data
for 2 weeks where the first week is attack free, and the second
week is the attack run. We then ran subset of fourth and

fifth week of test data that contained 201 instances of about
56 types of attacks. We analyzed the performance of in-
trusion detection by measuring TRUE positives and FALSE
positives based on the test data. We also measured the sen-
sitivity of the training data by eliminating random days of
the training sets. Fig. 5 displays ROC curves for the ex-
periment using variable data sets and Concept Drift factor
(Section 6.5) as the operating parameter. The false alarms
rates stays low till the probability of detection reaches 90% .
Further increase in detection probability (more than 90%),
also increases the false positive rate. Detection probability
remains constant till the False Positive probability reaches
35%, beyond which it increases slowly.

T

----25% Data
[R 50% Data
----- 75% Data
—100% Data

Detection Probability

0 T T
0 0.2 0.4

0.6 0.8 1

False Positive Probability

Figure 5: Receiver operating characteristics (ROC)
curve showing the true positive detection/false pos-
itive ratio.

In ad hoc networks where wireless interface and MAC pro-
tocol make the node more prone to the attack, an exploit
may use the weakest node to attack a network. Intrusion De-
tection by only monitoring deviations in network traffic pat-
terns, restricted ports, protocol violations or retransmissions
is not sufficient because certain abnormal-looking behavior
may be valid because of media conditions and terrain. Cer-
tain attacks can work within threshold, and can only be de-
tected by monitoring the affected components (like memory,
CPU, login attempts, etc.). Since the intrusion state cannot
be inferred directly by monitoring any specific parameters,
we need to predict an attack based on mixture of observ-
able data-points, events and current states. This leads to
a statistical mechanism for intrusion prediction using HMM
where observed data are represented as a weighted Gaussian
mixture component. Using this mechanism, an observed de-
viation from a normal behavior carries a higher probability
of being in an intrusion state. We also discussed a mech-
anism to distinctly identify an un-natural behavior from a
concept drift due to the change in user’s behavior and self-
organizing networks mechanism to cluster all the correlated
events in a single representation of an observation to an
HMM model. This approach is helpful in detecting attacks
as we attempt to identify the intruder’s final intent after he
has gained or is attempting to gain an illegal entry into the
system instead of just detecting how he entered.

We also identified minimal hardware hooks that can accel-
erate intrusion detection data processing in real-time. While
this is an effective approach to a successful intrusion detec-
tion, one of the shortcomings is the computational overhead
that has to be mitigated using a custom ASIC to support
IDS computations. This hardware has to be cost effective
with low power consumption. We are currently evaluating
cost/power/performance characteristics of a sample intru-
sion detection that uses buffer overflow attack to gain an
illegal entry. Future work includes developing a mechanism
to exchange the intrusion data with other members of an ad

354

hoc network to identify a malicious node. This is required
to prevent a compromised (or malicious) node participate in
an ad hoc network, thereby preventing a large-scale attack
due to cooperating nature of the member nodes. Also being
investigated is an energy-efficient mechanism to limit the
IDS activity during non-intrusive periods while accelerating
it upon suspicious activity. We are exploring the possibil-
ity of using hybrid methods that uses HMM state feedback,
event threshold, and random sampling. While this approach
is very useful in detecting a ripple in the normal usage of a
system, it is computationally expensive in terms of compute
cycles and memory usage. Therefore this model is being
enhanced to a hybrid HMM/DBN (Dynamic Bayesian Net-
work) approach where HMM is used for modeling of tem-
poral IDS characteristics while state probability model is
represented by Bayes network.

9. REFERENCES
(1

E. Royer and C. K. Toh, “A review of current routing
protocols for ad-hoc mobile wireless networks,” IEEE
Personal Communications, vol. 6, pp. 45-55, Apr. 1999.

C. Ko, G. Fink and K. Levitt, “Automated detection of
vulnerabilities in privileged programs by execution
monitoring,” in Proc. 10th Annual Computer Security
Applications Conference, Orlando, FL, Dec, 134-144, 1994.
D. Wagner and D. Dean, “Intrusion detection via static
analysis,” in Proc. IEEE Symposium on Research in Security
and Privacy, Oakland, CA, 2001.

N. Ye, X. Li, Q. Chen S. M. Emran, and M. Xu, “Probabilistic
techniques for intrusion detection based on computer audit
data,” IEEE Trans. SMC-A, vol. 31, pp. 266-274, Jul. 2001.
S. Manganaris, M. Christensen, D. Serkle, and K. Hermix, “A
data mining analysis of RTID alarms,” 2nd International
Workshop on Recent Advances in Intrusion Detection,
Purdue University, West Lafayette, Indiana, USA, Sep. 1999.
L.R. Rabiner, “A tutorial on hidden Markov models and
selected applications in speech recognition,” Proceedings of the
IEEE, vol. 77, pp. 257-286, Feb. 1989.

H. Bunke and T. Caelli,“Hidden Markov models: Applications
in computer vision,” World Scientific, Series in Machine
Perception and Artificial Intelligence, vol. 45, 2001.

F. Cuppens, “Managing alerts in a multi-intrusion detection
environment,” in Proc. 17th Annual Conf. Computer Security
Applications, New Orleans, Louisiana 2001.

A. Lee,“Gaussian mixture selection using context independent
HMM,” in Proc. 2001 IEEE ICASSP, 2001.

T. Kohonen, Self-organizing maps. Springer Press, 1995.

T. K. Moon, “The expectation-maximization algorithm,”
IEEE Signal Processing Magazine, pp. 47-59, Nov. 1996.

D. Pelleg and A. Moore, “Xmeans: extending K-means with
efficient estimation of the number of clusters,” in Proc. 17th
Int. Conf. Machine Learning, p. 727, 2000.

G. Widmer and M. Kubat, “Learning in the presence of
concept drifting and hidden contexts,” Machine Learning,
vol. 23, pp. 69-101, 1996.

W. Fan, “Systematic data selection to mine concept-drifting
data streams,” ACM SIGKDD, 2004.

S. Kullback and R. A. Leibler, “On information and
sufficiency,” Annals of Mathematical Statistics, vol. 22,

pp. 79-86, Mar. 1951.

G. R. Grimmett and D. R. Stirzaker, Probability and random
processes. Oxford, U.K.: Clarendon Press, 2nd edition, 1992.
A. K. Ghosh, A. Schwartzbard, and M. Schatz, “Learning
program behavior profiles for intrusion detection,” in Proc.
Workshop on Intrusion Detection and Network Monitoring,
pp. 51-62, Santa Clara, USA, Apr. 1999.

A. Wespi, H. Debar, and M. Dacier, “An intrusion-detection
system based on the Teiresias pattern-discovery algorithm,”
FEicar’99, Aalborg, Denmark, Feb. 27-Mar. 2, 1999.

DARPA, “DARPA 1999 Intrusion Detection Evaluation,”
http://www.ll.mit.edu/IST /ideval/data/1999/1999_data
_index.html, 1999.

R. P. Lippmann and R. K. Cunningham, “Guide to creating
stealthy attacks for the 1999 DARPA off-line intrusion
detection evaluation,” MIT Lincoln Laboratory Project
Report IDDE-1, June 1999.

(2]

(3]

(4]

5]

(6]
7
(8]
[9]

[10]

1]

[12)

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

