
452 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008

Simplified Receiver Design for
STBC Binary Continuous Phase Modulation
Liang Xian, Ratish Punnoose, and Huaping Liu, Member, IEEE

Abstract— Existing space-time codes have focused on multiple-
antenna systems with linear modulation schemes such as phase-
shift keying and quadrature amplitude modulation. Continuous
phase modulation (CPM) is an attractive scheme for digital
transmission because of its constant envelope which is needed
for power efficient transmitters. Recent research has shown
that space-time coded CPM can achieve transmit diversity to
improve performance while maintaining the compact spectrum
of CPM signals. However, these efforts mainly combine space-
time coding (STC) with CPM to achieve spatial diversity at the
cost of a high decoding complexity. In this paper, we design
space-time block codes (STBC) for binary CPM with modulation
index h = 1/2 and derive low-complexity receivers for these
systems. The proposed scheme has a much lower decoding
complexity than STC CPM with the Viterbi decoder and still
achieves near-optimum error performances.

Index Terms— Continuous phase modulation, wireless commu-
nications, space-time block codes, low-complexity decoding.

I. INTRODUCTION

CONTINUOUS phase modulation (CPM) [1] is a very
attractive scheme for wireless communications because

of its constant envelope, compact spectrum, and flexible
bandwidth-performance tradeoffs. Binary CPM (BCPM) with
a modulation index 1/2 (for brevity, we call it BCPM0.5 in
this paper) is widely used in wireless communication systems.
For example, Gaussian minimum shift keying (GMSK) has
been used in the global system for mobile communications
(GSM). The duration of the impulse response of the pre-
modulation filter L is one of the parameters that control the
signal spectrum; increasing L results in a more compact spec-
trum at the expense of a higher bit-error rate (BER) under the
same bit-energy-to-noise-density ratio Eb/N0 due to the in-
creased level of inter-symbol interference (ISI). These proper-
ties make BCPM0.5 an attractive scheme to use, especially in
power-constrained applications. Appropriately designed space-
time codes for BCPM0.5 add diversity while having constant
envelope properties and low receiver complexity.

Space-time code design criteria for general CPM are de-
veloped by Zhang and Fitz [2], and a reduced-complexity
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receiver for multiantenna layered space-time systems with
binary CPM is described by Zhao and Giannakis [3]. Space-
time coded MSK is analyzed by Cavers [4]. In particular, the
relationship between offset and non-offset modulation formats
and the effect of pulse shape are explored. Orthogonal space-
time coding with CPM for systems with two transmit antennas
is introduced in [5], [6] to reduce decoding complexity. In
[7], concatenation of convolutional code and MSK-STBC is
studied. Later, the Alamouti code [8] is applied to orthogonal
frequency shift keying in [9], and blind detection scheme
of MSK with the Alamouti code in fast fading channels is
proposed in [10]. Viterbi decoders are used to recover the
transmitted symbols in these schemes and decoding complex-
ity is still relatively high.

In this paper, we design orthogonal space-time block codes
(OSTBC) [8], [11] for BCPM with a modulation index 0.5.
The orthogonal code design is based on Laurent decomposi-
tion of BCPM signals combined with differential precoding.
We then derive a simplified decoder with a linear finite impulse
response (FIR) filter to reduce ISI inherent in BCPM0.5 sig-
nals with two transmit antennas. The proposed scheme signif-
icantly improves the error performance. For STBC BCPM0.5
with more than two transmit antennas, decoding based on FIR
filtering becomes inefficient. Therefore, we derive a soft deci-
sion feedback decoding scheme to simplify the receiver while
maintaining a satisfactory performance. The STBC BCPM0.5
designed together with the proposed decoding schemes has
a much lower complexity than STC BCPM0.5 with Viterbi
decoding, especially when L of the pre-modulation filter is
large, while their performances are similar.

The design of STBC with BCPM0.5 based on Lau-
rent decomposition is briefly discussed in Section II. Two
low-complexity, ISI-resistant decoding schemes for STBC
BCPM0.5 are presented in Section III. Section IV provides
numerical results to assess the diversity and error performance
of the proposed code over quasi-static channels as well as
time-varying fading channels and the effect of various system
parameters and receiver designs.

II. CODE DESIGN BASED ON LAURENT DECOMPOSITION

Consider a system with M transmit antennas and one
receive antenna. The received signal is expressed as

r(t) =

√
1
M

hT s(t) + n(t) (1)

where (·)T denotes transpose, n(t) is a complex Gaussian
noise with power spectral density N0, h = [h1, h2, · · · , hM ]T

is the channel coefficient vector with hm being the coefficient
from transmit antenna m to the receive antenna, and s(t) =
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[s1(t), s2(t), · · · , sM (t)]T is the transmitted signal vector with
sm(t) being the CPM signal from transmit antenna m.

The complex baseband binary CPM signal s(t) can be
written as the sum of K = 2L−1 pulse-amplitude modulation
(PAM) signals as [12]–[14]

s(t) =

√
Eb

T

K−1∑
k=0

N−1∑
n=0

ejπhak,nck(t − nT ), t ∈ [LT,NT ]

(2)
where T is the bit interval, N is the number of consecutive
bits, h is the modulation index, which equals 0.5 for the
signaling scheme of interest in this paper. The pseudo-symbols
{ak,n} can be derived from the information bits αn, and ck(t)
is the expression for the kth PAM pulse.

Among the K terms of PAM signals in Eq. (2), the first
term c0(t) usually contains the bulk of the total signal energy
[13], and the length of c0(t) is (L + 1)T [14]. Therefore,
considering only the first term will significantly reduce the
decoding complexity at the expense of a small performance
loss. By keeping only the major term, the binary CPM signal
is approximated as

s(t) ≈
√

Eb

T

N−1∑
n=0

ejπha0,nc0(t − nT ). (3)

For example, for MSK, a special case of GMSK with L = 1,
K = 2L−1 = 1 and the Laurent decomposition consists of
only the c0(t) term, which is expressed as

c0(t) =
{

sin( πt
2T ), t ∈ [0, 2T )

0, otherwise.
(4)

This also leads to the well-known interpretation of MSK as
offset-QPSK in which the pulse shape is a half-cycle sinusoid
with period 4T [12].

Information bits α̂n can be decoded by differential decoding
of the estimated pseudo-symbols â0,n and â0,n−1. Note that
â0,n =

∑n
i=0 α̂i [12], [13]. In this case, the Viterbi algorithm

can be applied because of the memory structure of CPM sig-
nals. However, there is a performance loss due to differential
detection. This loss can be eliminated by a data precoding
algorithm applied to the non-return-to-zero (NRZ) source data
symbols prior to BCPM0.5 modulation [15]. The precoding
scheme is described briefly as follows.

Let dk denote the equally probable source data bits at time
t = kT . The input to the BCPM0.5 modulator is formed as
αk = (−1)kdkdk−1 with d−1 = 1. Since symbols dk and αk

have identical statistics, BCPM0.5 signals with and without
precoding have the same power spectrum. When precoding is
applied to the source data symbols dk, we have

ejπha0,n =
{

jdn, n = 0, 2, 4, · · ·
dn, n = 1, 3, 5, · · · (5)

With precoding, the memory in BCPM0.5 is eliminated; thus
we can use a linear receiver, rather than a Viterbi decoder, to
decode the precoded BCPM0.5 signals. Now, we can readily
apply OSTBC for BCPM0.5 with precoding.

A modified Alamouti code obtained by taking the transpose
of the original Alamouti code can be used for 2 transmit
antennas with BCPM0.5. The modified code allows us to
keep the transmitted signal from the first antenna the same as
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Fig. 1. The modified Alamouti scheme (M = 2) for MSK with precoding
based on Laurent decomposition.

the transmitted signal in a single-input single-output (SISO)
antenna system. From the first transmit antenna, we transmit
d0, d1, d2, d3, · · · ; for the second transmit antenna, we transmit
−d1, d0,−d3, d2, · · · , as illustrated in Fig. 1. Obviously, sig-
nals from the two transmit antennas have the same spectrum.

III. LOW-COMPLEXITY DECODING

A. Receiver without an FIR filter

After passing through a real-valued matched filter c0(−t),
the received signal is sampled at time t = kT . The output
of the sampler is expressed as ri =

∫ (i+L+1)T

iT
r(t)c0(t −

iT )dt. Space-time decoding for linear modulations can also
be applied on ri.

Neglecting ISI in detecting BCPM0.5 signals leads to the
simplest receiver whose decoding complexity is the same
as that of linear modulations. However, ISI increases as the
number of transmit antennas and L increase, which will result
in performance degradation.

Let us consider MSK with the Alamouti space-time coding
scheme as an example. We use the outputs of the sampler after
the matched filter (i.e., r2n and r2n+1) to decode symbols d2n

and d2n+1. From Fig. 1, we have

r2n =

√
Eb

MT
[h1 (jd2ncfull + (d2n−1 + d2n+1)chalf)

+h2 (−jd2n+1cfull + (d2n−2 + d2n)chalf)] + n2n

(6a)

r2n+1 =

√
Eb

MT
[h1 (d2n+1cfull + j(d2n + d2n+2)chalf)

+h2 (d2ncfull − j(d2n+1 + d2n+3)chalf)] + n2n+1

(6b)
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where

cfull =
∫ (L+1)T

0

c2
0(t)dt = T (7a)

chalf =
∫ (L+1)T

0

c0(t)c0(t − T )dt (7b)

n2n =
∫ (2n+L+1)T

2nT

n(t)c0(t − 2nT )dt (7c)

n2n+1 =
∫ (2n+L+2)T

(2n+1)T

n(t)c0(t − (2n + 1)T )dt. (7d)

Applying the space-time decoding algorithm described by
Alamouti [8], we have

d′2n = �{h∗
1r2n/j + h2r

∗
2n+1

}
= �

{√
Eb

MT

[
(|h1|2 + |h2|2)d2ncfull − jh∗

1h2chalf

(2d2n + d2n−2 + d2n+2)] − jh∗
1n2n + h2n

∗
2n+1

}
(8a)

d′2n+1 = �{−h∗
2r2n/j + h1r

∗
2n+1

}
= �

{√
Eb

MT

[
(|h1|2 + |h2|2)d2n+1cfull + jh1h

∗
2chalf

(2d2n+1 + d2n−1 + d2n+3)] + jh∗
2n2n + h1n

∗
2n+1

}
(8b)

where �{·} denotes the real part.
The decision variables can be written as d̂n = sgn{d′n},

where sgn{·} is the sign function. Note that the nonzero terms
2d2n+d2n−2+d2n+2 and 2d2n+1+d2n−1+d2n+3 in Eqs. (8a)
and (8b) cause ISI. If ISI is completely canceled, space-time
coded MSK has the same error performance as space-time
coded BPSK.

B. Receiver with an FIR filter

Examining Eqs. (8a) and (8b) and noting that
�{−jh∗

1h2} = �{jh1h
∗
2}, we found that d′2n and d′2n+1 are

equivalent to the outputs when the input information sequence
d = [d0, d1, d2, d3, · · · ]T is passed through a pseudo-channel
modeled as a 5-tap symmetric FIR filter with an impulse
response

himp =

√
Eb

MT
�{[−jh∗

1h2chalf, 0, (|h1|2 + |h2|2)cfull−

2jh∗
1h2chalf, 0,−jh∗

1h2chalf]
T
}

. (9)

The output of the pseudo-channel is further corrupted by
additive Gaussian noise.

The optimum FIR filter in the sense of minimum mean-
square error (MMSE) cmmse is an effective way to recover the
information bits [16, ch. 6]. This filter is obtained as cmmse =
R−1z, where R = E{d′d′T } (E{·} denotes expectation) is
the autocorrelation matrix of the output of the pseudo-channel,
d′ = [d′0, d

′
1, · · · , d′τ−1]

T , τ is the length of himp, and z is the
cross-correlation vector between the input and the output of
the pseudo-channel. Note that, himp always has a major tap
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Fig. 2. GMSK with BT = 0.3, L = 3.

(the third one) that is significantly larger than other taps. As
a result of this major tap, the convolution of cmmse and himp

always approaches the delta function.

Ignoring some small terms of himp could further reduce
the order of cmmse, which consequently reduces the decoding
complexity for BCPM0.5 with L > 1. Although a higher
order of cmmse usually results in a better performance, the
minimum and necessary order should be chosen to achieve
the desired performance-complexity tradeoff. In fact, cmmse is
essentially the inverse filter of himp with the noise effect taken
into consideration. In practice, if noise power is unknown, we
can design a zero-forcing filter czf based on similar procedures.

The Levinson-Durbin recursion algorithm could be applied
to efficiently calculate R−1. Details of such algorithms can
be found in [17]. Moreover, the inversion can be simplified
further by considering the zero elements in R. Overall, the
proposed linear receiver has a much lower computational
complexity than existing schemes that employ the Viterbi
decoder.

The filter impulse response himp given by Eq. (9) for
BCPM0.5 with the Alamouti code always has a symmetrical
structure, resulting in a relatively low complexity of the
MMSE filter. Partial response BCPM0.5 (L > 1) may have
higher order of the filter himp. For example, let B be the 3-dB
bandwidth of the Gaussian pre-modulation filter. Then himp

for GMSK with BT = 0.5 and L = 2 has five taps, three
of which are nonzero; himp for GMSK with BT = 0.3 and
L = 3 has nine taps, five of which are nonzero. Among the
five nonzero taps, two small ones can be ignored to lower the
order to five as followings.

Recall that the length of c0(t) is L + 1. Therefore, there
are L different overlapping terms that cause ISI. For instance,
there are three overlapping terms among c0(t) for BCPM0.5
with L = 3 and its time-shifted copies as illustrated in Fig. 2:
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Fig. 3. Equivalent system model for space-time block coded GMSK with 4
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chalf large =
∫ (L+1)T

0

c0(t)c0(t − T ) ≈ 0.52T (10a)

chalf middle =
∫ (L+1)T

0

c0(t)c0(t − 2T ) ≈ 0.06T (10b)

chalf small =
∫ (L+1)T

0

c0(t)c0(t − 3T ) ≈ 0.0008T. (10c)

It found that chalf small accounts for only about 0.1% of the total
interference energy; thus we may ignore its contribution to
lower decoding complexity. Since two of the five nonzero taps
are the contribution from chalf small only, we can thus reduce
the order of himp from nine to five. In fact, one could even
keep chalf large only by ignoring both chalf middle and chalf small.
Although the resulting filter order is still five for this case, the
computation needed to determine each filter tap is reduced.

With these strategies, GMSK with L = 3 has a comparable
decoding complexity as that with L = 1 and 2. Similarly, for
BCPM0.5 with L > 3, keeping the pulses that contribute the
largest amount of ISI could significantly decrease the decoding
complexity at the expense of a slight error performance loss.

C. Receiver with decision feedback

When the number of transmit antennas is greater than two,
the symmetry property of himp in Eq. (9) does not hold
anymore. As an example, let us consider 4 transmit antennas.
We apply the transpose of the code matrix (4) given in
[11] as our transmission matrix. By applying the decoding
algorithm for linear modulations, we obtain similar results as
given by Eq. (8) for d′4n, d′4n+1, d

′
4n+2, and d′4n+3. If we

treat information bits d0, d1, d2, d3, · · · as the system input
and d′0, d

′
1, d

′
2, d

′
3, · · · as the output, the equivalent model of

this system is illustrated in Fig. 3. The equivalent system
model includes a sampler and four FIR filters with different
coefficients, i.e., with BT = 0.3 and L = 3, FIR0 and FIR3
in Fig. 3 have eleven taps while FIR1 and FIR2 have twelve
taps. For four antennas, ignoring chalf middle and chalf small cannot
reduce the order of any of the four filters. However, the number
of computations needed to calculate the filter taps will be

reduced significantly, and the four filters share common values
for most taps.

The overall system is no longer linear, and linear receivers
will suffer from an irreducible error floor, especially when the
value of L is large. However, soft decision-feedback receiver
works effectively.

Generally speaking, d′n is a linear combination of
dn−i, · · · , dn, · · · , dn+j corrupted by noise, where i + j + 1
is the number of taps of the corresponding FIR for dn. For
instance, i + j + 1 equals eleven or twelve for GMSK with
BT = 0.3. At each iteration of the decision-feedback process,
soft decisions are used to cancel the interference caused by
dn−i, · · · , dn−1, dn+1, · · · , dn+j .

A common method is to use the tanh function [18] to
derive soft decisions; however, in practice, tanh function is
difficult to realize because of its nonlinearity. We will apply a
linear function to obtain optimum soft decisions in the sense
of minimum mean-square error.

The output of the space-time decoder can be expressed as

d′n =
n+j∑

k=n−i

δkdk + N (11)

where δk is the power of dk and the power of noise N is Pn.
The optimal scaler x used to approximate dn should minimize
the mean-square error as

E

{(
d′n
x

− dn

)2
}

=

E

⎧⎨
⎩
(

δndn +
∑n+j

k=n−i,k �=n δkdk + N
x

− dn

)2
⎫⎬
⎭ = 0. (12)

We can solve the equation to obtain

x =
∑n+j

k=n−i δ2
k + Pn

δn
. (13)

Strictly speaking, x in Eq. (13) is optimal only for the
first iteration, as the signal-to-interference-plus-noise ratio
(SINR) will be slightly different after the first iteration. In
our simulation, we apply αx in the second and the third
iterations, where the optimal values of α (α > 1) are found
via simulation. The magnitude of d′n/x should be further
bounded for binary CPM, i.e., soft decisions for dn should
satisfy sgn{d′n/x} if |d′n/x| > η [19]. We set η = 1 for
any number of transmit antennas and any pulse length L.
Compared with the optimal η values, which can be found via
exhaustive search, applying η = 1 will slightly degrade the
error performance.

To obtain x, we must calculate the power of the FIR filter
in the equivalent system model, which implies that we need
to compute the power of the four FIR filters for all the four
transmit antennas as shown in Fig. 3. Fortunately, the major
taps δn of these four filters are very close to one another
while the weight magnitudes for the minor taps δk (k = n −
i, · · · , n−1, n+1, · · · , n+ j) are from the same set but with
different permutations. Therefore, we can use any of the four
filters to compute x, rather than calculating x four times.

The complexity of the decision-feedback receiver with soft
decisions depends on the number of iterations and the number
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of taps of the FIR filters. The number of iterations is dependent
upon mainly L. However, the number of taps of the FIR filters
depends on L and the number of antennas.

IV. SIMULATION RESULTS

Error performances of orthogonal space-time block coded
BCPM0.5 with two transmit antennas over frequency-flat
Rayleigh fading channels are shown in Figs. 4, 5, and 6,
which correspond to GMSK with BT = ∞ (L = 1, MSK),
BT = 0.5 (L = 2), and BT = 0.3 (L = 3), respectively. The
error performance of systems employing a triangle frequency
pulse with L = 2 is also provided to show that proposed
scheme is applicable for all BCPM0.5. Signal waveforms
over one bit interval T are represented by 16 samples in the
waveform-based simulation. BER curves of BPSK systems
with OSTBC is used as the baseline performance. The exact
error probability of BPSK with full diversity employing the
Alamouti code can be found in [20].
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Fig. 7. Performance of space-time block coded GMSK with 4 transmit
antennas.

All simulations assume a quasi-static channel with perfect
channel estimation except in Fig. 4, which includes the case of
MSK with pilot-aided channel estimation in fast time-varying
fading environments. For quasi-static channels, the size of a
frame over which the channel coefficients remain constant
is 200 data bits. For time-varying fading, channel estimation
for the proposed design is very simple and can be developed
based on Eq. (6); appropriate pilot sequences could be chosen
to cancel chalf from the received signal as d2n−1 + d2n+1 =
0, d2n−2 +d2n = 0, d2n +d2n+2 = 0, d2n+1 +d2n+3 = 0 and
transmitted periodically. For instance, for MSK a minimum
of 6 pilot bits are required and [1, 1,−1,−1, 1, 1] is a good
training sequence. To improve estimation quality, we add two
more pilot bits to form an 8-bit sequence. This allows the
receiver to obtain two estimates of the same set of coefficients:
the first estimate is obtained using pilot bits 1 to 6, the second
using pilot bits 3 to 8, and the final estimate is the average of
the two. For GMSK with BT = 0.3, L = 3, a pilot sequence
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of minimum of 10 bits is required. In obtaining the error
performance for time-varying fading channels with pilot-aided
channel estimates in Fig. 4, we assume a system operating at
a date rate of 270 kbps and carrier frequency of 1.8 GHz
with a vehicle speed of 60 mph. The channel is generated
by using the Jakes’ model. A pilot sequence is inserted at
the middle of every data 50 bits and used to estimate the
coefficients for these 50 bits without interpolation over pilot
periods. Thus channel estimation complexity for the proposed
design is comparable to that of STBC BPSK. It is observed
from Fig. 4 that with actual channel estimates the performance
degradation compared with the ideal case of perfect channel
estimates is within about 2 dB at a BER of 10−4.

It is found from the simulation results that the linear receiver
with an MMSE FIR filter is very robust to ISI. By examining
the slopes of the BER curves, we found that the proposed
STBC BCPM0.5 system with linear receivers achieves nearly
the same diversity as STBC BPSK. From Figs. 4 and 5, we
find that increasing the order of cmmse results in only negligible
performance improvement; thus, keeping the filter order to
minimum is highly recommended. For the scenario simulated
in Fig. 6, it is found that keeping chalf large only still achieves
almost the same diversity and the performance loss is within
1dB when compared with the receiver with a nine-tap FIR.

Performance of systems with four antennas is shown in
Fig. 7. Soft decision feedback by considering chalf large only
is found achieving good performance too. Without decision
feedback, GMSK with BT = 0.3 for 4 antennas suffers from
an irreducible error floor due to large ISI.

Comparing our results with the results in [4], we find that
for MSK signals the proposed simplified receiver achieves
almost the same performance as an ML receiver. This is
expected since the decomposition for MSK is exact even
though the decomposition for BCPM0.5 with L > 1 is
approximate. Since the various approximations to achieve the
minimum complexity for STBC BCPM0.5 with L > 1 results
in only a negligible performance loss, the proposed STBC
scheme and simplified receivers could have good practical
values.

V. CONCLUSION

We have proposed a space-time block code for BCPM0.5
signals. This scheme is based on Laurent decomposition com-
bined with data precoding, which allows us to apply the or-
thogonal code structure. We have also derived a linear MMSE
receiver for the proposed space-time block coded BCPM0.5
with two transmit antennas, and a nonlinear decision-feedback
receiver for systems with more than two antennas. The simpli-
fied receiver is very robust to ISI inherent in BCPM0.5 signals.
The combination of the proposed orthogonal code and the

simplified receiver achieves good performance for BCPM0.5
systems, and the decoding complexity is much lower than
existing schemes. For the scenarios where the time-bandwidth
product is not smaller than 0.5, the performance gap between
the proposed STBC BCPM0.5 and the baseline system −
STBC BPSK over frequency-flat Rayleigh fading channels −
is typically within about half a dB at a BER of 10−4, and
is slight different depending on the frequency pulse length L
and the number of transmit antennas.
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