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Abstract— This paper analyzes the error performance of
multiple-input multiple-output (MIMO) systems in frequency-
selective Rayleigh fading channels. A zero-forcing (ZF) receiver is
applied to separate transmitted data streams for each resolvable
multipath component. The decision for each symbol of a transmit-
ted data stream is based on combining L zero-forced multipath
components carrying information of the same symbol. Analytical
error rate expressions for the system in the absence of inter-
symbol interference (ISI) and inter-path interference (IPI) are
derived first. Then, the effects of ISI and IPI caused by frequency-
selective fading of the performance of a MIMO system with
direct-sequence spreading applied to each transmitted symbol
are studied by simulations. It is found that for a system with
N transmit antennas, M receive antennas, and L resolvable
multipath components, the ZF receiver combined with a RAKE
with maximal ratio combining is equivalent to a 2-dimensional
RAKE with a diversity order of (M − N + 1)L.

I. INTRODUCTION

Multiple receiving antennas have been used in the reverse
link of mobile communication systems to suppress or cancel
interference [1], [2]. Multiple-input multiple-output (MIMO)
systems [3]–[9] have been shown to provide high spectral
efficiencies. Existing research on MIMO techniques has fo-
cused mostly on capacity analysis and signal processing tech-
niques for frequency nonselective Rayleigh fading channels.
In the area of capacity analysis, significant research efforts
(e.g., [3]–[5]) have been dedicated to exploring the ultimate
theoretical capacity limit of MIMO systems in flat Rayleigh
fading channels. It has been shown that in slowly-fading flat
Rayleigh channels with mutually independent transmit and
receive antennas, channel capacity grows linearly with the
minimum number of antenna elements at either the transmitter
or the receiver end. In the area of signal processing and
performance analysis, error rate upper bounds of MIMO
systems in frequency nonselective Rayleigh fading channel
have been derived in [1] [9]. Based on these bounds, it was
concluded that with M receive antennas for N(N ≤ M) si-
multaneously transmitted data streams through an independent
matrix channel, appropriate signal processing schemes such as
a zero-forcing (ZF) scheme or a minimum mean square error
(MMSE) scheme can completely separate the N streams of
data and at the same time achieve a (M−N +1)-order path
diversity for each of the N streams of data.

In this paper, we study the performance of MIMO sys-
tems in frequency-selective Rayleigh fading channels. A zero-
forcing receiver [9] is applied to separate the spatially multi-
plexed data on a path-by-path basis. A maximal ratio combiner

is then used to combine the zero-forced resolvable paths carry-
ing information of the same transmitted symbol and form the
decision statistics. System and channel models are provided
in Section II. The analytical error performance of the receiver
assuming zero inter-symbol interference (ISI) and inter-path
interference (IPI) is analyzed in Section III. In Section IV
we provide numerical examples including assessments of the
impacts of ISI and IPI caused by frequency-selective fading,
followed by concluding remarks in Section V.

II. SYSTEM MODEL

Notation: Boldface upper-case and lower-case letters rep-
resent, respectively, matrices and column vectors. Temporal
indexes such as l (resolvable path) are put in parentheses next
to a variable. Spatial indexes such as n (transmit antenna) and
m (receive antenna) are indicated by subscripts. Operations to
a vector, a matrix, or a scalar are represented by superscripts.
These superscripts include (·)† representing conjugate trans-
pose, (·)∗ representing complex conjugate, (·)′ representing
transpose, and (·)+ representing pseudoinverse.

A. Transmitter model

We consider a single-user system with N transmit and
M receive antennas in a frequency-selective Rayleigh fading
channel with additive white Gaussian noise (AWGN). In the
transmitter, input data are first serial-to-parallel converted
into N streams without space-time encoding. Each of the N
streams of symbols is then baseband modulated. Finally the
N streams of waveforms are sent to N transmit antennas for
simultaneous transmission.

We focus on the baseband model of a system employing
pulse amplitude modulation (PAM) with zero inter-symbol
interference design1. The nth transmitted data stream (the
signal from the nth transmit antenna) is expressed as

xn(t) =
√

Es

∞∑
k=−∞

sn(k)g(t − kT ), n = 1, · · · , N (1)

where sn(k) is the kth symbol of the nth data stream, Es is
the energy per symbol, T is the symbol interval, and g(t) is
the transmitted Nyquist pulse shape (same for all transmitted
symbols) whose energy is normalized so that

∫∞
−∞ g2(t)dt =

1. In practical systems, frequency-selective fading occurs when

1Although the pulse shape is designed to have zero ISI at sampling instants,
multipath delay may cause ISI.
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the transmitted signals are of wide bandwidth. A widely used
method to generate a wide-bandwidth signal is by applying
direct-sequence spreading to the transmitted symbols. In this
case, g(t) is the spread waveform and each chip is shaped by
a Nyquist pulse shaping filter.

B. Receiver model

1) Received signal: Each of the N transmitted signals
is propagated independently through a frequency-selective
Rayleigh fading channel and received also independently by
all M receive antennas. Fading is assumed to be quasistatic
[9] allowing the channel fading process to be constant over a
block of data and change independently to a new realization.
With this assumption, the widely used model for the impulse
response of a frequency-selective Rayleigh fading channel can
be expressed as [10]

c(t) =
L−1∑
l=0

h(l)δ(t − lTp) (2)

where h(l) (zero-mean complex Gaussian) represents the
Rayleigh fading coefficient for the lth path, Tp is the minimum
multipath resolution, L is the number of resolvable multipath
components, and δ(t) is the Dirac delta function. The channel
is also modeled as having an exponentially decaying power
delay profile. Thus, the average power of the path with
index l is related to that of the first path as E{|h(l)|2} =
E{|h(0)|2}e−σl, where σ is the power decay factor.

The signal from each antenna goes through the frequency-
selective channel modeled by Eq. (2), resulting in multiple
delayed and independently faded copies of the same signal
at the receiver. The received signal of the mth antenna
rm(t), m = 1, . . . , M , is a sum of signals from N transmit
antennas and is expressed as

rm(t) =
N∑

n=1

L−1∑
l=0

h(l)mnxn(t − lTp) + νm(t) (3)

where h(l)mn represents the channel fading coefficient of the
lth path for the signal from the nth transmit antenna to the mth

receive antenna, νm(t) is the white Gaussian noise process
(complex with a zero mean) of power spectral density N0,
and xn(t) was given in (1).

The received signal rm(t) is filtered by a matched filter
matched to g(t) and then sampled at the symbol rate of each
data stream. In the case when g(t) is a direct sequence spread
waveform, rm(t) should be filtered by a chip matched filter
and sampled at the chip rate and then despread. The output
of the matched filter is processed by an array processing unit
to separate signals from the N transmit antennas on a path-
by-path basis. A RAKE receiver then captures the energy
contained in the resolvable multipath components and forms
the decision statistics for symbol-by-symbol detection of each
of the N parallel streams of data.

In deriving the following discrete model of the system,
symbol index k will be omitted for simplicity of notation.
In the absence of inter-symbol and inter-path interference, the
received spatial signal vector at the matched filter output for

the lth path of a symbol, r(l) (M × 1), is expressed as

r(l) = [r1, r2, . . . , rM ]′√
EsH(l)s + ν(l), l = 0, · · · , L − 1 (4)

where rm is the received signal from the mth receive antenna,
s = [s1, s2, . . . , sN ]′ is the transmitted symbol vector
over one symbol interval across N transmit antennas, and
ν(l) = [ν1(l), ν2(l), . . . , νM(l)]′ is the received wide-
sense stationary noise vector with independent and identically
distributed components on the lth path. The channel matrix
for the lth path of a particular symbol, H(l) (M × N), can
be expressed as

H(l) = [h(l)1 h(l)2 . . . h(l)N ]

=




h(l)11 h(l)12 · · · h(l)1N

h(l)21 h(l)22 · · · h(l)2N

...
...

h(l)M1 h(l)M2 · · · h(l)MN


 (5)

where the zero-mean, Gaussian column vector h(l)n (M × 1)
is given as h(l)n = [h(l)1n, h(l)2n, . . . , h(l)Mn]′.

Symbol vector s is detected using the received spatial
vectors on L resolvable paths r(l), l = 0, · · · , L − 1, given
in (4). Because of the inter-antenna interference, r(l) needs to
be processed before multipath combining.

2) Zero-forcing processing: A ZF scheme is applied to
separate the transmitted symbols from all transmit antennas on
a path-by-path basis. The reason that the ZF scheme is chosen
is because the performance of the ZF receiver approaches that
of the MMSE scheme at high signal-to-noise ratios (SNR)
[1] [9] and it is easier to analyze the ZF structure. In the
ZF receiver, the received spatial signal vector on the lth path
given by Eq. (4) is pre-multiplied by the pseudoinverse of the
channel matrix H(l)+. Thus, the zero-forced signal of the lth

path of a symbol, y(l) (N × 1), is written as

y(l) = [y(l)1, y(l)2, . . . , y(l)N ]′

= H(l)+r(l) =
√

Ess + ξ(l) (6)

where ξ(l) = H(l)+ν(l) is the zero-mean noise vector. Under
the assumption of the quasistatic fading made earlier, the in-
stantaneous noise power on the lth path of a symbol of the nth

data stream is [E{ξ(l)ξ(l)†}]nn = N0

[
H(l)+ (H(l)+)†

]
nn

,

where [·]nn denotes the (nn)th component of a matrix
and E{·} denotes statistical expectation. In the case when
H(l)†H(l) is a full rank matrix2, it can be easily obtained
that [E{ξ(l)ξ(l)†}]nn = N0

[
(H(l)†H(l))−1

]
nn

. To simplify
notations, let us introduce the following variable (a positive
real scalar)

β(l)n =
1√

[(H(l)†H(l))−1]nn

. (7)

It was shown in [1] that β(l)2n = 1/
[
(H(l)†H(l))−1

]
nn

can
be written in a quadratic form as

β(l)2n = h(l)†nG(l)h(l)n

2Such a condition is satisfied when signals from receive antennas are
independent or have low correlations, and is assumed true in this paper.
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where G(l), whose eigenvalues are denoted as λ1 ≥ λ2 ≥
· · · ≥ λM , is a Hermitian and non-negative M × M matrix
independent of h(l)n.

There exists a unitary transformation Φ = [φ1 φ2 . . . φM ]
that can diagonalize G(l) as G(l) = Φ†ΛΦ, where Λ =
diag[λ1, λ2, . . . , λM ]. Hence β(l)2n can be expressed as

β(l)2n = h(l)†nΦ†ΛΦh(l)n = f(l)†Λf(l) (8)

where f(l) = Φh(l)n. Because h(l)mn with different indexes
(m, n, and l) are independent, zero-mean, complex Gaussian
random variables, f(l)i (the ith element of f(l)), being
a linear combination of h(l)1n, · · · , h(l)Mn, is a complex
Gaussian random variable with E{f(l)i} = 0. Because Φ
is unitary, it is normal, i.e., Φ†Φ = ΦΦ† = IM where IM is
the M × M identity matrix. Hence

E{f(l)f(l)†} = E{Φh(l)nh(l)†nΦ†}
= Φe−σlIMΦ† = e−σlIM .

Examining only the ith and jth elements of f(l), it is found

E{f(l)if(l)∗j} = e−σlδ(i − j) (9)

where δ(i − j) is defined as

δ(i − j) =
{

1, for i = j
0, otherwise.

Thus, f(l)i, l = 1, . . . , L − 1, i = 1, . . . , M , are uncorre-
lated, and therefore statistically independent random variables
because they are Gaussian. Applying i = j to (9), we obtain

E{f(l)if(l)∗i } = E{|f(l)i|2} = e−σl. (10)

From Eqs. (8) and (9) it can be easily seen that β(l)n, l =
0, 1, . . . , L− 1, are nonnegative real and independent from
one another because fading processes are independent for
different resolvable multipath components. It was shown in
[1] that the eigenvalues of G(l) are either 1 or 0, with exactly
D=M−N+1 eigenvalues equal to 1. Thus, λ1 = · · · = λD =
1 and λD+1 = · · · = λM = 0. Because |f(l)i| is Rayleigh and
|f(l)i|2 is chi-square distributed with two degrees of freedom,
it is easy to determine that β(l)2n is chi-square distributed with
2D =2(M−N +1) degrees of freedom and can be rewritten
as

β(l)2n =
M∑
i=1

λif(l)if(l)∗i =
D∑

d=1

f(l)df(l)∗d. (11)

The noise components of the L zero-forced signals carrying
the same symbol as given in Eq. (6) have different power for
different path index l. In order to derive the coefficients for
maximal ratio combining, we further process the zero-forced
signals as follows. Let us define an N × N diagonal matrix

K(l) = diag[β(l)1, β(l)2, . . . , β(l)N ]. (12)

The processed spatial signal vector for the lth path over a
symbol interval, z(l) (N × 1), is written as

z(l) = [z(l)1, z(l)2, · · · , z(l)N ]′

= K(l)y(l) =
√

EsK(l)s + ε(l) (13)

where

ε(l) = [ε(l)1, ε(l)2, · · · , εN ]′ = K(l)ξ(l) (14)

with
[
E{ε(l)ε(l)†}

]
nn

= N0, independent of path index l.
Notice that although matrix K(l) is positive and real, the noise
vector ε(l) is complex.

3) Multipath combining: We focus on detecting a partic-
ular symbol of the nth data stream. We extract the MIMO
processed signals (from Eq. (13)) on all L paths, which carry
the same symbol of the nth data stream, and write them in an
L × 1 temporal vector as

z = [z(0)n, z(1)n, . . . , z(L − 1)n]′

=
[√

Esβ(0)nsn + ε(0)n, . . . ,√
Esβ(L − 1)nsn + ε(L − 1)n

]′
. (15)

The decision variable for the symbol can be obtained by
combining all L elements of z. The MRC weight vector β is
chosen according to the SNR on each path. From (13), such
a weight is determined to be

β = [β(0)n, β(1)n, . . . , β(L − 1)n]′ . (16)

Therefore, the decision variable for any symbol of the nth data
stream is expressed as3

λn = �{β†z} (17)

where �{·} denotes the real part.

III. ERROR PERFORMANCE

We will focus on binary phase-shift keying (BPSK) for
which sn ∈ (−1, 1) with equal probability to take on the
values of 1 and -1. The analysis for quadriphase-shift keying
(QPSK) is essentially the same and the results can be extended
to other PAM schemes. We assume that the transmitted bit is a
1 (sn = 1) and determine the conditional probability of error.
With P (−1) = P (1), the average BER is the same as the
BER conditioned on sn = 1.

By applying z given in (15) and β in (16), and replacing
symbol energy Es with bit energy Eb, we write β†z condi-
tioned on sn = 1 as

β†z =
(√

Ebβ(0)2n + β(0)nε(0)n

)
+ . . . +(√

Ebβ(L − 1)2n + β(L − 1)nε(L − 1)n

)
. (18)

The instantaneous SNR on the lth path (the lth term on
the right-hand side of (18)) is obtained as γ(l) = Eb

N0
β(l)2n.

Substituting β(l)2n given in (11) into the above expression
yields another form of γ(l) as

γ(l) =
Eb

N0

D∑
d=1

|f(l)d|2 (19)

where f(l)d, l = 0, · · · , L−1, d = 1, · · · ,D, as analyzed and
concluded earlier, are zero-mean and independent Gaussian
random variables. More analysis on the noise component
contained in the lth term on the right-hand side of (18) reveals

3Notice that β is a real vector because β(l), l = 0, . . . , L−1, are all real.
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that it has a zero mean with an instantaneous variance also
equal to a sum of D independent variables. Thus, the lth term
on the right-hand side of (18) is equivalent to a D-branch
spatial diversity system employing MRC in a frequency-
nonselective Rayleigh fading channel [10]. The ZF receiver
for a MIMO system with N transmit antennas and M receive
antennas over a frequency-selective Rayleigh fading channel
with L resolvable multipath components is transformed into a
2-dimensional RAKE with a diversity order of DL (D times
L). Every element of the D-branch group has the same average
SNR but the average SNRs for the L groups are different
except when the channel power decay factor σ given in (10)
is equal to zero.

The combined instantaneous SNR per bit is given by

γb =
Eb

N0

L−1∑
l=0

D∑
d=1

|f(l)d|2. (20)

The probability of error conditioned on a fixed set of {f(l)d}
is a Q-function and is given as Pb(γb) = Q(γb). If p(γb),
the probability density function (PDF) of γb, is obtained, the
average BER can be calculated as Pb =

∫∞
0

p(γb)Pb(γb)dγb.
When f(l)d, l = 0, · · · , L−1, d = 1, · · · ,D are indepen-

dent and identically distributed or when they are independently
distributed but with distinct mean-square values, a closed-
form expression for the PDF of γb is feasible [10]. For the
problem being addressed in this paper, however, the mean-
square values of f(l)d are neither all identical nor completely
unique. Finding the PDF of γb using the PDF-based approach
for this case becomes intractable. An easier approach to obtain
the average bit error rate is to use the moment-generating
function (MGF) based approach [11]. In this approach, the
Gaussian Q-function is first expressed in the form as Q(x) =
1
π

∫ π/2

0
exp

(
− x2

2 sin2 φ

)
dφ, x ≥ 0. Based on (20), the average

BER for Rayleigh fading channels derived using the MGF-
based approach is given as [11]

Pb =
1
π

∫ π/2

0

L−1∏
l=0

(
1 +

γ̄(l)d

sin2φ

)−D

dφ (21)

where γ̄(l)d = Eb

N0
E{|f(l)d|2}.

IV. NUMERICAL EXAMPLES AND DISCUSSION

In all simulations, the MIMO processing and maximal ratio
combining follow exactly the procedures presented in Section
II. The matrix channel coefficients are generated according
to the quasistatic model. Elements of the channel matrix
(5) are independent, complex, Gaussian random variables.
This corresponds to practical situations where all transmit
and receive antennas are sufficiently separated. In order to
approximate the Rayleigh statistics well, the number of blocks
(not the total number of bits) for the quasistatic fading to be
simulated must be sufficiently large.

Normalization for all numerical examples is done as fol-
lows. When there are L resolvable multipath components,
average power of the first path (l = 0) is normalized to 1
and the relative average power of the path with index l to
the first path is e−σl. Error performance is evaluated for the
transmitted data stream with index n = 1. For the system with

N transmit antennas, M receive antennas, and L resolvable
paths, SNR per bit in dB is defined as

θb =
Eb

N0
(dB) + 10log10(D) + 10log10

(
L−1∑
l=0

e−σl

)
.

The term 10log10(D) above is added to account for difference
between the number of receive and transmit antenna elements.
The term 10log10

(∑L−1
l=0 e−σl

)
is used to compensate for the

extra power contained in multiple resolvable paths.
Analytical and simulated (with marks) error performance

curves of the system with different combinations of M , N ,
and L in the absence of ISI and IPI are shown in Fig. 1.
For all cases evaluated, the analytical and simulated error rate
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Fig. 1. Analytical and simulated (with marks) error performance curves with
different system parameters.

curves match very well. The diversity order of 1, 2, and 4 for,
respectively, (M,N,L) = (1, 1, 1), (3, 2, 1), and (3, 2, 2) can
be clearly seen from Fig. 1.

The analytical probability of error given in (21) is based
on the assumption that there is no inter-symbol interference
or inter-path interference. Therefore, results based on the
analytical expression given in (21) can be considered as the
performance lower bound for a MIMO system with a ZF
receiver combined with an MRC in a frequency-selective
Rayleigh fading channel. When ISI and IPI caused by multi-
path are considered, an analytical expression for the average
BER is difficult to obtain because it depends on the waveform
g(t) applied. We provide simulation results to assess the effects
of ISI and IPI caused by multipath for a MIMO system
with direct-sequence spreading. One direct-sequence spreading
code is applied to spread symbols from all transmit antennas4.
In this case, g(t) given in (1) is a spread waveform and
the multipath resolution Tp given in (2) is equal to one chip
interval. For the numerical examples provided, the 32nd Walsh
code of length 64 (spreading factor SF=64) is applied to spread

4If multiple spreading codes are used, signals transmitted simultaneously
from multiple antennas could have been separated by exploiting the different
codes as in a code-division multiple-access system. This is not the general
purpose of MIMO systems and is not pursued in this paper.
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transmitted symbols. Each chip is pulse shaped by a square-
root raised cosine (RRC) filter with a roll-off factor of 0.3.
The received signal is filtered by a chip matched filter (also
an RRC filter with a roll-off factor of 0.3), sampled at the
chip rate and despread. Because the relative delay between
two resolvable multipath components is an integer multiple of
one chip duration, frequency-selective fading does not cause
inter-chip interference in this design. The nonorthogonality
between a code and its shifted version, however, does cause
IPI. Simulated error performance curves with M = 3, N = 2,
L = 2 are shown in Fig. 2. For comparison purposes, the
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SF=64, ρ=0
SF=64, ρ=0.691
SF=64, ρ=1.382

Fig. 2. Simulated error performance curves in the presence of ISI and IPI
(M = 3, N = 2, L = 2).

curve with the same set of parameters under the assumption
of zero ISI and IPI is also plotted in the same figure. For an
uncoded system with M = 3, N = 2, L = 2, σ = 0 and
other system parameters chosen, the performance degradation
caused by ISI and IPI is about 1.4dB at Pb = 10−3.

To assess the impacts of the number of resolvable paths L,
we simulated BER curves for a system with M = 3, N = 2,
σ = 0, and L = 2, 3, and 4. These curves are plotted in Fig.
3 together with the theoretical BER lower bound. Contrary to
what we might have normally anticipated, performance gets
worse when L increases. This is because that the gain in
energy from more multipath components for a larger L are
compensated in the expression of SNR per bit adopted and the
diversity gain from L = 2 (4th-order effective path diversity)
to L = 4 diminishes. However, increasing L may significantly
increase5 the level of ISI and IPI.

V. CONCLUSION

We have provided details of the signal processing proce-
dures for a MIMO system with a ZF receiver combined with
an MRC in frequency-selective Rayleigh fading channels. We
have also derived the analytical error rate expression as a
function of Eb/N0, number of resolvable paths L, number of
transmit and receive antenna elements (N,M), and channel
power decay factor σ under the assumption of zero ISI

5This depends on the spreading code applied, especially the autocorrelation
property of the code.

0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR per bit (dB)

P
e

Ideal (no ISI or IPI), theoretical
ISI & IPI, L=2
ISI & IPI, L=3
ISI & IPI, L=4

Fig. 3. Effects of number of resolvable paths (M = 3, N = 2, σ = 0).

and IPI. The ZF receiver with maximal ratio combining for
an (N,M) MIMO system in a frequency-selective Rayleigh
fading channel with L resolvable multipath components is
equivalent to a 2-dimensional RAKE with a diversity order
of (M − N + 1)L. The effects of ISI and IPI caused by
frequency-selective fading have been studied by simulations
for a system with direct-sequence spreading applied to all
transmitted symbols. When the transmitted wideband signals
are generated by direct-sequence spreading with a spreading
factor of 64, numerical results suggest that ISI and IPI may
cause significant performance degradation.
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