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Optimal Rotation Angles for Quasi-Orthogonal
Space-Time Codes with PSK Modulation

Liang Xian and Huaping Liu, Member, IEEE

Abstract— Full diversity of quasi-orthogonal space-time block
codes with complex signals could be achieved by constellation
rotation. In this letter, we derive the optimal rotation angle in
the sense of maximizing coding gain for quasi-orthogonal codes
with phase-shift keying (PSK) modulation using a geometry-
based approach. We also prove that the rotated PSK signals with
an even constellation size have higher coding gains (or diversity
products) than those with an odd constellation size.

Index Terms— Quasi-orthogonal space-time codes, constella-
tion rotation, phase-shift keying (PSK).

I. INTRODUCTION

THE transmit diversity scheme proposed in [1] is a simple
and effective orthogonal space-time block code of rate

one for systems with two transmit antennas. The orthogonal
design was then extended to systems with an arbitrary number
of transmit antennas [2]. Rate-one real orthogonal codes
are available from [2], but complex orthogonal design with
transmission rate one does not exist for more than two transmit
antennas (see [2, Theorem 5.4.2]). Quasi-orthogonal space-
time block codes that provide rate one but partial diversity
were studied in [3], [4] for four transmit antennas, and in
[5] for higher number of transmit antennas. To achieve full
diversity for quasi-orthogonal codes, constellation rotation
schemes were proposed in [6], [7]. Optimal rotation angles in
the sense of maximizing coding gain for quadrature amplitude
modulation were addressed in [7]. In [8], optimal rotation
angles for PSK with an even constellation size were derived.

In this letter, we derive, through a geometry-based approach,
the optimal rotation angles for quasi-orthogonal codes with
any PSK modulation. The independent work [9] also addressed
the optimal rotation angles using a completely different ap-
proach. In addition to the optimal rotation angles, we also
prove that coding gain for even-sized constellations is higher
than that for odd-sized constellations, which was observed but
not proved in [9].

II. OPTIMAL CONSTELLATION ROTATION FOR PSK

We focus on the scheme given in [4] for systems with four
transmit antennas for which the code matrix is expressed as
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where (·)∗ denotes complex conjugate, (·)H denotes conjugate
transpose, a =

∑4
i=1 |xi|2, and b = x1x

∗
3 + x3x

∗
1 + x2x

∗
4 +

x4x
∗
2. Analysis for other quasi-orthogonal codes (e.g., the code

given in [3]) is similar.
The maximum likelihood (ML) decision metric for this

code can be written as the sum of two independent terms
f1(x1, x3) + f2(x2, x4). Thus, the minimization for ML de-
coding can be done separately on these two terms. For the
code example chosen above, let us consider (x1, x3) and let
x2 = x4 = 0 [6] in calculating the optimal rotation angles.

Let A be a PSK constellation of size Q, where Q could
be even (Q = 2n, n > 0 is an integer) or odd (Q =
2n− 1, n > 1), and B be the rotated constellation of A
expressed as B = ejφA, where φ represents the rotation
angle. Also let x1, x̃1 ∈ A and x3, x̃3 ∈ B, where (x1, x3) �=
(x̃1, x̃3). Maximizing coding gain is equivalent to maximizing
|det[∆H

C(x1,0,x3,0)∆C(x1,0,x3,0)]|, where | · | denotes the ab-
solute value and ∆C(x1,0,x3,0) is the difference matrix given
as ∆C(x1,0,x3,0) = C(x1,0,x3,0) − C(x̃1,0,x̃3,0). This is also
equivalent to maximizing the minimum ζ-distance between
constellations A and B expressed as [6, Eq. (23)]

dmin,ζ(A,B) � min︸︷︷︸
(x1,x3) �=(x̃1,x̃3)

∣∣(x1 − x̃1)2 − (x3 − x̃3)2
∣∣ 1
2 .

(1)
The set of values of (x1−x̃1)2 with x1, x̃1 ∈ A and (x3−x̃3)2

with x3, x̃3 ∈ B constitute, respectively, constellation X and
constellation Y = ej2φX . Note that both X and Y include the
origin. The optimal rotation angle in the sense of maximizing
coding gain must maximize the minimum distance between
any point from X and any point from Y , except the origin.

Before calculating the optimal rotation angles, let us exam-
ine the properties of X . Examples of an even-sized constella-
tion A (16PSK) and an odd-sized constellation A (7PSK) are
shown in Fig. 1 and Fig. 2, respectively.

The corresponding new constellations X formed by the set
of values of (x1 − x̃1)2 with x1, x̃1 ∈ A are shown in Fig.
3 and Fig. 4, respectively. In the following discussion, we
exclude the origin in X because if x1 − x̃1 = 0 or x3 − x̃3 =
0,

∣∣(x1 − x̃1)2 − (x3 − x̃3)2
∣∣1/2

becomes a constant for any
rotation angle. Let P = Q/2 when Q is an even number and
P = (Q − 1)/2 when Q (Q ≥ 3) is an odd number. In the
following proofs, we focus on the case when Q is an even
number. The proof when Q is an odd number is similar.
Properties of X :

1) All points in X can be divided into P groups,
S1, S2, · · · , SP , based on their relative magnitudes in
ascending order as |S1| < |S2| < · · · < |SP |.
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Fig. 1. An example of an even-sized constellation A: 16PSK.
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Fig. 2. An example of an odd-sized constellation A: 7PSK.

Proof: It is easy to see from Fig. 1 that for all possible
combinations of x1, x̃1 ∈ A and x1 �= x̃1, |x1 − x̃1| has
Q/2 distinct values. Additionally, the group with the
minimum magnitude is formed by two adjacent points
in A such as x1 = p1 and x̃1 = p2. The minimum
magnitude is thus obtained to be |S1| = |p2 − p1|2 =
2 − 2 cos (2π/Q). Obviously, we have dmin,ζ(A,B) ≤
|S1|1/2.

2) The distance between any two points from two different
groups is greater than or equal to |S1| when Q is an
even number and greater than |S1| when Q is an odd
number.
Proof: Consider the worst case where two points from
two adjacent groups have the same phase. The distance
between these two points is |Si| − |Si−1|. From Fig.
1, it is easy to see that sides

√|S1|,
√|Si−1|, and√|Si| always constitute a triangle. Additionally, the

angle opposite
√|Si| is an obtuse angle or right angle

(e.g., ∠p1p7p8 is an obtuse angle and ∠p1p8p9 is a right
angle). Thus, we have |Si|−|Si−1| ≥ |S1| with equality
if and only if the triangle is a right triangle.
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Fig. 3. Constellation X formed by (x1− x̃1)2, where x1, x̃1 ∈ A as shown
in Fig. 1.
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Fig. 4. Constellation X formed by (x1− x̃1)2, where x1, x̃1 ∈ A as shown
in Fig. 2.

For the example shown in Fig. 3, the distance between
the two outer circles equals the radius of the inner circle.

3) There are exactly Q/2 (Q = 2n) or Q (Q = 2n − 1)
different points in each of the P groups, S1, S2, · · · , SP ,
and the phases of all points in any group are uniformly
distributed between 0 and 2π.
Proof: We prove using group S1 as an example. The
same method applies to other groups. All points in S1

are listed as

(p2 − p1)2 = ejπ(e−j2π/Q − 1)2

...

(pQ − pQ−1)2 = e−j4π(Q−2)/Q · ejπ(e−j2π/Q − 1)2

(p1 − pQ)2 = e−j4π(Q−1)/Q · ejπ(e−j2π/Q − 1)2.

It is found that the phase difference between any two
adjacent points in S1 is 4π/Q when Q is an even
number, and is 2π/Q when Q is an odd number.
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A. The Optimal Rotation Angles

According to properties 1-3 of constellation X , the optimal
rotation angle for quasi-orthogonal codes with PSK modula-
tion is π/Q when Q is even and π/(2Q) when Q is odd.

Proof: If we let φ = π/Q, constellation Y is related to
constellation X as Y = ej2φX = ej2π/QX . According to
property 3 of X , the minimum distance between any two
points s ∈ Si and s̃ ∈ ej2π/QSi is maximized. Additionally,
from property 2 of X , the minimum distance between α ∈ Si

and β ∈ ej2π/QSj , i �= j, is always greater than or equal
to |S1|. Therefore, the minimum ζ-distance is determined
by |S1|, and φ = π/Q is the optimal rotation angle that
maximizes dmin,ζ(A,B) when Q is even. Following a sim-
ilar procedure, we can prove the conclusion for odd-sized
constellations. Note that rotation with φ = π/Q for odd-
sized constellations does not even provide full diversity ( [10],
Theorem 2.2). This is clear seen from Fig. 4: if Y = ej2π/QX ,

then Y and X overlap and
∣∣(x1 − x̃1)2 − (x3 − x̃3)2

∣∣ 1
2 could

be zero.
The corresponding optimal minimum ζ-distance is

dmin,ζ(A,B) =⎧⎪⎪⎨
⎪⎪⎩

min

(∣∣∣2|S1|2(1 − cos ( 2π
Q ))

∣∣∣ 1
4

, |S1| 12
)

, Q = 2n

min

(∣∣∣2|S1|2(1 − cos ( π
Q ))

∣∣∣ 1
4

, |S1| 12
)

, Q = 2n−1

The above expression can be simplified as

dmin,ζ(A,B)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 sin
(

π
Q

)
, Q = 2, 4√

8 sin3
(

π
Q

)
, Q=2n≥6√

8 sin
(

π
2Q

)
sin2

(
π
Q

)
, Q=2n−1

(2)

For the specific case of 8PSK (Q = 8), the optimal rotation
angle based on the conclusion in this letter is φ = π/8 and
the minimum ζ-distance is 0.6696, which are the same as the
results obtained via computer search in [7].

B. Relative Coding Gain between Q=2n and Q=2n−1

Proposition 1: The cases of Q = 2n, n ≥ 3, have larger
optimal minimum ζ-distances than those of Q = 2n − 1.
Mathematically, Proposition 1 is expressed as

sin3
( π

2n

)
− sin

(
π

2(2n − 1)

)
sin2

(
π

2n − 1

)
> 0. (3)

Before proving Proposition 1, let us prove the following
inequality:

x > sin(x) > x − x3/6, for x > 0. (4)

Let f1(x) = x − sin(x) and f2(x) = sin(x) − x + x3/6.
Obviously, f1(x)|x=0 = 0 and f ′

1(x) ≥ 0, ∀x > 0, where (·)′

denotes derivative. Thus, the left inequality of (4) follows. The
derivative of f2(x) with respect to x is written as

f ′
2(x) = cos(x) − 1 +

x2

2

= 2
[(x

2

)2

− sin2
(x

2

)]
> 0. (5)

Thus, the right inequality of (4) follows.

Let ξ1 =
[

π
2n − (π/(2n))3

6

]3

and ξ2 = π
2(2n−1)

(
π

2n−1

)2

.
For n ≥ 3

ξ1 − ξ2 = (n + 0.92)(n − 0.36)(n − 2.98) > 0.

Notice that from (4) we have

ξ1 < sin3
( π

2n

)
ξ2 > sin

(
π

2(2n − 1)

)
sin2

(
π

2n − 1

)
.

Thus, Proposition 1 expressed in (3) is proved.

III. CONCLUSION

We have derived, using a geometry-based method, the op-
timal constellation rotation angles for quasi-orthogonal space-
time block codes for four-antenna systems with PSK mod-
ulation. Through constellation rotation with these rotation
angles, the coding gain is maximized and full diversity of
quasi-orthogonal codes is achieved. We have also proved that
PSK signals with a constellation size Q = 2n have larger
optimal minimum ζ-distances than those with a constellation
size Q = 2n − 1 (n ≥ 3).
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