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Index Assignment for Beamforming with
Limited-Rate Imperfect Feedback

Tao Xu and Huaping Liu, Member, IEEE

Abstract— Beamforming in most multiple-antenna systems
often requires channel state information (CSI) at the transmitter
through feedback. In practice, CSI must be quantized into a finite
set of vectors and feedback only sends the index representing the
desired vector. In addition to quantization error of the channel
coefficients, feedback errors, which lead to incorrect beam-
forming vectors to be applied at the transmitter, also degrade
beamforming performance. We present an index-assignment
algorithm that minimizes the impact of feedback errors. The
proposed algorithm requires exhaustive search to find the best
mapping. When the codebook size is large, the complexity of the
algorithm becomes prohibitive. We thus propose a group-based
index assignment (GIA) that has a low computational load while
still performing better than random index assignments.

Index Terms— Beamforming, index assignment, limited-rate
feedback.

I. INTRODUCTION

W IRELESS systems with multiple transmit antennas
can use beamforming for reliable communications.

Beamforming requires channel state information (CSI) at
the transmitter, which is typically obtained through feedback
from the receiver. Due to the finite rate of the feedback,
CSI must be quantized into a finite set. Beamforming with
limited-rate feedback has been studied extensively [1]–[4]. The
Grassmannian line packing technique in beamforming vector
quantization has been shown to have excellent performance
[1], [2]. In these schemes, the receiver sends the index that
represents a predefined set of quantized channel coefficients,
rather than the actual coefficients.

Existing work on Grassmannian beamforming assumes an
error-free feedback channel. In this case, the indexes can be
arbitrarily assigned to the sets of coefficients. In practice, the
indexes could be corrupted by feedback errors, causing the
transmitter to apply the undesired set of channel coefficients.
This letter proposes algorithms to optimize the index assign-
ment so that when feedback is not error-free, the performance
degradation of beamforming is minimized. We will compare
the performance of the proposed scheme with that of the
scheme used in [5].

II. SYSTEM MODEL

Consider a wireless system with Mt transmit antennas and
Mr receive antennas. We assume that one data stream is trans-
mitted using beamforming and the receiver uses maximum
ratio combining (MRC). The received signal is expressed as

y = cHHwx + cHn (1)
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where x ∈ C is the transmitted symbol with average symbol
energy Es = E[|x|2], y is the observation after MRC, c is the
Mr × 1 MRC weight vector, n is the Mr × 1 noise vector
whose elements are independent and identically distributed
(i.i.d.) complex Gaussian noise samples with mean zero and
variance N0, w is the Mt × 1 beamforming vector, and H is
the Mr ×Mt channel matrix whose entries, hij , 1 ≤ i ≤ Mr,
1 ≤ j ≤ Mt, are complex Gaussian random variables with
mean zero and unit variance. The beamforming vector w
satisfies ‖w‖ = 1 (‖ · ‖ denotes L2 norm) to ensure that
the total signal power allocated among Mt transmit antennas
is normalized. The MRC vector c has the form

c = aHw (2)

to maximize the received signal-to-noise ratio (SNR), where
a is a scalar that is typically chosen as a = 1/‖Hw‖, so
that ‖c‖ = 1. After MRC, the instantaneous received SNR is
γ = (Es/N0)‖Hw‖2.

The optimal beamforming vector w that maximizes the
instantaneous SNR is expressed as

w∗ = arg max
‖w‖=1

‖Hw‖ (3)

which turns out to be the right singular vector corresponding to
the largest singular value of the channel matrix H [6]. When
H has i.i.d. entries and the channel obeys the block-fading law
[7], the optimal beamforming vector is uniformly distributed
on the unit hypersphere ΩMt [1]. For systems with limited-rate
feedback, it is impossible to send the optimal beamforming
vector in (3) for each channel realization. A feasible solution
is to partition the unit hypersphere ΩMt into N non-overlaying
and exhaustive Voronoi regions, each of which is represented
by a vector wi, 0 ≤ i ≤ N − 1. Thus there are N
such vectors, which form a beamforming codebook W =
{w0,w1, · · · ,wN−1} that is known to both the transmitter
and receiver. Let B be the number of feedback bits required for
each channel realization. Obviously B = �log2(N)�, where
�x� denotes the smallest integer that is not less than x. Each
codeword is a B-bit index, which represents the beamforming
vector in the codebook W for the corresponding Voronoi
region. For each channel realization, the receiver chooses one
vector from the codebook that maximizes the metric given in
(3), and sends the corresponding index to the transmitter. The
transmitter applies the beamforming vector indicated by the
received index for beamforming.

III. INDEX ASSIGNMENT

A. Near-optimum index assignment

When feedback is error-free, the index-vector mapping can
be chosen arbitrarily; otherwise, different index-vector map-
pings could result in different performance. In this letter, we
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use the term “good codebook” as the codebook that not only
has the best beamforming vector set, but also the optimized
index-vector mapping to minimize performance degradation
due to feedback errors. While the construction of the best
vector set of a codebook has been well studied [1], [2], [8],
optimization of index assignment, the focus of this letter,
has not been addressed. We focus on nontrivial cases where
N > Mt [1] and assume that N = 2B for simplicity.

The bit errors in the feedback index might cause the
transmitter to apply the incorrect beamforming vector, thus
reducing the instantaneous SNR at the receiver. For example,
let bi = [bi1, · · · , biB ] be the index for vector wi, and
bj = [bj1, · · · , bjB ] for wj . If the receiver sends bi, but
the transmitter receives bj , the performance will degrade as a
result of incorrectly applying the weight vector wj . However,
assuming that the index bits have an equal probability to be in
error, the probabilities of receiving index bj given the desired
index bi, P (bj |bi), will be different for different values of
j when the error rate is not unrealistically high (e.g., not
greater than 10−2). For example, P ([1, · · · , 1]|[0, · · · , 0]) �
P ([0, · · · , 0, 1]|[0, · · · , 0]). Thus SNR degradation will be
minimized if indexes with higher transition probabilities are
assigned to beamforming vectors that have a larger square
magnitude of mutual inner products. This ensures that the
degradation in the instantaneous received SNR due to occa-
sional index-bit errors is minimized.

We line up the beamforming vectors in a codebook in an ar-
bitrary but fixed sequence in the form [w0,w1, ...wN−1] with-
out assigning indexes. We then pick an index sequence from
the N ! possible permutations in the form [I0, I1, ..., IN−1] to
match [w0,w1, ...wN−1], that is, Ik represents wk, where
each Ik is a B-bit index. The index-vector mapping that
maximizes the average received SNR maximizes the following
target function:

C =
N−1∑

i=0

P (Ii)
N−1∑

j=0
j �=i

PIiIj
|wH

i wj |2 (4)

where P (Ii) is the probability that the receiver sends Ii for
feedback and PIiIj

is the transition probability from Ii to Ij .
There exists a class of codebooks, named equiangular frame

(EF) codebooks [9]–[11], which have the property that the
absolute values of the inner product of any pair of distinct
vectors in the codebook are identical. For EF codebooks, (4)
becomes constant; thus there is no need to optimize index-
vector mapping. However, it is shown in [10] that equiangular
vector sets do not exist for N > M2

t . Additionally, EF
codebooks work well only when the channel is modeled as
quasi-static [7] and H has i.i.d. entries. When the channel is
correlated in spatial and/or temporal domains, EF codebooks
are far from being optimal [3], [12], [13].

We consider the most commonly accepted scenario that H
has i.i.d. entries and the channel fading can be modeled as
quasi-static in this letter. Under these conditions, we have
P (I0) = P (I1) = · · · = P (IN−1) = 1/N . Additionally,
under normal operation conditions the bit error rate (BER) of
the feedback channel pe would not be too high (e.g., not higher
than 10−2). Hence the probability that two or more index bits
are in error will be much smaller than the probability that one

index bit is in error. We can thus ignore the O(p2
e) terms in (4).

Applying the symmetry property between PIiIj
|wH

i wj |2 and
PIjIi

|wH
j wi|2 and after some mathematical manipulations, we

rewrite (4) as

C =
N−1∑

i=0

N−1∑

j>i

I(dIiIj
)|wH

i wj |2 (5)

where dIiIj
is the Hamming distance between index Ii and

index Ij , I(dIiIj
) = 1 if dIiIj

= 1 and I(dIiIj
) = 0 otherwise.

With (5), we can search for the optimized index numerically.

B. Group index assignment scheme

When N is large, the computational load of exhaustive
search becomes prohibitive. We propose a group-based index
assignment (GIA) method that has a reduced search load
and still outperforms random index assignment. The GIA
method starts with a smaller-size good codebook of size Np

(Np < N but is made as large as possible) with optimized
index-vector mapping, named the parent codebook expressed
as Cp = [c0, c1, · · · , cNp−1]. Any larger codebook with size
N , named a child codebook, is partitioned into Np non-
overlapping groups. The partitioning procedure is given as

1) Initialize i = 0.
2) With j = [i]NP

, where [·]NP
denotes modulo-NP

operation, select a beamforming vector from the child
codebook that has the largest magnitude of inner product
with vector cj and add it in the j-th group. A new
child codebook with a reduced-size is then formed by
removing this vector from the current child codebook.

3) Let i = i + 1. If i < N , repeat step 2); otherwise the
partition process ends.

We assume that N = 2B and Np = 2B′
, where B′ and

B are positive integers and B′ < B. When B and/or B′

are not integers, the extension is straightforward. After the
partition, there are 2B′

groups, each of which has 2B−B′

beamforming vectors. For the j-th group, 0 ≤ j ≤ NP − 1,
we copy the index of cj as the B′ most significant bits of
the index of each beamforming vector within this group. For
the rest B − B′ unassigned index bits, we perform random
index-vector mapping for simplicity; additional performance
improvement due to further optimization within the group is
negligible. Thus the resulting index for each beamforming
vector in the child codebook has B′ most significant bits to
indicate which group it belongs to, and B−B′ least significant
bits for index mapping within the group.

IV. SIMULATION RESULTS

We simulate the performance of two codebooks from [5]
with different index assignment strategies. The simulations
assume binary phase-shift keying modulation and perfect
knowledge of H to the receiver. We use BER to denote
the average bit error rate of information bits and FBER to
denote the feedback channel BER. BER is averaged over
2×104 channel realizations. For each channel realization BER
is calculated by considering all possible received indexes and
the corresponding probabilities of receiving them.



XU and LIU: INDEX ASSIGNMENT FOR BEAMFORMING WITH LIMITED-RATE IMPERFECT FEEDBACK 867

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

A
ve

ra
ge

 F
or

w
ar

d 
C

ha
nn

el
 B

E
R

 

 

Perfect feedback
3 bit feedback, w/o  feedback errors
3 bit feedback,  index obtained using the proposed scheme
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Fig. 1. BER performance of various schemes (3-bit feedback, FBER=10−2,
and (Mt, Mr)=(2, 1)).
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6 bit feedback, GIA index assignment
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Fig. 2. BER of various schemes (6-bit feedback, (Mt, Mr) = (3, 1)).

Simulation 1: The system has two transmit antennas and one
receive antenna and applies codebook V (2, 1, 3) from Table
298m in [5] with 3-bit feedback. Fig. 1 shows the BER per-
formance with different index assignments. The curve labeled
‘perfect feedback’ is obtained assuming that the transmitter
has perfect knowledge of the channel coefficients. The case of
‘3-bit feedback without feedback error’ means that the indexes
are always received correctly by the transmitter. The optimized
index assignment is obtained by applying the proposed method
to maximize the target function in (5). The proposed scheme
is found to achieve nearly the same performance as the case
of no feedback errors when FBER is at 10−2. At a BER of
10−4, the proposed scheme achieves a gain of about 2 dB over
the scheme in [5], and more at BER values below 10−4.

Simulation 2: The system has three transmit antennas and
one receive antenna, and applies codebook V (3, 1, 6) from
Table 298u in [5] with 6-bit feedback. Since the computational
load to determine the optimal index sequences for 6-bit code-
book is prohibitively high, we use the proposed GIA method.
We adopt the 3-bit codebook from [1] as the parent codebook.
It is easy to verify that |wH

i wj | = 0.5 for 0 ≤ i �= j ≤ 7.

It is an EF codebook, and thus we can randomly select an

index sequence to maximize (5) and then follow the procedure
given in Section III-B to complete the index assignment. Fig.
2 shows the performance of various index assignment schemes
at different FBERs for this scenario. Comparison with the
scheme adopted in [5]: at FBER of 10−2, the proposed GIA
scheme achieves a gain of about 3 dB at BER of 10−3; at
FBER 10−3, the gain is about 1.8 dB at BER of 10−4; at
FBER=10−4, the gain is about 0.75 dB at BER of 10−5.

Note that although the improvement in performance de-
creases as the FBER reduces, there is no penalty implementing
the codebook optimized using the proposed exhaustive-search
based and GIA methods for any scenarios.

V. CONCLUSION

We have presented two index-assignment methods, an
exhaustive-search based algorithm and the GIA scheme, to im-
prove beamforming performance in the presence of feedback
errors. When the complexity of exhaustive search becomes
prohibitively high, the GIA scheme can be applied. The
improved codebooks outperform the codebooks adopted in [5].
The gain over the schemes in [5] decreases when the feedback
channel BER decreases; however, once the optimization is
complete, there is no penalty implementing the codebook
obtained using the proposed methods.
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