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Abstract—Pilot contamination (PC) is a major problem in mas-
sive multiple-input multiple-output (MIMO) systems. This paper
proposes a novel channel estimation scheme for such a system in
Rician fading channels. First, the possible angle of arrivals (AOAs)
of users served by a base station (BS) are derived by exploiting
the channel statistical information, assuming a traditional pilot
structure, where the pilots for the same-cell users are orthogonal
but are identical for the same-indexed users from different cells.
Although, with this pilot structure, the channel state information
(CSI) derived contains CSI from other-cell users caused by PC, the
line-of-sight (LOS) component of the desired user is PC-free when
the number of antennas equipped at the BS is large. Then, based on
the AOAs and the contaminated CSI, the LOS component of each
user served by a BS is estimated, and data are detected by using
the derived LOS components. Finally, the decoded data are used
to update the CSI estimate via an iterative process. The achievable
spectral efficiency of the proposed scheme is analyzed in detail,
and simulation results are presented to compare the performance
of the proposed scheme with that of three existing schemes.

Index Terms—Channel estimation, multiple-input multiple-
output (MIMO), multicell, multiuser, pilot contamination (PC),
Rician fading.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) sys-
tems are a promising candidates for the fifth-generation

(5G) wireless mobile communications because of their potential
to achieve high spectral and energy efficiencies [1]–[3]. In mas-
sive MIMO systems, the base station (BS) is equipped with a
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large number of antennas while the users typically can have one
or only a few antennas, shifting hardware cost, and computa-
tional complexity to the BS. While the increased number of BS
antennas could bring additional advantages over the traditional
MIMO systems [4]–[6], such as simpler detection algorithms
to achieve a good performance [7], [8], new challenges arise as
well. Downlink channel state information (CSI) acquisition at
the BS is a challenging problem [9]. The performance of massive
MIMO systems depends on the quality of the CSI acquired by
the BS. Most of the theoretical performances of massive MIMO
assume perfect CSI at the BS, which is unrealistic in practice
[10]. In frequency division duplex (FDD) systems [11], users
estimate the downlink channels using the pilots transmitted by
the BS and then send the downlink CSI back to the BS. Because
of the large number of BS antennas, pilot overhead and feedback
overhead will be very large [12]. In time division duplex (TDD)
systems, by exploiting the reciprocity of the uplink and down-
link channels, the downlink CSI can be obtained by using the
pilots transmitted by the users. However, because the channel
coherence time could be very short for high-mobility users us-
ing higher radio frequencies (e.g., milimeter wave (mm-wave)),
reducing the uplink pilot overhead is critical.

One of the popular methods to reduce uplink pilot overhead is
to reuse pilots in adjacent cells, that is, the pilots of users within
the same cells are orthogonal, but the pilots of different cells
are the same. This causes pilot contamination (PC) [13]–[15],
and the system performance could be severely affected. The
spectral efficiency of massive MIMO when PC is taken into con-
sideration is analyzed in [2], [3]. Yin et al. propose a coordinated
approach to reduce the effect of PC by employing the second-
order statistical information of the user channels [16]. A game
theoretic approach to reuse the pilots for channel estimation is
proposed in [17]. This scheme could achieve the same perfor-
mance as the optimal pilot assignment scheme. Based on the
analytic expression of the error variance of the channel estima-
tor, Wang et al. develop a criterion for optimal non-orthogonal
pilot signal design [18]. Farhang et al. exploits the inherent blind
equalization property of the CMT waveform to address the PC
problem in cosine modulated multitone (CMT) based massive
MIMO networks [19]. A precoding scheme for downlink trans-
mission in multicell TDD systems based on estimated CSI is
proposed in [14]. The effect of PC on the physical channel mod-
els is studied in [20] and a pilot reuse strategy to reduce the
pilot overhead in spatially correlated Rayleigh fading channels
is proposed in [21]. A time-shifted pilot-based scheme is pro-
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posed to reduce the effect of PC by rearranging the uplink pilot
transmission order for different cells, which shows that inter-
ference can be decreased significantly [10]. In [22], eigenvalue
decomposition of the sample covariance matrix of the received
signal is proposed to enable blind channel estimation. Another
blind channel estimation algorithm is proposed in [23], which
is based on spectral decomposition of the matrix formed by
the received signal vectors collected within one coherence time
interval of the channel. These two blind channel estimation
schemes rely highly on the distinction of the eigenvalues. So
far, Rayleigh fading is assumed in these works.

Rician fading fits a much broader range of scenarios than
Rayleigh since a line-of-sight (LOS) often exists between the
transmitter and the receiver. For example, in mm-wave mas-
sive MIMO communications, the LOS component dominates
the channel [24]; in small-cell networks, an LOS path often
exists; in MIMO vehicular networks, where a moving vehicle
communicates with either another vehicle or with the roadside,
the typical channel is Rician [25]. In [26], the achievable uplink
rate of multicell massive MIMO systems is analyzed assuming
that the LOS component and Rician K-factor of all users served
by a BS are perfectly known at both the transmitter and receiver,
and an LOS path does not exist between the BS and other-cell
users. In [27], a beamforming scheme and a power-scaling law
for single-cell massive MIMO systems are investigated, also
assuming that both the transmitter and receiver know the LOS
components of all users. Li et al. investigate a 3-dimensional
downlink beamforming algorithm for single-cell multiuser sys-
tems over Rician fading channels, and channel statistical in-
formation of each user is assumed known at the BS [28]. In
[29], precoding design criteria are proposed for large-scale
MIMO systems with finite alphabet inputs over Rician fading
channels.

This paper deals with uplink transmissions of multiuser mul-
ticell massive MIMO systems in Rician fading channels, with
a focus on developing a novel PC-resistant channel estimation
scheme. In this scheme, the traditional pilot structure is em-
ployed, that is the pilots are orthogonal for all users of the same
cell but are common for different cells, and the estimated CSI
suffers from PC. We will first derive the possible LOS angles
of arrivals (AOAs) by using the statistical information of the
channels. The LOS components of the users served by a BS are
then estimated by using the possible AOAs and the contami-
nated CSI. With the LOS component obtained, data are detected
and are finally employed to update the channel estimates via
an iterative process. A distinction of the work in this paper
from most of the existing literature on the same topic is that the
scheme is built upon a more realistic assumption: neither the
transmitter nor the receiver knows the exact LOS component,
the Rician K-factor, or the large-scale fading coefficients. For
the proposed channel estimation scheme, a proper receiver is
also developed, and the achievable spectral efficiency is ana-
lyzed. To assess the effectiveness of the proposed scheme, the
achievable spectral efficiency of the proposed scheme is com-
pared with three schemes: 1) the traditional pilot-reuse (PR)
scheme; 2) the time-shifted pilot scheme; and 3) the no-PC
scheme, in which the pilots of all users are mutually orthogonal.

The results show that the proposed scheme achieves the highest
spectral efficiency when the number of antennas equipped at the
BS is large, due to its effectiveness in combating PC.

The main contributions of this work are summarized as fol-
lows.

1) A novel channel estimation method that works with com-
mon pilot structures. We exploit the property that the LOS
component is not affected by PC when the number of BS
antennas is large. Thus, we first propose a method that
uses the channel statistical information to obtain the LOS-
component accurately. The estimated LOS component is
then used for channel estimation, minimizing PC effects.

2) Channel estimation algorithms. With the estimated LOS
components, we develop two suitable channel estimation
algorithms: LOS-component-based algorithm and data-
aided iterative algorithm.

3) Rigorous analysis. The achievable spectral efficiency,
power scaling, and the effect of the Rician K-factor of
the proposed scheme are analyzed in detail, showing that
the transmit power of each user can be reduced propor-
tional to 1/M (M is the number of BS antennas).

The remainder of the paper is organized as follows. In
Section II, the massive MIMO Rician fading channel model
is presented. The proposed LOS component derivation scheme
is presented in Section III. In Section IV, we develop the LOS
component based channel estimation and the data-aided itera-
tive channel estimation. Effects of the number of BS antennas
and the Rician K-factor on the spectral efficiency is analyze
din Section V. Simulation results are provided in Section VI
to validate the proposed scheme, and the paper is concluded in
Section VII.

II. CHANNEL MODEL

Consider a network with L cells, where each BS has M linear
antennas to serve K users (K < M ), each with one antenna,
using a frequency reuse factor of 1. As in [26], it is assumed
that there exists an LOS component between a BS and the users
it serves, and no LOS components exist between a BS and the
users of other cells. This is a reasonable assumption because the
users of other cells are far away from a specific BS, and thus
the probability that there exists an LOS component between the
BS and the users of other cells is low. Therefore, the M × 1
channel vector from the k-th user of the l-th cell to the i-th BS
is expressed as [30]

h(i),(l,k) =

⎧⎪⎪⎨
⎪⎪⎩

g(i),(i,k)

(√
1

κ ( i ) , ( i , k ) +1c(i),(i,k)

+
√

κ ( i ) , ( i , k )

κ ( i ) , ( i , k ) +1 c̄(i),(i,k)

)
, l = i

g(i),(l,k)c(i),(l,k) , l �= i

(1)

where g(i),(l,k) is the large scale fading coefficient from the k-th
user of the l-th cell to the i-th BS, κ(i),(i,k) denotes the Rician
K-factor of the channel from the k-th user of the i-th cell to the
i-th BS, c(i),(l,k) is related to the non-LOS (NLOS) component
and its elements are circularly symmetric complex Gaussian
random variables with zero mean and unit variance, that is,
c(i),(l,k) ∼ CN(0, IM ), where IM denotes the identity matrix
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of rank M and CN(·) denotes the complex normal distribution,
and c̄(i),(i,k) is related to the LOS component from the k-th user
of the i-th cell to the i-th BS. As commonly used in massive
MIMO systems, it is assumed that uniform linear arrays (ULAs)
are deployed at the BS. Therefore, c̄(i),(i,k) is expressed as [30]

c̄(i),(i,k) =
√

Mα
(
θ(i),(i,k)

)
=
[
1 e−j2πd cos(θ( i ) , ( i , k ) )/λ

· · · e−(M −1)j2πd cos(θ( i ) , ( i , k ) )/λ
]T

(2)

where α(·) stands for unit steering vector, θ(i),(i,k) is the angle
of arrival (AOA) of the LOS component from the k-th user of
the i-th cell to the i-th BS, λ is the carrier wavelength, d is
the distance between the adjacent antennas of the BS, and (·)T

stands for transpose.
The received signal of the i-th BS is

y(i) =
L∑

l=1

K∑
k=1

h(i),(l,k)
√

ptx(l,k) + n(i)

=
L∑

l=1

√
ptH(i),(l)x(l) + n(i) (3)

where pt is the average transmit power, x(l,k) is the sig-
nal transmitted by the k-th user in the l-th cell, assumed
to be a random variable with zero mean and unit variance,
H(i),(l) = [h(i),(l,1) · · ·h(i),(l,K ) ], x(l) = [x(l,1) , · · · , x(l,K ) ]T ,
n(i) is the noise component, whose elements are complex Gaus-
sian random variables with zero mean and unit variance, that is,
σ2

n ( i )
= 1.

In this paper, the channel statistical information including
channel mean information (CMI) and channel variance infor-
mation (CVI) is assumed to be known as shown in (4) at the
bottom of the page, where E[·] and cov(·) stand for mean and
covariance of a random vector, respectively.

III. LOS COMPONENT DERIVATION

A. AOA Estimation

In the Rician fading channel, the LOS component is related to
AOA. We resort to the well-established MUSIC algorithm [31]
for AOA estimation based on CVI. The procedure is as follows.
Solve the eigen system

R(i),(i)U(i) = U(i)Λ(i) , (5)

where U(i) is a unitary matrix, Λ = diag {a1, a2, . . . , aM },
a1 ≥ a2 ≥ · · · ≥ aM are the eigenvalues of R(i),(i) , and

Fig. 1. Transmission frame structures of the users in different cells.

determine the noise subspace expressed as

Vi,n = [U(i) ](:,K +1:end) (6)

where [·](:,v :end) denotes extracting the v-th column through the
last column of a matrix.

Define

P (φ) =
α(φ)H α(φ)

α(φ)H Vi,nVi,n
H α(φ)

. (7)

Find K peaks (P (φi,1), P (φi,2), . . . , P (φi,K )), which are
the local maxima of P (φ), and the corresponding angles
φi,1, φi,2, . . . , φi,K are the estimates of the AOAs.

Note that the AOAs can be estimated by employing the MU-
SIC algorithm, so that the BS knows the AOAs from all users in
the region but does not know which AOA corresponds to which
particular user. This assumption is reasonable, because AOA
estimation is based on the statistical properties of the channel
as expressed in (4), which is assumed to be known.

B. Traditional Pilot Structure

The traditional pilot structure is employed in the proposed
scheme, that is the pilots of the same-cell users are orthogonal,
but the same set are reused in other cells. Therefore, the esti-
mated channel suffers from inter-cell interference. The transmis-
sion frame structures of the users in different cells are illustrated
in Fig. 1. Assume that the lengths of the coherence interval is
equal to Tc . The resulting pilot overhead is K < Tc .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(i) = E
[

L∑
l=1

K∑
k=1

h(i),(l,k)

]
=

K∑
k=1

g(i),(i,k)

√
κ ( i ) , ( i , k )

κ ( i ) , ( i , k ) +1 c̄(i),(i,k)

R(i),(i) = cov
(

L∑
l=1

K∑
k=1

h(i),(l,k)

)
=

K∑
k=1

g2
(i),(i,k)

(
κ ( i ) , ( i , k )

κ ( i ) , ( i , k ) +1 c̄(i),(i,k) c̄H
(i),(i,k) + 1

κ ( i ) , ( i , k ) +1IM

)
+

L∑
l=1,l �=i

K∑
k=1

g2
(i),(l,k)IM

(4)



WU et al.: CHANNEL ESTIMATION FOR MULTICELL MULTIUSER MASSIVE MIMO UPLINK OVER RICIAN FADING CHANNELS 8875

Let K × 1 vectors ηk (k = 1, · · · ,K) be the set of pilots that
are orthogonal for the K users of the same cell, which satisfy

ηH
k ηj =

{
1, k = j
0, k �= j.

(8)

The received signal of the i-th BS during the pilot period is
expressed as

Bi =
L∑

l=1

K∑
k=1

h(i),(l,k)
√

pu

√
KηH

k + Ni (9)

where pu denotes the average transmit power of the uplink
pilot symbols, and Ni is an M × K white noise matrix whose
elements are Gaussian random variables with zero mean and
unit variance. With a least-squares (LS) estimator for this pilot
structure, the estimated CSI (contaminated) from the k-th user
of i-th cell to the i-th BS can be expressed as [2]

h̃(i),(i,k) =
L∑

l=1

h(i),(l,k) +
Niηk√
Kpu

. (10)

The LOS components will be determined by using the prop-
erty of the contaminated CSI and the possible AOAs in the
section next.

C. Derivation of LOS Components

Note that c̄(i),(i,k) appears in the contaminated CSI h̃(i),(i,k)
expressed in (10). We develop the following procedure to derive
the LOS component corresponding to a specific served user
using the contaminated CSI h̃(i),(i,k)) and the possible AOAs:

Step 1): Form the steering vector as α(φi,v ) from the esti-
mated AOAs (φi,v , v = 1, · · · ,K).

Step 2): Project h̃(i),(i,k) onto α(φi,v ), v = 1, · · · ,K, as

m(i),(:,k),v = α(φi,v )H h̃(i),(i,k)

= α(φi,v )H

(
L∑

l=1

h(i),(l,k) +
Niηk√
Kpu

)

=
L∑

l=1

m(i),(l,k),v + α(φi,v )H Niηk√
Kpu

(11)

where m(i),(l,k),v = α(φi,v )H h(i),(l,k) .
Step 3): Decision:
Theorem 1: Define

vopt,(i,k) = arg
v

max
{
Φ = m(i),(:,k),v

}
. (12)

The angle of the k-th user in the i-th cell is φi,vopt, ( i , k ) .
The proof of Theorem 1 is provided in Appendix A.
To ensure the derived angles of the served users do not

overlap with one another, the procedure to determine the an-
gles of the K users served by a BS is revised and listed
in Table I.

With the estimated AOA, the unit steering vector of the k-
th user of the i-th cell is α(φi,vopt, ( i , k ) ). The weighting coeffi-
cient for the LOS component of the channel between the k-th

TABLE I
PROCEDURE TO DETERMINE THE ANGLES OF THE K

USERS SERVED BY THE i-TH BS

Step 1: From the estimated AOAs (φi , v , v = 1, · · · , K,), form the steering
matrix as Ω = [α(φi , 1), α(φi , 2), · · · , α(φi , K )]

Step 2: Calculate
Ξ ( i ) , ( i ) = ΩH [h̃( i ) , ( i , 1) , h̃( i ) , ( i , 2) , · · · , h̃( i ) , ( i , K ) ]

Step 3: For k = 1 : K

Search the maximal value of Ξ ( i ) , ( i ) , and the index of the maximal
value is (rm a x , cm a x );
The angle for the cm a x -th user of the i-th cell is φi , r m a x ;
Set [Ξ ( i ) , ( i ) ]( r m a x , : ) = −∞ and [Ξ ( i ) , ( i ) ]( : , c m a x ) = −∞; where
[·](a , : ) denotes the a-th row of a matrix, and [·]( : , b ) denotes the b-th
column of a matrix.
end

user of the i-th cell and the i-th BS can be derived given the
CMI as

β(i),(i,k) = α
(
φi,vopt, ( i , k )

)H q(i) . (13)

The estimated LOS component of the channel from the k-th user
of the i-th cell to the i-th BS is expressed as

f(i),(i,k) = β(i),(i,k)α
(
φi,vopt, ( i , k )

)
. (14)

Define the estimated LOS component matrix of the i-th
BS as

F(i),(i) =
[
f(i),(i,1) , f(i),(i,2) , · · · , f(i),(i,K )

]
. (15)

The principle of the proposed LOS-component-derivation
scheme is summarized as follows. In the Rician fading chan-
nel, the LOS component exists, and it is related to the AOA.
The AOAs of the NLOS components are uniformly distributed
over [0, 2π). As the number of the antennas at the BS increases,
the angular resolution increases, and the LOS AOAs of differ-
ent users will not overlap with each other, which means that the
LOS components of different users will not contaminate one an-
other even when the same pilot is used. The possible LOS AOAs
(the LOS AOAs of all served users) can be estimated accord-
ing to CVI, but the BS does not know which AOA corresponds
to a specific user. The LOS component of the k-th user of the
i-th cell contains h̃(i),(i,k) , as shown in (10). Therefore, we

project h̃(i),(i,k) onto the steering vectors corresponding to the
possible LOS AOAs, as shown in (11). If the projection coef-
ficient Φ is maximized, as shown in (12), we can determine
the LOS AOA of the k-th user in the i-th cell. The weighting
coefficient corresponding the LOS component can be derived
according to CMI, as shown in (13).

Note that even when the AOAs of different users are the
same, the proposed LOS component derivation scheme can can
still work well. If the derived AOAs of the served users over-
lap with each other, the derived LOS component of a specific
served user will be interfered by other users, and the perfor-
mance of the proposed scheme will be degraded. The proposed
AOA-derivation algorithm as shown in Table I ensures that
the derived angles of the served users DO not overlap with
one another. Besides, when users are uniformly distributed, the
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probability that the AOAs of different users are the same will
be low.

IV. PILOT-CONTAMINATION-RESISTANT CHANNEL ESTIMATION

With the LOS component determined using the scheme pre-
sented in Section III, we propose a PC-resistant channel estima-
tion scheme next.

A. Channel Estimation by Using the LOS Component

The estimated LOS component matrix can be viewed as a
form of estimated channel, which is accurate when the Ri-
cian K-factor is large. Therefore, the estimated channel is
expressed as

Ĥ(i),(i) = F(i),(i) . (16)

Define

W = Ĥ(i),(i) − H(i),(i) . (17)

If the LOS components are estimated correctly, then the k-th
colunm of W are random variables with zero mean and variances

g 2
( i ) , ( i , k )

κ ( i ) , ( i , k ) +1 . The received signal can be rewritten as

y(i) =
√

ptĤ(i),(i)x(i) −√
ptWx(i)

+
L∑

l=1,l �=i

√
ptH(i),(l)x(l) + n(i) . (18)

In massive MIMO systems, zero-forcing (ZF) detection and
minimum mean square error (MMSE) detection achieve almost
the same performance at moderate signal-to-noise ratio (SNR)
values [3]. Therefore, the ZF based detection algorithm is em-
ployed in the proposed scheme because of its simplicity. With
the estimated LOS component matrix F(i),(i) , the estimate of
x(i) is expressed as [34]

x̂(i) =
(
ĤH

(i),(i)Ĥ(i),(i)

)−1
ĤH

(i),(i)y(i)/
√

pt . (19)

By defining

d(i,k) =
[
Ĥ(i),(i)(ĤH

(i),(i)Ĥ(i),(i))−1
]

(:,k)
(20)

where [·](:,k) denotes extracting the k-th column of a matrix, the
estimate of x(i,k) can be re-written as

x̂(i,k) = d(i,k)
H y(i)/

√
pt

= d(i,k)
H f(i),(i,k)x(i,k) +

K∑
j=1,j �=k

d(i,k)
H f(i),(i,j )x(i,j )

− d(i,k)
H Wx(i) +

L∑
l=1,l �=i

d(i,k)
H H(i),(l)x(l)

+ d(i,k)
H n(i)/

√
pt

= x(i,k) − d(i,k)
H Wx(i) +

L∑
l=1,l �=i

d(i,k)
H H(i),(l)x(l)

+ n(i,k) (21)

where n(i,k) = d(i,k)
H n(i)/

√
pt and has a variance equal to

σ2
n ( i , k )

.
The signal-to-interference-plus-noise ratio (SINR) is ex-

pressed as

SINRZF
(i ,k ) =

pt(
pt

∥∥d(i ,k )
H W

∥∥2
+

L∑
l= 1, l �= i

pt‖d(i ,k )
H H(i) ,( l)‖2 +

∥∥d(i ,k )
∥∥2

) .

(22)

When the LOS-component-based channel estimation and the
ZF receiver are employed in the uplink transmission, the achiev-
able spectral efficiency of the k-th user in the i-th cell is

RZF
(i,k) =

Tc − K

Tc
γE
[
log2

(
1 + SINRZF

(i,k)

)]
(23)

where Tc − K is the effective transmission interval, and γ ∈
(0, 1) is the portion of the effective transmission interval for
the uplink data transmission. By using Jensen’s inequality [3],
the lower bound of the achievable spectral efficiency can be
expressed as (24), shown at the bottom of the page. Note that
in (24), Ĥ(i),(i) is based on the LOS component matrix and is a
slowly changing parameter.

B. Data-Aided Iterative Channel Estimation

The quality of the channel estimate can be improved by
exploiting the initial detected data. This process is discussed
next. In the τ (τ ≥ KL) intervals the received signals can be

RZF
(i,k) ≥

Tc − K

Tc
γlog2

(
1 + E

[
SINRZF

(i,k)

])

=
Tc − K

Tc
γlog2

⎛
⎜⎜⎜⎝1 +

pt(∑K
k=1

pt g 2
( i ) , ( i , k )

κ ( i ) , ( i , k ) +1 +
∑L

l=1,l �=i

∑K
k=1 ptg2

(i),(l,k) + 1

)[(
ĤH

(i),(i)Ĥ(i),(i)

)−1
]

k,k

⎞
⎟⎟⎟⎠ . (24)
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expressed as

Y(i) =
√

ptH(i),(i)X(i) +
L∑

l=1,l �=i

√
ptH(i),(l)X(l) + D(i)

(25)
where X(i) is the K × τ data matrix, and D(i) is the K × τ
noise matrix, and the elements of D(i) are zero mean and unit
variance complex Gaussian random variables. The data X(i) can
be estimated by using (19). Let X̂(i) denote the estimate of X(i)
and define

Z(i) = X̂(i) − X(i) . (26)

Each column of Z(i) is a Gaussian random vector with zero
mean and covariance matrix

cov(Z(i)) =

⎛
⎝ K∑

k=1

ptg
2
(i),(i,k)

κ(i),(i,k) + 1
+

L∑
l=1,l �=i

K∑
k=1

ptg
2
(i),(l,k) + 1

⎞
⎠

·
(
ĤH

(i),(i)Ĥ(i),(i)

)−1
. (27)

Based on the decoded data, the NLOS component of H(i),(i) ,
i.e., HNLOS

(i),(i) , is estimated as

ĤNLOS
(i),(i) = (Y(i) − F(i),(i)

√
ptX̂(i))X̂H

(i)/(τ
√

pt)

= HNLOS
(i),(i) − H(i),(i)Z(i)X̂H

(i)/τ

+
L∑

l=1,l �=i

H(i),(l)X(l)X̂H
(i) )

/τ + D(i)XH
(i)/(τ

√
pt)

≈ HNLOS
(i),(i) − H(i),(i)Z(i)X̂H

(i)/τ (28)

where the approximation becomes more accurate as τ increases.
The estimated channel after employing the data detected is ex-
pressed as

Ĥf
(i),(i) = F(i),(i) + ĤNLOS

(i),(i) . (29)

Equation (28) shows that if more accurate decoded data X̂(i)
will result in a more accurate updated NLOS component es-
timate ĤNLOS

(i),(i) . Therefore, the NLOS channel can be updated
iteratively. The proposed data-aided iterative channel estimation
algorithm is shown in Table II.

The SINR and achievable spectral efficiency based on the iter-
atively estimated CSI and the ZF receiver can also be expressed
as (22) and (23), respectively, where

d(i,k) =
[
Ĥf

(i),(i)

(
(Ĥf

(i),(i))
H
Ĥf

(i),(i)

)−1
]

(:,k)
. (30)

TABLE II
PROPOSED DATA-AIDED ITERATIVE CHANNEL ESTIMATION ALGORITHM

1) Initialization: Obtain the estimate of H ( i ) , ( i ) , denoted by Ĥ ( i ) , ( i ) based
on (16).

2) Iteration:
i) Carry out data detection according to (19) and (25), and derive the estimate of
X ( i ) , denoted by X̂ ( i ) , ( i ) ;
ii) Update the estimate of the NLOS channel component ĤN L O S

( i ) , ( i ) by using (28);

iii) Update the estimated channel by using (29). If Ĥf
( i ) , ( i ) is the same as its

previous estimate, or the iteration has reached a pre-determined limit, then go to
3); otherwise go to i).

3) Derive the estimate of the channel matrix using (29).

A general lower-bound of the achievable rate with the itera-
tively estimated CSI is difficult derive analytically. We analyze
two extreme cases:

Case I: The decoded data are completely wrong. In this
case, the the estimated NLOS component ĤNLOS

(i),(i) ≈ 0, and
the lower bound of the achievable spectral efficiency are given
by (24).

Case II: The decoded data are perfect, that is

Ĥf
(i),(i) ≈ H(i),(i) . (31)

The lower bound of achievable spectral efficiency for this case
is given by (32), shown at the bottom of the page.

V. ASYMPTOTIC ANALYSIS

In this section, we analyze the effects of the number of BS
antennas and the Rician K-factor on the lower bound of the
Ergodic achievable spectral efficiency per user when the LOS
component based channel estimation is used. These results and
conclusions drawn will be similar when the iteratively estimated
channel is used.

By fixing the transmit power pt and the number of BS anten-
nas M , it can be shown that in the special case of κ(i),(i,k) → ∞
(k = 1, · · · ,K) the lower bound in (24) reduce to (33), shown
below. When κ(i),(i,k) → 0 (k = 1, · · · ,K), the lower bound is
equal to 0, and the performance will degrade.

lim
κ ( i ) , ( i , k )→∞

{
RZF

(i,k)

}
LB

=
Tc − K

Tc
γlog2⎛

⎝1 +
g2

(i),(i,k)Mpt(∑L
l=1,l �=i

∑K
k=1 ptg2

(i),(l,k) + 1
)
⎞
⎠ . (33)

Lemma 1: When M is large, we have

lim
M →∞

α(φn )H α(φm ) = 0 if |φn − φm | ≥ θmin (34)

RZF,f
(i,k) ≥ Tc − K

Tc
γlog2

⎛
⎜⎜⎜⎜⎝1 +

pt(∑K
k=1

pt g 2
( i ) , ( i , k )

κ ( i ) , ( i , k ) +1 +
∑L

l=1,l �=i

∑K
k=1 ptg2

(i),(l,k) + 1

)
E

{[(
HH

(i),(i)H(i),(i)

)−1
]

k,k

}
⎞
⎟⎟⎟⎟⎠(32)
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where θmin is the minimum distinguishable angle, which can be
calculated by using the half power beamwidth (HPBW) [36].

The proof of Lemma 1 is provided in Appendix B.
Lemma 1 shows that the probability that the columns of

Ĥ(i),(i) are mutually orthogonal will be high when the num-
ber of antenna M is large. Therefore, as M→∞, (24) can be
rewritten as

RZF
(i,k) ≥

Tc − K

Tc
γlog2⎛

⎜⎜⎝1+

κ ( i ) , ( i , k ) g
2
( i ) , ( i , k )

κ ( i ) , ( i , k ) +1 Mpt(∑K
k=1

pt g 2
( i ) , ( i , k )

κ ( i ) , ( i , k ) +1 +
∑L

l=1,l �=i

∑K
k=1 ptg2

(i),(l,k) +1

)
⎞
⎟⎟⎠.

(35)

With a transmit power pt = Et

M and when the Rician K-
factors are fixed, we have

lim
M →∞

{
RZF

(i,k)

}
LB

=
Tc − K

Tc

· γlog2

(
1 +

κ(i),(i,k)g
2
(i),(i,k)

κ(i),(i,k) + 1
Et

)

(36)

where Et is fixed. Therefore, in multicell multiuser Rician fad-
ing channels, when the number of BS antennas M grows to
infinity, the transmit power of each user can be reduced propor-
tionally to 1/M when the proposed channel estimation scheme
is applied.

VI. SIMULATION RESULTS

Here is the configuration for the simulation: there are L = 7
BSs and frequency reuse factor is 1, that is, a given cell will
be interfered by its 6 neighboring cells. In each cell, there are
K = 10 users. All direct gains are normalized to 1, that is,
g(i),(i,k) = 1. The cross-gains are uniformly distributed over
(0, 1], which means that there are interfering users at the cell
edge as well as far from the cell. The users in the same cell are
assumed to have the same Rician K-factor, and κ(i),(l,k) = 0
(l �= i, k = 1, 2, · · · ,K), that is, fading cross different cells is
modeled as Rayleigh [26]. The LOS AOAs of the users are
uniformly distributed over [−π/2, π/2]. The spacing between
two adjacent antennas is d = 1

2λ, and γ = 0.5; that is, the uplink
occupies the half of the effective transmission interval. The
spectral efficiency is defined as

RZF
i =

K∑
k=1

RZF
(i,k) . (37)

In the uplink transmissions, SNR is defined as SNR =
pt/σ2

n ( i )
= pt , and pu = pt . The normalized mean square er-

ror (NMSE) is employed to evaluate the proposed channel

Fig. 2. NMSE of channel estimation versus SNR, when M = 200 and
κ(i) ,(i ,k ) = 3 dB.

estimation performance, and it is defined as

ρ(i),(i,k) =
power(Interference + noise)
power(Desired component)

=
‖ ĥ(i),(i,k) − h(i),(i,k)‖2

2

‖ h(i),(i,k)‖2
2

(38)

where ĥ(i),(i,k) is the estimation of h(i),(i,k) .
When M = 200 and κ(i),(i,k) = 3 dB, Fig. 2 shows the

NMSE of different schemes including, the proposed scheme,
the traditional PR scheme, the no-PC scheme, and the time-
shifted pilot-based scheme. In the traditional PR scheme, the
pilots of different users in the same cell are orthogonal and the
pilots are reused in other cells, the length of the pilot is K, and
no other processing is applied. For the no-PC scheme, the pilots
of all the users in all the cells are mutually orthogonal, resulting
in a pilot overhead of KL, and the estimated channel will not
suffer from PC. In the time-shifted pilot-based scheme [10], pi-
lots are transmitted at non-overlapping times in each cell, and
the pilot overhead is K. For example, when the uplink pilots
are transmitted in a specific cell, and other cells are transmitting
downlink data symbols. For the time-shifted scheme, the large
scale fading coefficient from the l-th BS to the i-th BS gi,l is
assumed to be uniformly distributed over (0.1, 0.5), and it is
time invariant. The cell group strategy is one cell per group,
and the normalized transmit power of each BS is ten times the
normalized pilot power [8].

Fig. 2 shows that the proposed scheme achieves lower NMSE
than the traditional PR scheme and the time-shifted pilot-based
scheme, which means that proposed scheme can efficiently re-
duce the pilot interference. The NMSE of the proposed LOS-
component based algorithm is slightly affected by SNR. That
is because the estimated channel of the LOS-component based
algorithm is based on the estimated AOA, which is slightly
affected by SNR. Besides, the proposed data-aided algorithm,
where τ = 100, achieves better NMSE performance than the
LOS-component based algorithm.
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Fig. 3. Numerically calculated and simulated lower bounds of the spectral
efficiency with the LOS component based scheme (Tc = 100 and κ(i) ,(i ,k )
= 0 dB).

Fig. 4. Average BER versus SNR with the proposed channel estimation
scheme (Tc = 210, M = 100, κ(i) ,(i ,k ) = 3 dB).

Fig. 3 shows the simulated spectral efficiency and the pro-
posed analytical lower bounds for the ZF receiver using the
channel estimated via the LOS-component-based algorithm.
Here Tc = 100, κ(i),(i,k) = 0 dB, and the number of BS an-
tenna, M is 100, 200, and 400, respectively. Very tight bounds
are observed from this figure.

Fig. 4 shows the bit error rate (BER) performance of the
proposed scheme with 4-ary quadrature amplitude modulation
(QAM) assuming Tc = 210, M = 100, κ(i),(i,k) = 3 dB. It is
found that the decoded-data-aided algorithm could significantly
improve the BER performance, even with only one iteration.
The BER performance improves as τ increases.

Fig. 5 shows the achievable spectral efficiency. Similar to
BER performance, the achievable spectral efficiency with the
data-aided algorithm is significantly higher than with the LOS-
component-based algorithm in this condition.

Fig. 6 shows the spectral efficiency of the uplink transmission
versus the number of BS antennas, M , for pt = Et/M . Other

Fig. 5. Achievable spectral efficiency versus SNR with the proposed channel
estimation scheme (Tc = 210, M = 100, κ(i) ,(i ,k ) = 3 dB).

Fig. 6. Comparison of spectral efficiency versus the number of BS antennas M
with various schemes ( the reference transmit power is Et = 10 dB, Tc = 500,
and κ(i) ,(i ,k ) = 0 dB).

parameters are Et = 10 dB, Tc = 500, and κ(i),(i,k) = 0 dB.
The traditional PR scheme, the no-PC scheme, and the time-
shifted pilot scheme are adopted for performance comparison.
MMSE detection [34] is used in these three schemes. For the
proposed data-aided algorithm, τ = 200. It is observed that with
pt = Et/M , the spectral efficiency of the proposed algorithm
approaches a constant value as M increases, but decreases 0 with
the three existing schemes. This shows that with the proposed
algorithm, the transmit power of each user as Et/M can be
scaled down proportionally to 1/M . The proposed data-aided
algorithm achieves a higher spectral efficiency than the LOS-
component-based algorithm.

Fig. 7 shows the spectral efficiencies of different schemes
assuming pt = Et/M , Tc = 100, Et = 10 dB, and κ(i),(i,k) =
0 dB. The proposed data-aided algorithm cannot be applied in
this case, because τ should be greater than KL = 70 and only
45 time intervals are used for uplink data transmission. The
proposed LOS-component-based algorithm achieves the highest
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Fig. 7. Comparison of spectral efficiency versus the number of BS antennas M
with various schemes (the reference transmit power is Et = 10 dB, Tc = 100,
and κ(i) ,(i ,k ) = 0 dB).

Fig. 8. Achievable spectral efficiency versus κ(i) ,(i ,k ) in the uplink data
transmission (SNR = 10dB, and Tc = 210).

spectral efficiency among the four schemes compared when the
number of BS antennas M > 70. The same power scaling law
can be derived as in Fig. 7.

The achievable spectral efficiency versus the Rician K-factor
(κ(i),(i,k)) is plotted in Fig. 8, where SNR = 10 dB, Tc = 210,
and τ = 100. As κ(i),(i,k) increases, the achievable spectral ef-
ficiency of the proposed scheme increases, because as κ(i),(i,k)
increases, more energy of the desired signals can be collected
from the LOS component. When the Rician K-factor is low,
the data-aided algorithm achieves a higher spectral efficiency
than the LOS-component-based algorithm, because when the
Rician K-factor is low, the LOS component will not dominate
the channel, and the data-aided algorithm can improve the ac-
curacy of the estimated channel. When the Rician K-factor is
high, the LOS-component-based algorithm achieves a higher

spectral efficiency, because when the Rician K-factor is high
(>10 dB), the LOS component dominates the channel, and the
estimate of the LOS component is sufficiently accurate, while
the data-aided algorithm might make the channel estimation less
accurate due to the NLOS component estimation.

VII. CONCLUSION

In this paper, we have proposed channel estimation algorithms
for multicell multiuser massive MIMO uplink in Rician fading
channels based on the channel statistical information and the
contaminated CSI. In coherence-time-limited systems, for ex-
ample, vehicular networks, the achievable spectral efficiency of
the proposed scheme is higher than those of the traditional PR
scheme, the no-PC scheme, and the time-shifted pilot scheme.
The achievable spectral efficiency and power scaling law of
the proposed scheme are analyzed. The proposed data-aided
algorithm achieves a higher spectral efficiency than the LOS-
component-based algorithm in weak Rician channels, and the
LOS-component-based algorithm achieves a higher spectral ef-
ficiency in strong Rician channels. Simulation results show that
the proposed scheme could combat PC efficiently, and is an
excellent candidate technique for massive MIMO systems in
Rician fading environments.

APPENDIX A
PROOF OF THEOREM 1

The estimated AOAs are dominated by the LOS components
of different users’ channels. The NLOS components are uni-
formly distributed over [0, 2π). Therefore, when we have M ,
we have

m(i),(:,k),v

=

{
L∑

l=1

α(φi,v )H h(i),(l,k) + α(φi,v )H Niηk√
Kpu

}

= g(i),(i,k)

√
κ(i),(i,k)

κ(i),(i,k) + 1
α(φi,v )H α(θ(i),(i,k))

+ g(i),(i,k)

√
1

κ(i),(i,k) + 1
α(φi,v )H c(i),(i,k)

+
L∑

l=1,l �=i

g(i),(l,k)α(φi,v )H c(i),(l,k) + α(φi,v )H Niηk√
Kpu

≈ g(i),(i,k)

√
κ(i),(i,k)

κ(i),(i,k) + 1
α(φi,v )H α(θ(i),(i,k))

≤ g(i),(i,k)

√
κ(i),(i,k)

κ(i),(i,k) + 1
(A.1)

where the approximation holds because c(i),(l,k) and Niηk are
zero-mean Gaussian random vectors, and the projection to the
steering vector α(φi,v ) will be very small. The last equality
holds only when φi,v is equal to θ(i),(i,k) . Therefore, when Φ is
maximized, the corresponding angle is θ(i),(i,k) .
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APPENDIX B
PROOF OF LEMMA 1

The HPBW can be viewed as the angular resolution, that is,
two sources separated by angular distances equal to or greater
than HPBW can be resolved [36]. The BS is equipped with M
antennas, and the HPBW for the d = λ/2 spacing is [36]

HPBW(d = λ/2) � 1.06√
M − 1

≈ 1√
M

. (B.1)

The angular resolution is θmin = 1√
M

. It is assumed that⎧⎪⎪⎨
⎪⎪⎩

φm =
1√
M

m

φn =
1√
M

n

(B.2)

where m and n are positive integers, and m �= n. Therefore

α(φn )H α(φm ) =
1
M

M −1∑
l=1

e
jπ l
(

cos
(

n√
M

)
−cos

(
m√
M

))

=
1
M

M −1∑
l=1

e
−j2π l sin

(
n −m

2
√

M

)
sin
(

n + m

2
√

M

)
. (B.3)

When M goes to infinity, it has⎧⎪⎨
⎪⎩

lim
M →∞

sin
(

n−m
2
√

M

)
= n−m

2
√

M

lim
M →∞

sin
(

n+m
2
√

M

)
= n+m

2
√

M
.

(B.4)

Therefore, when m �= n, we have

lim
M →∞

α(φn )H α(φm ) = lim
M →∞

1
M

M −1∑
l=1

e−
j π l
2M (n2−m 2) = 0.

(B.5)
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