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Rate-One Space–Time Block Codes With Full Diversity
Liang Xian and Huaping Liu, Member, IEEE

Abstract—Orthogonal space–time block codes provide full diver-
sity, and maximum-likelihood (ML) decoding for orthogonal codes
can be realized on a symbol-by-symbol basis. It has been shown
that rate-one complex orthogonal codes do not exist for systems
with more than two transmit antennas. For a general system with

transmit and receive antennas, it is very desirable to design
rate-one complex codes with full diversity. In this letter, we provide
a systematic method of designing rate-one codes (real or complex)
for a general multiple-input multiple-output system. Full diversity
of these codes is then achieved by constellation rotation. A gener-
alized, reduced-complexity decoding method for rate-one codes is
also provided.

Index Terms—Diversity, space–time block codes (STBCs), wire-
less communications.

I. INTRODUCTION

MULTIPATH fading could severely degrade the perfor-
mance of wireless communication systems. As an effec-

tive method to combat the effects of fading, transmit diversity
has been studied extensively in the past. The transmit diversity
scheme proposed by Alamouti [1] is a simple and effective or-
thogonal space–time block code (STBC) of rate one for systems
with two transmit antennas. Because of its simplicity in imple-
mentation and the feasibility of having multiple antennas at the
base station, this scheme has been deployed in existing mobile
communications systems. In [2], Tarokh et al. extended the or-
thogonal design to systems with an arbitrary number of transmit
antennas and provided a class of rate-one real orthogonal codes.
It was also proved that complex orthogonal design with trans-
mission rate one does not exist for more than two transmit an-
tennas (see [2, Th. 5.4.2] and [3] for nonsquare designs). In [4],
Boariu et al. discussed a method to construct a class of rate-one
nonorthogonal STBCs with partial diversity. Real Hadamard
matrices played a key role in the scheme proposed in [4]. A class
of quasi-orthogonal STBCs for systems with four transmit an-
tennas was proposed in [5]–[7]. These quasi-orthogonal codes
provide partial diversity but transmission rate one. To achieve
full diversity for quasi-orthogonal codes for four transmit an-
tennas, constellation-rotation schemes were proposed in [8] and
[9]. Compared with the STBCs in [10]–[12], quasi-orthogonal
codes result in constant power for each transmit antenna with
constant amplitude modulation, which is desirable for practical
implementation. Sethuraman et al. proposed a family of STBCs
from division algebras [13], some of which are of full diversity,
rate one, with a constant power. However, these rate-one codes

Paper approved by A. H. Banihashemi, the Editor for Coding and Communi-
cation Theory of the IEEE Communications Society. Manuscript received Jan-
uary 27, 2004; revised November 5, 2004 and May 15, 2005.

The authors are with the School of Electrical Engineering and Com-
puter Science, Oregon State University, Corvallis, OR 97331 USA (e-mail:
hliu@eecs.orst.edu).

Digital Object Identifier 10.1109/TCOMM.2005.860081

with a constant power have higher decoding complexities and
worse performance than quasi-orthogonal codes with optimal
constellation rotation.

In this letter, we provide a systematic method for designing
rate-one codes, real or complex, with full diversity and min-
imum intersymbol interference (ISI)1 for a general multiple-
input multiple-output (MIMO) system. Through this system-
atic method, existing quasi-orthogonal codes for four or less
transmit antennas are extended to systems with a larger number
of transmit antennas. The proposed code structures are based
on the real orthogonal codes given in [2], and can be used for
both real and complex signals. Although the codes derived are
nonorthogonal for complex signals, the orthogonality property
is used in the ISI minimization process. Because of ISI, the
decoder for these nonorthogonal codes is more complex than
that for orthogonal codes. Thus, we provide a generalized, re-
duced-complexity decoding algorithm for the proposed codes.
This decoding method can also be applied for orthogonal codes.

II. SYSTEM MODEL

We consider a wireless communication system with
transmit antennas in the base station and receive antennas in
the remote. The transmission matrix is expressed as

...
...

. . .
...

(1)

where , , , is the symbol trans-
mitted from antenna at time . Generally, elements of are
linear combinations of input symbols and their
complex conjugates. For most widely used codes, however, each
element of is related to a single input symbol (e.g., in the
form of , ). The codes given in [1], [2], [5]–[7],
and [13] are all of this type, which is also our focus in this letter.
Note that complex conjugate and sign change of are special
cases of . The code rate is defined as . At time
slot , signals are transmitted simultaneously from
the transmit antennas, and the average power of data streams
from each transmit antenna is normalized to .

We consider a frequency-nonselective Rayleigh fading
channel. Thus, the path gain from transmit antenna to receive
antenna , denoted as , is modeled as samples of inde-
pendent complex zero-mean Gaussian random variables (RVs)
with variance 0.5 per real dimension. The wireless channel is
assumed to be quasi-static, so that the path gains are constant
over a frame of length and change independently from one
frame to another.

1Note that ISI here refers to the mutual interference among input symbols
transmitted from different antennas and different time slots within a frame.
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Let the received signal by antenna at time be . The
receiver model is expressed by

(2)

where is the received signal
matrix, is the channel
fading coefficient matrix, is the

additive noise matrix whose elements are samples of
independent zero-mean complex Gaussian RVs with variance
1/2 per real dimension, and is the signal-to-noise ratio (SNR)
per receive antenna.

With perfect channel state information, the maximum-likeli-
hood (ML) receiver computes metric

(3)

over all possible transmitted signal sets and de-
cides in favor of the set that minimizes ( stands for Frobe-
nius norm).

III. GENERALIZED QUASI-ORTHOGONAL CODES

A. Code Construction

Since our focus is on codes for which each element of is
related to a single input symbol, it is clear from (3) that
( stands for conjugate transpose) is the only source of ISI.
If all off-diagonal elements of are zero, the transmission
is ISI-free. Thus, the orthogonal design (columns of are mu-
tually orthogonal) has zero ISI, and all transmitted symbols for
such design can be separated by using a ML decoder.

To minimize ISI in rate-one design, we could maximize the
number of zero off-diagonal elements, as all nonzero off-di-
agonal elements of have the same statistics, and there-
fore contribute the same amount of ISI. Quasi-orthogonal codes
are constructed based on maximizing the number of orthogonal
column pairs in the code matrix. Quasi-orthogonality should
hold for any complex input symbols, not just some specific com-
plex symbols. Additionally, for real symbols, the code matrix
should be an orthogonal matrix, so that it is suitable for both real
and complex symbols. Thus, the proposed code has the same
structure as the real orthogonal codes given in [2], but differs in
that some elements are changed to their conjugates. Before de-
tailing the systematic construction method for the type of codes
described in the beginning of Section III-A, let us prove two
propositions.

Proposition 1: Any two column vectors that are both orthog-
onal to the third column vector must be nonorthogonal to each
other.

Proof: Recall that we only consider code matrices, each
entry of which is related to a single input symbol. For rate-one
transmission with constant power, a necessary condition to
achieve full diversity without feedback is that each input
symbol appears in each row and each column of the code

matrix only once. Consider three column vectors , , and .
If is orthogonal to and contains any input symbol
(could be any point in a complex plane), then must contain

, where stands for complex conjugate. For the same
reason, must appear once in . Since both and contain

, they are nonorthogonal to each other. An indirect proof is
that if Proposition 1 were not true, then one should find three
mutually orthogonal columns. This implies that a rate-one
complex orthogonal design for three transmit antennas exists,
which leads to a conclusion that contradicts the theorem given
in [2, Th. 5.4.2].

Proposition 2: The maximum number of orthogonal column
pairs of a code matrix is when is even, and

when is odd.
Proof: With the restrictions of the design being consid-

ered, the code matrix has a size of ( for rate-one
design). Consider a complex rate-one code matrix. Without loss
of generality, we assume that the first column is orthogonal to
a maximum of other columns. To maximize the total number
of orthogonal column pairs, we could let each of the remaining

columns be orthogonal to all of the columns. Ac-
cording to Proposition 1, the total number of orthogonal column
pairs is . Let . It is easy to deter-
mine the maximum values of for integer in the range

. These values are found to be for even
, and for odd , which can

be realized by dividing all columns into two groups and making
any column of one group orthogonal to all columns of the other
group. The number of columns in the two groups must be kept

and for odd , and for even .

For complex codes, rate-one design can be generalized by
fixing the positions and signs of the symbols in the real orthog-
onal design and then changing half (the top half, the bottom
half, or the middle half) of all rows to their complex conjugates.
Let us consider changing the top half as an example. For square
rate-one real orthogonal codes when is an integer power of
two, we can always partition into four subblocks as

for real design, and

for complex design. Consequently, any column in the left half of
is orthogonal to any column in its right half. This method thus

maximizes the number of orthogonal column pairs according to
Proposition 2. Similarly, we can prove that changing the bottom
half or the middle half of all rows also achieves the maximum
number of orthogonal column pairs. Although different choices
of these rows will affect the positions of the nonzero elements in

, the total number of nonzero elements is the same. There-
fore, these codes have the same performance.

We provide below a few examples of complex rate-one codes
obtained by applying the proposed method. These codes are
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based on changing the middle rows of the real codes presented
in [2] as

The Alamouti scheme can be considered as a special case of the
proposed design. By changing the last row of the real orthogonal
matrix

we obtain the complex design

which is the Alamouti scheme. Note that orthogonality still
holds for this complex code. The design from the
proposed method and the code matrix for four transmit antennas
given in [5]

have the same performance for complex signals as and
have an equal number of nonzero elements, and these

nonzero elements have identical statistical properties (mean
and variance). However, the transmission matrix in [5] does
not completely eliminate ISI for real input signals, whereas
the proposed design does. Additionally, the proposed design
can be applied to systems with an arbitrary number of transmit
antennas, whereas the Jafarkhani scheme [5] is restricted to
systems with four transmit antennas.

B. Generalized Fast Decoding

As it is well known, orthogonal codes can be decoded symbol
by symbol. In other words, other symbols do not cause any inter-
ference in the process of decoding a particular symbol. There-
fore, to decode any symbol, all other symbols can be assumed
to be zero in the code matrix without performance loss. For ex-
ample, to decode for the Alamouti scheme, one could let

so that the code matrix becomes

The decision variable for is obtained as
, which is the same

as the result derived in [1]. Applying this technique to
various types of orthogonal codes (e.g., rate-1, 1/2, or 3/4
codes), one can easily find the decision variable without the

lengthy calculation that is otherwise needed. Similarly, for
quasi-orthogonal codes, such as , group
can be decoded by letting . For
large-size constellations, complexity even with the fast ML
decoding algorithm could still be very high. In this case, the
sphere decoder (lattice decoder) [14] could be applied after the
generalized fast ML decoder to further lower complexity.

C. Optimal Constellation Rotation for Quasi-Orthogonal
Codes

Constellation rotation for codes has been addressed in
[8] and [9]. Thus, we only consider in this letter. Consider

, which is formed by letting
in . The minimum rank of is
four for some common modulation schemes, such as phase-shift
keying (PSK) and quadrature amplitude modulation (QAM),
where . Therefore, only provides a di-
versity order four without constellation rotation. Full diversity
can be achieved by constellation rotation only if the determinant
of is always nonzero.

For quasi-static flat Rayleigh fading channels, the upper
bound of the pairwise error probability is given as [9], [15]

(4)

where and are two different but arbitrarily chosen code
matrices, rank is the diversity order, and

are the nonzero eigenvalues of
. The minimum value of the product over all

pairs of distinct code matrices is defined as the coding gain. For
with full diversity, .

Maximizing the coding gain is equivalent to maximizing the
minimum absolute value of the determinant of .

Consider the group with

(5)

Let be the reference symbol with a rotation angle zero
(without rotation), and rotation angles for , , and be ,

, and , respectively. Equation (5) can then be rewritten as

(6)

It is very difficult to determine the optimal values of the three
variables simultaneously via an analytical approach.
Moreover, the optimal rotation angles are constellation-depen-
dent. Through exhaustive numerical search and careful inspec-
tion, it is found that when the minimum value of is maximized,
(6) can always be written as

(7)

where for QAM and for PSK with a constel-
lation size , when is an integer power of two. Note that is
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Fig. 1. Constellation X and Y = e X .

the optimal rotation angle for quasi-orthogonal codes with four
transmit antennas [9], [16]. This leaves the only variable to be
determined. In other words, if we let be the new constellation
formed by , then maximizing the
minimum value of is equivalent to maximizing the minimum
distance between any point in and any point in .
If the minimum distance is nonzero (except between the origins
of constellations and ), then full diversity is achieved.

For 4QAM symbols
, the optimal value of and the corresponding can

be determined by using the geometric method given in [16].
Fig. 1 shows five circles with radii . For
constellation , there are four points uniformly distributed on
each circle. The angles of the four points on the same circle are

or . The optimal
value of is found to maximize the distance between
and the distance between simultaneously. It is found
that for 4QAM, and the minimum value of is
maximized to be .

The conclusion that is optimal is briefly proved as
follows.

1) Consider a pair of points , where , ,
on the same circle. It is straightforward that after constel-
lation rotation by , the distance between any
point in and any point in is greater than or equal to
the distance between .

2) Consider a pair of points on the different circles.
First, let us consider the two inner circles only. It is easily
found from Fig. 1 that is optimal, and dis-
tances

. It is also easy to find that the distances between
the middle circle and its adjacent circles are greater than
1.0353. Finally, we need to check point pair on the
two outer circles, for which it is determined that the dis-
tance between on the two outer circles is always
greater than 1.0353. Therefore, is the optimal
rotation angle for 4QAM.

Because of the symmetry of , the minimum value of is
a periodic function of with a period of for QAM and a
period of for PSK, with a constellation size when

TABLE I
OPTIMAL ROTATION ANGLES FOR SOME COMMONLY USED CONSTELLATIONS

is an integer power of two. There are two optimal rotation an-
gles for any modulation within one period (e.g., is another
optimal rotation angle for 4QAM). For higher order modula-
tion schemes, analysis via an analytical approach is difficult.
Through exhaustive numerical search, we determined the op-
timal rotation angles in the sense of maximizing coding gain for
some commonly used constellations and listed them in Table I.
Unlike given in [8] and [9], for which all QAM constella-
tions have the same optimal rotation angles, the optimal rotation
angles of 4QAM and 16QAM are different for .

IV. SIMULATION RESULTS

Error performance of the codes derived using the proposed
method is simulated and compared with the theoretical lower
bound. The theoretical lower bound is obtained based on a
model with one transmit antenna and receive antennas
that provides full receive diversity. To make it a fair comparison,
the average transmission power for this model is normalized to

, the same as the STBC system with transmit antennas.
The decision variable for any symbol is expressed as

(8)

where , , are samples of independent zero-
mean complex Gaussian RVs with variance 1/2 per real dimen-
sion, is the fading coefficient for the th receive antenna, and

is a symbol. Rate-one ISI-free codes (i.e., orthogonal codes)
such as the Alamouti code achieves this bound.

Figs. 2 and 3 show, respectively, the simulated bit-error rate
(BER) versus SNR curves for 4QAM and 16QAM systems with
five transmit antennas and one receive antenna. Code matrix
is taken as the first five columns of . The codes obtained
using the proposed method with the optimal constellation-ro-
tation angles were found to have the same BER–SNR slope as
the theoretical BER lower bound. This verifies that the codes de-
rived in this letter achieve full diversity. Without rotation, these
codes suffer from performance degradation at the high SNR re-
gion because of a loss in diversity. Performance of the code pro-
posed in [13] is also shown in Fig. 2. Its code matrix is given as

Through computer search, the optimal value of , in the sense of
maximizing coding gain, is found to be 5.38 radians for 4QAM.
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Fig. 2. Performance comparison between GGG and theoretical lower bound
(N = 5,M = 1, 2 b/s/Hz).

Fig. 3. Performance comparison between GGG and theoretical lower bound
(N = 5,M = 1, 4 b/s/Hz).

Compared with quasi-orthogonal codes, this code suffers from
performance loss due to higher ISI.

V. CONCLUSION

We have provided a systematic design method of rate-one
STBCs with full diversity for systems with an arbitrary number
of transmit antennas. Our code structures are based on the real
orthogonal codes, and can be applied to real, as well as complex,
signals. Full diversity is achieved by constellation rotation. A
decoding method has been provided to lower the decoding com-
plexity of these codes when applied to a MIMO system. Simu-
lation results verified these properties of the codes derived.
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