
IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 8, AUGUST 2010 701

On Angle Feedback and Antenna Shuffling in
Double Space-Time Transmit Diversity Systems

Tao Xu and Huaping Liu, Senior Member, IEEE

Abstract—In this letter, we compare angle feedback and trans-
mit antenna shuffling schemes for double space-time transmit
diversity (DSTTD) systems with four transmit antennas and at
least two receive antennas. We show that a DSTTD system with
one bit of angle feedback does not provide better performance
than the same system with one bit of transmit antenna shuffling.
We also present a simplified general result about the selection
of antenna shuffling matrix from six permutation matrices to
facilitate our arguments. In simulation, we observe that antenna
shuffling outperforms angle feedback in i.i.d. Rayleigh fading
channels.

Index Terms—Double space-time transmit diversity, antenna
shuffling, angle rotation, limited rate feedback.

I. INTRODUCTION

DOUBLE space-time transmit diversity (DSTTD) systems
with four transmit antennas have been studied for high

data rate transmission [1]–[5]. Due to feedback, the perfor-
mance of closed-loop DSTTD systems is much better than that
of open-loop DSTTD systems. An angle feedback scheme is
proposed in [3] to suppress interference caused by the non-
orthogonal structure of the effective channel. In this scheme,
a rotation factor 𝑐 = 𝑒𝑗𝜃 is applied to the symbols being
transmitted on the second antenna. In [5], transmit antenna
shuffling is adopted to improve system performance. Both
schemes are simple to implement.

It is of interest to understand the relative performance
between angle feedback [3] and transmit antenna shuffling [5].
In this letter, we compare these two schemes and show that
the latter outperforms the former.

II. ANGLE FEEDBACK VERSUS TRANSMIT ANTENNA

SHUFFLING

A. Angle feedback

Consider a four-transmit-antenna system that employs angle
feedback. We focus on the general case with four rotation
factors. The effective channel matrix from the four transmit
antennas to the 𝑗th receive antenna, 𝑯𝑗 , is a modified version
of 𝑯𝑗 given in [3, eq. (4)]

𝑯𝑗 =

[
𝑐1ℎ1𝑗 𝑐2ℎ2𝑗 𝑐3𝑔1𝑗 𝑐4𝑔2𝑗

−𝑐∗2ℎ∗2𝑗 𝑐∗1ℎ
∗
1𝑗 −𝑐∗4𝑔∗2𝑗 𝑐∗3𝑔

∗
1𝑗

]𝑇
, (1)

where 𝑐𝑖 = 𝑒𝑗𝜃𝑖 , 1 ≤ 𝑖 ≤ 4. Let (⋅)𝐻 , (⋅)𝑇 , and (⋅)∗ represent,
respectively, Hermitian, transpose, and conjugate. With the
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notation 𝒄 = [𝑐1, 𝑐2, 𝑐3, 𝑐4], the quadratic channel product in
[3, eq. (5)] becomes

𝑯𝐻𝑯 =

[
𝜌𝑰2 𝑼

𝑼𝐻 𝜇𝑰2

]
(2)

where 𝑰𝑁 is the 𝑁 ×𝑁 identity matrix and

𝑯 = [𝑯1 𝑯2 ⋅ ⋅ ⋅ 𝑯𝑁𝑟 ]
𝑇 , (3)

𝜌 =

2∑
𝑖=1

𝑁𝑟∑
𝑗=1

∣ℎ𝑖𝑗 ∣2 , 𝜇 =

2∑
𝑖=1

𝑁𝑟∑
𝑗=1

∣𝑔𝑖𝑗 ∣2 , (4)

𝑼 =

[
𝛿1(𝒄) 𝛿2(𝒄)
−𝛿∗2(𝒄) 𝛿∗1(𝒄)

]
, (5)

𝛿1(𝒄) = 𝑐∗1𝑐3
𝑁𝑟∑
𝑗=1

ℎ∗1𝑗𝑔1𝑗 + 𝑐2𝑐
∗
4

𝑁𝑟∑
𝑗=1

ℎ2𝑗𝑔
∗
2𝑗, (6)

𝛿2(𝒄) = 𝑐∗1𝑐4
𝑁𝑟∑
𝑗=1

ℎ∗1𝑗𝑔2𝑗 − 𝑐2𝑐
∗
3

𝑁𝑟∑
𝑗=1

ℎ2𝑗𝑔
∗
1𝑗. (7)

Let 𝜂 = ∣𝛿1(𝒄)∣2+∣𝛿2(𝒄)∣2. In [3], the interference suppression
criterion is to minimize 𝜂.

When a minimum mean-square error (MMSE) equalizer is
applied to the received signal given by [3, eq. (2)], the estimate
of the transmitted symbol vector 𝒙 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝑇 is

expressed as �̂�MMSE =
(
𝑯𝐻𝑯 + 1

𝜁 𝑰4

)−1

𝑯𝐻𝒓, where

𝜁
Δ
= 𝐸𝑠/𝜎

2 is defined as the signal-to-noise ratio (SNR), 𝐸𝑠 is
the average transmit symbol energy, and 𝜎2 is the variance of
the complex Gaussian noise samples at each receive antenna.
The MSE of the MMSE equalizer is given by [4]

E
[
∥�̂�MMSE − 𝒙∥2

]
= 𝜎2tr

([
𝑯𝐻𝑯 +

1

𝜁
𝑰4

]−1
)

=
𝜎2 [2(𝜌+ 𝜇) + 4/𝜁]

1/𝜁2 + (𝜌+ 𝜇)/𝜁 + 𝜌𝜇− 𝜂
. (8)

For a zero-forcing (ZF) equalizer, we have �̂�ZF =
(𝑯𝐻𝑯)−1𝑯𝐻𝒓. The MSE of the ZF equalizer is expressed
as

E
[
∥�̂�ZF − 𝒙∥2

]
= 𝜎2tr

([
𝑯𝐻𝑯

]−1
)

=
2(𝜌+ 𝜇)𝜎2

𝜌𝜇− 𝜂
. (9)

Since 𝜁, 𝜎2, 𝜌, and 𝜇 are independent of 𝒄, we have
argmin

𝒄
E
[
∥�̂�− 𝒙∥2

]
= argmin

𝒄
𝜂 for both MMSE and ZF

equalizers. Thus, minimizing 𝜂 is optimal in the MMSE sense.
Note that 𝜂 is a function of 𝒄 and can be written as

𝜂 = 𝛿1(𝒄)𝛿1(𝒄)
∗ + 𝛿2(𝒄)𝛿2(𝒄)

∗ = 𝛼 ⋅ 𝑐+ 𝛼∗ ⋅ 𝑐∗ + 𝜉
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∣Γ𝑚(𝑐 = 1)∣ =
∣∣∣∣det

([
ℏ1ℓ𝑚(1) ℏ2ℓ𝑚(1)

ℏ1ℓ𝑚(2) ℏ2ℓ𝑚(2)

])
+ det

([
ℏ3ℓ𝑚(1) ℏ4ℓ𝑚(1)

ℏ3ℓ𝑚(2) ℏ4ℓ𝑚(2)

])∣∣∣∣ . (12a)

∣Γ𝑚(𝑐 = −1)∣ =
∣∣∣∣det

([
ℏ1ℓ𝑚(1) ℏ2ℓ𝑚(1)

ℏ1ℓ𝑚(2) ℏ2ℓ𝑚(2)

])
− det

([
ℏ3ℓ𝑚(1) ℏ4ℓ𝑚(1)

ℏ3ℓ𝑚(2) ℏ4ℓ𝑚(2)

])∣∣∣∣ . (12b)

where 𝛼 and 𝜉 are derived in [3, eq. (11)] and 𝑐 = 𝑐1𝑐2𝑐
∗
3𝑐

∗
4 =

𝑒𝑗(𝜃1+𝜃2−𝜃3−𝜃4). The solution for 𝑐 that minimizes 𝜂 is ex-
pressed as 𝑐 = 𝑒𝑗(𝜋−𝜓) [3], where 𝜓 is the phase of 𝛼. It
can be shown that to suppress interference, it is sufficient to
perform rotation on only one transmit antenna rather than
on four transmit antennas. When the 𝑖th transmit antenna
(1 ≤ 𝑖 ≤ 4) is selected for rotation, the optimum rotation
angle is 𝜃𝑖 = (−1)⌈𝑖/2⌉(𝜓 − 𝜋) and ∀ 𝑗, 1 ≤ 𝑗 ∕= 𝑖 ≤ 4,
𝜃𝑗 = 0. ⌈⋅⌉ represents the ceiling function. Without loss of
generality, we rotate the data for the second transmit antenna
as in [3] for performance comparison. The quantized angle
feedback and its selection criterion are presented in [3].

B. Transmit antenna shuffling

Antenna shuffling has been adopted in WiMAX [5]. In this
scheme, there is no angle rotation, that is, 𝑐𝑖 = 1 for 1 ≤
𝑖 ≤ 4. For simplicity of notation, we treat ℎ𝑖𝑗 and 𝑔𝑖𝑗 in (1),
𝑖 = 1, 2 and 1 ≤ 𝑗 ≤ 𝑁𝑟, as logical channels, and denote ℏ𝑘𝑗

as the physical channel between the 𝑘th (1 ≤ 𝑘 ≤ 4) transmit
antenna and the 𝑗th receive antenna. The mapping between
physical channels and logical channels is [5]

[ℎ1𝑗 ℎ2𝑗 𝑔1𝑗 𝑔2𝑗 ] = [ℏ1𝑗 ℏ2𝑗 ℏ3𝑗 ℏ4𝑗 ]𝑾 (10)

where 𝑾 is the permutation matrix:

𝑾 ∈ 𝑆W =

{
[i1, i2, i3, i4], [i1, i2, i4, i3], [i1, i3, i2, i4],
[i1, i3, i4, i2], [i1, i4, i2, i3], [i1, i4, i3, i2]

}
and i𝑘 is the 𝑘th column of 𝑰4.

We can verify that permutation might change the values of
𝜌 and 𝜇 but does not change the sum of 𝜌 and 𝜇. In order
to minimize the MSE of MMSE and ZF equalizers in (8)
and (9), we must maximize 𝜌𝜇 − 𝜂 using one of the six
permutation matrices in 𝑆𝑊 . A simple permutation matrix
selection criterion for 𝑁𝑟 = 2 is given in [4]. We generalize
the matrix selection criterion to cases of 𝑁𝑟 ≥ 2 through the
next lemma. This helps facilitate permutation matrix selection.

Lemma 1: For ZF or MMSE receiver, the permutation
matrix selection criterion to minimize MSE for 𝑁𝑟 ≥ 2 is
expressed as

argmax
𝑾∈S𝑾

(𝜌𝜇− 𝜂) = argmin
𝑾∈S𝑾

𝑀∑
𝑚=1

∣Γ𝑚∣2 (11)

where

Γ𝑚 = det

([
ℎ1ℓ𝑚(1) ℎ2ℓ𝑚(1)

ℎ1ℓ𝑚(2) ℎ2ℓ𝑚(2)

])
+ det

([
𝑔1ℓ𝑚(1) 𝑔2ℓ𝑚(1)

𝑔1ℓ𝑚(2) 𝑔2ℓ𝑚(2)

])

and 𝑀 =

(
𝑁𝑟

2

)
= 𝑁𝑟!

2(𝑁𝑟−2)! is the number of sets of combina-

tion with each set containing two receive antenna indices. The
1 × 2 vector ℓ𝑚 = [ℓ𝑚(1) ℓ𝑚(2)] denotes the 𝑚th set with
indices 1 ≤ ℓ𝑚(1) < ℓ𝑚(2) ≤ 𝑁𝑟, 1 ≤ 𝑚 ≤𝑀 .

Proof: With some math manipulations, we have 𝜌𝜇−𝜂 =∑𝑀
𝑚=1(𝜌𝑚𝜇𝑚 − 𝜂𝑚), where 𝜌𝑚 =

∑2
𝑖=1

∑2
𝑘=1

∣∣ℎ𝑖ℓ𝑚(𝑘)

∣∣2,
𝜇𝑚 =

∑2
𝑖=1

∑2
𝑘=1

∣∣𝑔𝑖ℓ𝑚(𝑘)

∣∣2 and 𝜂𝑚 = ∣𝛿1,𝑚∣2 + ∣𝛿2,𝑚∣2
with 𝛿1,𝑚=

∑2
𝑘=1(ℎ

∗
1ℓ𝑚(𝑘)𝑔1ℓ𝑚(𝑘) + ℎ2ℓ𝑚(𝑘)𝑔

∗
2ℓ𝑚(𝑘)) and

𝛿2,𝑚=
∑2
𝑘=1(ℎ

∗
1ℓ𝑚(𝑘)𝑔2ℓ𝑚(𝑘)−ℎ2ℓ𝑚(𝑘)𝑔

∗
1ℓ𝑚(𝑘)). Following the

proof in [4, Property 1]1, we can show that 𝜌𝑚𝜇𝑚 − 𝜂𝑚 =
Λ𝑚 − ∣Γ𝑚∣2 with Λ𝑚 =

∑4
𝑖=1

∑4
𝑗=1,𝑗 ∕=𝑖 ∣ℏ𝑖ℓ𝑚(1)ℏ𝑗ℓ𝑚(2)∣2 −

2ℜ
{∑4

𝑖=1

(
ℏ
∗
𝑖ℓ𝑚(1)ℏ𝑖ℓ𝑚(2)

∑4
𝑗=𝑖+1 ℏ𝑗ℓ𝑚(1)ℏ

∗
𝑗ℓ𝑚(2)

)}
. Since

Λ𝑚 is independent of 𝑾 , we have (11).
When 𝑁𝑟 = 2, the right-hand side of (11) has only one

term, which can be written as argmin𝑾∈𝑆𝑊
∣Γ1∣. This has

the same form as in [4, Property 1], a special case of lemma
1.

Now we show that 1-bit angle feedback is a special case
of 1-bit transmit antenna shuffling. With 1-bit angle feed-
back 𝑐 = ±1 applied to the second antenna [3], we have
[ℎ1𝑗 ℎ2𝑗 𝑔1𝑗 𝑔2𝑗 ] = [ℏ1𝑗 𝑐ℏ2𝑗 ℏ3𝑗 ℏ4𝑗 ] and ℎ2𝑗 could
be either ℏ2𝑗 or −ℏ2𝑗 . ∣Γ𝑚(𝑐)∣ is expressed at the top of
this page. For antenna shuffling, we select shuffling matrices
𝑾 1 = [𝒊1, 𝒊2, 𝒊3, 𝒊4] and 𝑾 2 = [𝒊1, 𝒊2, 𝒊4, 𝒊3] for 1-bit
feedback. We can verify

∣Γ𝑚(𝑾 = 𝑾 1)∣ = ∣Γ𝑚(𝑐 = 1)∣ , (13a)

∣Γ𝑚(𝑾 = 𝑾 2)∣ = ∣Γ𝑚(𝑐 = −1)∣ . (13b)

From the proof of Lemma 1, we have 𝜌𝜇−𝜂 =
∑𝑀

𝑚=1(Λ𝑚−
∣Γ𝑚∣2) and the value of Λ𝑚 does not change under 𝑐 = ±1
and 𝑾 = 𝑾 1/𝑾 2. Combining (13a) and (13b), we have

(𝜌𝜇− 𝜂)∣𝑐=1 = (𝜌𝜇− 𝜂)∣𝑾=𝑾 1 , (14a)

(𝜌𝜇− 𝜂)∣𝑐=−1 = (𝜌𝜇− 𝜂)∣𝑾=𝑾 2 . (14b)

Furthermore, since the values of 𝜌 and 𝜇 in (4) do not change
either under 𝑐 = ±1 and 𝑾 = 𝑾 1/𝑾 2, we have 1) 𝜂∣𝑐=1 =
𝜂∣𝑾=𝑾 1 and 𝜂∣𝑐=−1 = 𝜂∣𝑾=𝑾 2 ; 2) 𝑐 = −1 (1) in angle
rotation and 𝑾 = 𝑾 2 (𝑾 1) in transmit antenna shuffling
have the same MSE from (8) and (9) and their selections must
be in pair (one-to-one).

With one-to-one mapping selections for any channel re-
alization 𝑯 , let us further consider the BER performance
of both schemes with the above 1-bit feedback. We only
need to consider angle rotation 𝑐 = −1 and shuffling matrix
𝑾 = 𝑾 2 because angle feedback system with 𝑐 = 1 and
transmit antenna shuffling system with 𝑾 = 𝑾 1 are exactly
the same and have the same BER with a ZF or MMSE receiver.
We define 𝜂∣𝑐=−1 = 𝜂∣𝑾=𝑾 2 = 𝜂 and Π = 𝑯𝐻𝑯 . The
post-processing SNR of the 𝑘th (1 ≤ 𝑘 ≤ 4) data stream of

1We believe that 𝜅 in argmax𝑾∈𝑆𝑊
(𝑐2 − 𝑐3 − 𝜅) in [4] should be 𝜅2.
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Fig. 1. Performance of antenna shuffling scheme and angle feedback scheme.

ZF and MMSE equalizers can be expressed as [6]

𝛾𝑍𝐹𝑘 =
𝜁

Π−1
𝑘,𝑘

,

𝛾𝑀𝑀𝑆𝐸
𝑘 =

𝜁

[Π+ (1𝜁 )𝑰4]
−1
𝑘,𝑘

− 1.

Using matrix inversion lemma for partitioned matrices, we can
verify for any channel realization 𝑯 that results in 𝑐 = −1
and 𝑾 = 𝑾 2, the following equalities

Π−1
𝑘,𝑘∣𝑐=−1 = Π−1

𝑘,𝑘∣𝑾=𝑾 2 = (𝜌− 𝜂/𝜇)−1, 𝑘 = 1, 2

Π−1
𝑘,𝑘∣𝑐=−1 = Π−1

𝑘,𝑘∣𝑾=𝑾 2 = (𝜇− 𝜂/𝜌)−1, 𝑘 = 3, 4

[Π+ (
1

𝜁
)𝑰4]

−1
𝑘,𝑘∣𝑐=−1 = [Π+ (

1

𝜁
)𝑰4]

−1
𝑘,𝑘∣𝑾=𝑾 2

=

{
[𝜌+ 1/𝜁 − 𝜂/(𝜇+ 1/𝜁)]−1, 𝑘 = 1, 2

[𝜇+ 1/𝜁 − 𝜂/(𝜌+ 1/𝜁)]−1, 𝑘 = 3, 4

always hold. Therefore, we have

𝛾𝑍𝐹𝑘 ∣𝑐=−1 = 𝛾𝑍𝐹𝑘 ∣𝑾=𝑾 2 ,

𝛾𝑀𝑀𝑆𝐸
𝑘 ∣𝑐=−1 = 𝛾𝑀𝑀𝑆𝐸

𝑘 ∣𝑾=𝑾 2 .

By combining the scenarios of 𝑐 = 1 and 𝑾 = 𝑾 1, we
conclude that both schemes, i.e., angle rotation with 𝑐 = ±1
and antenna shuffling with 𝑾 = 𝑾 1/𝑾 2, have the same
BER performance with a ZF or MMSE receiver.

Because any pair of shuffling matrices in 𝑆𝑊 could be
selected for 1-bit antenna shuffling, we have the following
lemma:

Lemma 2: With a MMSE or ZF receiver, under MSE
selection criterion, the 1-bit angle feedback scheme proposed
in [3] is a special case of antenna shuffling with shuffling
matrices [𝒊1, 𝒊2, 𝒊3, 𝒊4] and [𝒊1, 𝒊2, 𝒊4, 𝒊3], which requires 1 bit
of feedback. Furthermore, it does not perform better than the
1-bit transmit antenna shuffling scheme with a pair of properly
selected shuffling matrices.

Lemma 2 gives the relative performance between angle
feedback and antenna shuffling schemes with 1-bit feedback.

With two or more feedback bits, it is difficult to compare the

performance of the two schemes analytically. We thus resort to
simulation, through which we observe that antenna shuffling
with only two bits of feedback performs better than angle
feedback with infinite number of feedback bits.

III. SIMULATION RESULTS

We simulate the bit-error rate (BER) performance of an
uncoded DSTTD system with 4 transmit antennas, and 2
and 3 receive antennas. The system employs quadrature
phase-shift keying modulation and a MMSE receiver. Chan-
nel coefficients for different transmit-receive links are inde-
pendent and identically distributed complex Gaussian ran-
dom variables with zero mean and unit variance. We adopt
a quasi-static fading model for the channel. For each re-
alization, 4000 QPSK symbols are transmitted, and BER
is averaged over 106 independent channel realizations. 1-
bit antenna shuffling selects shuffling matrix from the set
{[𝒊1, 𝒊2, 𝒊4, 𝒊3], [𝒊1, 𝒊3, 𝒊2, 𝒊4]}; 2-bit shuffling matrix set is
{[𝒊1, 𝒊2, 𝒊4, 𝒊3], [𝒊1, 𝒊3, 𝒊2, 𝒊4], [𝒊1, 𝒊3, 𝒊4, 𝒊2], [𝒊1, 𝒊4, 𝒊2, 𝒊3]}; 3-
bit antenna shuffling matrix set is 𝑆𝑊 . The angle rotation
scheme uses 𝑐 = ±1 for 1-bit angle rotation and 𝑐 = ±1,±𝑗
for 2-bit angle rotation on the second antenna. The results are
shown in Fig. 1. We observe that the 1-bit antenna shuffling
scheme has a better performance than the 1-bit angle feedback
scheme; 2-bit antenna shuffling performs better than angle
feedback scheme with infinite number of feedback bits. This
shows that antenna shuffling scheme is more effective than the
angle rotation scheme in term of feedback gain.

IV. CONCLUSION

A comprehensive comparison of the performance of angle
feedback and antenna shuffling schemes for DSTTD systems
is provided in this letter. We have shown that antenna shuf-
fling outperforms angle feedback. The reason is that antenna
shuffling effectively boosts the minimum post-processing SNR
among all data streams by maximizing the quantity 𝜌𝜇−𝜂 de-
fined in the paper, whereas angle feedback only minimizes 𝜂;
thus the potential gain in the post-processing SNR achievable
by balancing 𝜌 and 𝜇 is not exploited with angle feedback.
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