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MIMO-OFDM Systems in the Presence of Phase
Noise and Doubly Selective Fading
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Abstract—In this paper, we analyze the effects of phase
noise to multiple-input multiple-output (MIMO) orthogonal fre-
quency division multiplexing (OFDM) systems over doubly selec-
tive Rayleigh fading channels. Similar to single-antenna OFDM,
MIMO-OFDM suffers from significant performance degradation
due to phase noise and time-selective fading, which causes inter-
carrier interference (ICI). We derive the expressions of carrier-
to-interference and signal-to-interference-plus-noise ratios. After
characterizing the common phase error (CPE) caused by phase
noise and ICI caused by phase noise, as well as time-selective fad-
ing, we then derive a minimum mean-squared error-based scheme
to mitigate the effect of both phase noise and time-selective fading.
We also evaluate and compare the performances of various detec-
tion schemes combined with the proposed CPE mitigation scheme.
Through numerical results, we examine the relative performances
and the potential error floors of these detection schemes.

Index Terms—Intercarrier interference (ICI), orthogonal fre-
quency division multiplexing (OFDM), phase noise, time-selective
fading.

I. INTRODUCTION

O RTHOGONAL frequency division multiplexing (OFDM)
is considered a promising transmission technique for

wideband wireless communications. One of the disadvantages
of OFDM is its sensitivity to phase noise, which is a random
process caused by the fluctuation of the transmitter and receiver
oscillators [1]. It is widely accepted that phase noise in OFDM
has two major effects [2], [3]: common phase error (CPE), a
constant rotation to the signal constellation, and intercarrier
interference (ICI) due to the loss of orthogonality among sub-
carriers caused by the fast changes of the oscillator phase. The
CPE term is the same for all subcarriers within one OFDM
symbol interval and changes slowly from one symbol to an-
other. If phase noise level is low, CPE approximately equals the
mean of the phase deviation of an oscillator within one OFDM
symbol. The ICI term is a random process. Schemes which
compensate phase noise in OFDM systems have been proposed
in [4] and [5]. In [6], the signal-to-interference-plus-noise ratio
(SINR) expression for single-antenna OFDM systems with
various phase-noise levels and different number of subcarriers
was derived.
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Multiple-input multiple-output (MIMO) antennas have been
combined with OFDM to improve spectral efficiency through
spatial multiplexing [7]. Similar to single-antenna OFDM,
MIMO-OFDM is also highly sensitive to phase noise. CPE
estimation schemes for MIMO-OFDM systems were derived
in [8] and [9], a decision-directed approach for compensation
of phase noise in MIMO-OFDM systems was studied. Besides
phase noise, time-selective fading also destroys the orthogo-
nality among different subcarriers within one OFDM symbol
and causes ICI [10], [11]. Similar to single-antenna OFDM,
MIMO-OFDM is also vulnerable to channel time selectivity.
Error performance of MIMO-OFDM systems in the presence
of time-selective fading without considering phase noise was
analyzed in [12].

Although the issue caused by phase noise and time-selective
fading in MIMO-OFDM has been recognized, the exact quanti-
tative effect of the combination of the two has not been well
addressed. Phase-noise mitigation for MIMO-OFDM in fast
time-varying fading environments has not been well studied
either. In this paper, we analyze, via mainly an analytical
approach, the impact of phase noise to the performance of
MIMO-OFDM systems over doubly selective (channel is both
time-selective and frequency-selective) Rayleigh fading chan-
nels. After characterizing CPE caused by phase noise and
ICI caused by phase noise and time-selective fading, we de-
rive a minimum mean square error (mmse)-based mitigation
scheme to effectively minimize the impact of phase noise.
We also compare four detection schemes—the zero-forcing
(ZF) scheme [13], the mmse scheme [14], the decorrelating
decision-feedback (DF) scheme [15], and the mmse-DF scheme
[16], [17]—and evaluate their symbol-error-rate (SER) perfor-
mance. This paper is organized as follows. Section II provides
the MIMO-OFDM system model. Analysis of the impact of
phase noise and time-selective fading is described in detail in
Section III. The mmse-based phase noise suppression approach
and various detection schemes are studied in Section IV. Sim-
ulation results are given in Section V, followed by concluding
remarks in Section VI.

II. SYSTEM MODEL

The following notation will be used in this paper. Column
vectors/matrices are denoted by boldface lower/upper case
letters; superscripts (·)T, (·)∗, (·)H, and (·)† denote transpose,
complex conjugate, complex conjugate transpose and pseudoin-
verse, respectively; E[·], var(·), and cov(·) stand for expecta-
tion, variance, and covariance, respectively; IN represents the
N ×N identity matrix; ⊗ denotes Kronecker product; ‖ · ‖F
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denotes the Frobenius norm; tr(·) denotes the trace of a matrix;
{A}ij denotes the (i, j)th element of matrix A.

Consider a MIMO-OFDM system withNt transmit antennas,
Nr receive antennas, and Ns subcarriers in a doubly selective
Rayleigh fading environment. Input data are assumed to be
independent variables with zero mean and unit variance. The
time domain data sequence is obtained by taking the inverse
discrete Fourier transform (DFT) of the data block for each
transmit antenna. A cyclic prefix (CP) with a length longer
than the channel length is inserted at the beginning of each
of the data sequences. The data sequences with a CP are
then transmitted through Nt independent antennas. At each
receive antenna, the CP is removed and a DFT unit is applied.
Let xk = [xk1, . . . , xkNt ]

T and yk = [yk1, . . . , ykNr ]
T denote,

respectively, the transmitted and received data for all antennas
on subcarrier k, where 0 ≤ k ≤ Ns − 1. The general form
of the received signal in MIMO-OFDM over slowly fading
channels (the channel is time-invariant over several OFDM
symbol periods) is expressed as

yk = ∆kxk + nk (1)

where ∆k is an Nr ×Nt matrix whose (i, j)th component,
{∆k}ij , denotes the channel frequency response between the
jth transmit antenna and the ith receive antenna and nk is an
Nr × 1 Gaussian noise vector on subcarrier k. Elements of nk

have zero mean and variance σ2.
Phase noise φ(t) may be described as a continuous Brownian

motion process with zero mean and variance 2πβt, where β
denotes the two-sided 3-dB linewidth of the Lorentzian power
density spectrum of the free-running carrier generator [1]. For
the analysis in this paper, we need to consider discretized
Brownian motion φ(n) = φ(nTs), where Ts is the data sym-
bol period. Thus, we have φ(n+ 1) = φ(n) + ς(n), where
ς(n) ∼ N (0, 2πβTs) is a Gaussian random variable with zero
mean and variance σ2

ς = 2πβTs. If we assume that only one
oscillator is used to support multiple antennas, (1) needs to be
modified to take into account the effects of phase noise as [6]

yk = ∆kxkI(0) +
Ns−1∑
k′=0

k′�=k

∆k′xk′I(k′ − k) + nk (2)

where

I(f) =
1
Ns

Ns−1∑
n=0

ej 2πfn
Ns

+jφ(n). (3)

Note that CPE and ICI due to phase noise are represented
by I(0) and the second term on the right-hand side of (2),
respectively.

III. IMPACT OF ICI CAUSED BY PHASE NOISE

AND TIME-VARYING FADING

In the presence of phase noise and time-selective fading,
the effective NsNr ×NsNt spatiotemporal channel matrix Ht

during the tth OFDM symbol period with the effects of phase
noise taken into consideration is given by (4), shown at the
bottom of the page, as [18], whereL is the number of resolvable
paths and 0 is an Nr ×Nt zero matrix. Each nonzero block of
Ht contains the Nr ×Nt channel matrix Ht,l(n) for path l
at time nTs. Note that the index in the parenthesis following
Ht,l is the time index. For simplicity of notation, we will omit
the time index t which represents the OFDM symbol period
hereafter.

Assuming a wide sense stationary uncorrelated scattering
channel [12], all elements of H l(n) are modeled as indepen-
dent complex Gaussian random variables with zero mean and
equal variance. The channel is assumed to have an exponential
power delay profile θ(τl) = e−τl/τrms [19], where τl is the delay
of the lth path and τrms represents the root-mean-square (rms)
delay spread. Since the channel is time-variant, the relationship
between the channel coefficients for path l at times nTs and
(n+m)Ts can be described as [20]

{H l(n+m)}ij = αm {H l(n)}ij + ρl,ij(n+m) (5)

where

αm =
E
[
{H l(n)}ij · {H l(n+m)}∗ij

]
e−

τl
τrms

= J0(2πmfdTs)

(6)

where fd is the maximum Doppler shift, J0(·) is the zero-order
Bessel function of the first kind, and {ρl,ij(n)} are indepen-
dent complex Gaussian random variables with zero mean and
variance e−τl/τrms(1− α2

m).
Had the system been phase-noise free and the channel been

time-invariant, H given in (4) would have had the eigende-
composition H = (U ⊗ INr)

HΛ(U ⊗ INt), where U is the
unitary DFT matrix with {U}ij = 1/

√
Nse

(−2π
√
−1/Ns)ij , 0 ≤

i, j ≤ Ns − 1, and Λ is a block diagonal matrix whose (k, k)th
block equals ∆k [12]. This establishes the relationship between
the channel frequency response given in (1) and (2), and the
channel coefficients in the time domain.

Ht =



Ht,0(0)ejφ(0) · · · 0 · · · Ht,1(0)ejφ(0)

...
...

...
Ht,L−1(L− 1)ejφ(L−1) · · · Ht,0(L− 1)ejφ(L−1) · · · 0

...
...

...
0 · · · Ht,L−1(Ns − 1)ejφ(Ns−1) · · · Ht,0(Ns − 1)ejφ(Ns−1)

 (4)
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With the effective channel matrix given in (4), we let
G = (U ⊗ INr)H(U ⊗ INt)

H, which is no longer a block
diagonal matrix. This shows that phase noise and time-selective
fading cause ICI, which is represented by the off-diagonal
blocks of G. Let Gij denote the (i, j)th block of G. The ideal
model given in (1) needs to be generalized to reflect the impacts
of both time-selective fading and phase noise as

yk = Gkkxk +
Ns−1∑
k′=0
k′ �=k

Gkk′xk′ + nk, k = 0, . . . , Ns − 1.

(7)

Let Υpij be an Ns ×Ns matrix given by

Υij =

 var ({G00}ij) · · · var ({G0,Ns−1}ij)
...

. . .
...

var ({GNs−1,0}ij) · · · var ({GNs−1,Ns−1}ij)

 .
(8)

As shown in Appendix A, Υpij has a circulant structure ex-
pressed as

Υij =


γ0 γ1 · · · γNs−1

γNs−1 γ0 · · · γNs−2

...
...

...
γ1 γ2 · · · γ0

, 1≤ i≤Nr; 1≤j≤Nt .

(9)

Since elements of Gij are independent and identically distrib-
uted Gaussian random variables [12], (9) applies to all antennas.
It is also shown in Appendix A that γk defined in (9) can be
expressed in closed-form as

γk =
1
N2

s

L−1∑
l=0

{
Ns + 2

Ns−1∑
i=1

(Ns− i)J0(2πifdTs)

× cos
(
2π
Ns

ki

)
e−πβTsi

}
e−

τl
τrms ,

k = 0, . . . , Ns − 1. (10)

ICI can be well quantified by using the carrier-to-interference
ratio (CIR) [21]. In order to quantify the combined effects of
both phase noise and time-selective fading, we derive CIR as
a function of the two-sided 3-dB linewidth β, the number of
subcarriers, and the normalized Doppler shift (fdTs). In the
presence of phase noise and time-selective fading, CIR of the
kth subcarrier for MIMO-OFDM systems is given by (11),
shown at the bottom of the page. The details of the derivation of
(11) are given in Appendix B. Note that CIR is independent of

the channel power-delay profile and the number of resolvable
paths, and is the same for all subcarriers. Furthermore, the
SINR expression of MIMO-OFDM systems in the presence of
phase noise and time-selective fading, as described in detail in
Appendix B, is given as

SINR =
Ntγ0

Nt

Ns−1∑
k′=1

γk′ + σ2

(12)

where γk′ was given in (10).

IV. PHASE NOISE SUPPRESSION AND DATA DETECTION

As mentioned in Section III, (1) and (2) do not hold for
MIMO-OFDM systems in the presence of phase noise and
time-selective fading. From (5), we have

Ns−1∑
n=0

{H l(n)}ij e
jφ(n)

= {H l(0)}ij

Ns−1∑
m=0

αme
jφ(m) +

Ns−1∑
n=1

ρl,ij(n)ejφ(n). (13)

Hence

{Gkk}ij =
L−1∑
l=0

Ns−1∑
n=0

uknu
∗
k,[n−l] {H l(n)}ij e

jφ(n)

=
1
Ns

L−1∑
l=0

e−j 2π
Ns

kl
Ns−1∑
n=0

{H l(n)}ij e
jφ(n)

=
1
Ns

L−1∑
l=0

e−j 2π
Ns

kl {H l(0)}ij

Ns−1∑
m=0

αme
jφ(m)

+
1
Ns

L−1∑
l=0

e−j 2π
Ns

kl
Ns−1∑
n=1

ρl,ij(n)ejφ(n) (14)

where ukn and u∗k,[n−l] are defined in Appendix A. Thus, (7)
can be modified as

yk=Ckkxk
1
Ns

Ns−1∑
m=0

αme
jφ(m)+P kkxk+

Ns−1∑
k′=0
k′ �=k

Gkk′xk′+nk

(15)

where {Ckk}ij =
∑L−1

l=0 e−j(2π/Ns)kl{H l(0)}ij and {P kk}ij =
(1/Ns)

∑L−1
l=0 e−j(2π/Ns)kl

∑Ns−1
n=1 ρl,ij(n)ejφ(n). Note that

(1/Ns)
∑Ns−1

m=0 αme
jφ(m) in (15) is similar to I(0) in (2), which

is the CPE term. The term P kkxk carries data symbols, but the

CIR =
Ns + 2

Ns−1∑
i=1

(Ns − i)J0(2πifdTs)e−πβTsi

Ns−1∑
k′=1

{
Ns + 2

Ns−1∑
i=1

(Ns − i)J0(2πifdTs) cos
(

2π
Ns
k′i
)
e−πβTsi

} (11)
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distortion P kk is a function of the phase noise process, which
is costly to estimate. Additionally, when Ns is large, this term
is very small due to the scaling factor 1/Ns. Therefore, the term
P kkxk will be treated as noise for the derivation of mmse-
based phase noise mitigation and the third term on the right-
hand side of (15) is the ICI term caused by both phase noise
and time-selective fading.

For OFDM systems over fast-fading channels, channel es-
timates are generally obtained by transmitting pilot symbols
at certain positions of the frequency-time grid [6], [22]–[24].
When significant phase noise is also present, a joint scheme to
simultaneously estimate CPE and CSI is needed. Such a joint
estimation appears to be very challenging because of the mutual
coupling effects of phase-noise and channel fading processes as
seen from (15), and is out of the scope of this paper. We thus
assume perfect CSI in the receiver, but unknown CPE to make
the analytical derivation tractable. Therefore, the CPE term
C(0) = (1/Ns)

∑Ns−1
m=0 αme

jφ(m) must be estimated. In the
following discussion, pilot signals are transmitted to estimate
CPE. We rewrite (15) as

yk∈Np
= sk∈Np

C(0) + ek∈Np
(16)

where sk = Ckkxk, ek = P kkxk +
∑Ns−1

k′=0,k′ �=k Gkk′xk′ +
nk, and Np stands for the set of pilot signals, which will be
omitted in the analysis of mmse for simplicity of notation.
Let Ńk = E[ekeH

k ]. As shown in Appendix C, Ńk can be
expressed as

Ńk =E
[
ekeH

k

]
=

{
Nt

N2
s

L−1∑
l=0

e−
τl

τrms

Ns−1∑
n=1

(
1− J2

0 (2πnfdTs)
)

+ Nt

Ns−1∑
k′=1

γk′ + σ2

}
INr . (17)

The results given in (16) and (17) allow us to estimate the
CPE term. When an mmse scheme is applied, the cost function

E[‖C(0)− Ẃ
H

k yk‖2
F ] is minimized by finding an appropriate

coefficient matrix Ẃ k. With some algebraic manipulations, the
optimal matrix in the mmse sense is determined to be

Ẃ k =
(
sksH

k + Ńk

)−1

sk. (18)

Thus, the mmse estimate of CPE is given by

Ĉ(0) = Ẃ
H

k yk = sH
k

(
sksH

k + Ńk

)−1

yk. (19)

CPE is the same for each subcarrier within one OFDM symbol.
The effects of phase noise, time-selective fading, and the chan-
nel delay spread are jointly minimized through a single parame-
ter Ĉ(0), which is a function of {βTs, fdTs, τrms, Ns, Nt, σ}.
In what follows, we analyze a few existing detection schemes
which incorporate the mmse estimate of CPE derived in this
paper, that is, Ĉ(0) given in (19).

From the analysis above, we can relate the transmitted sig-
nals and received signals of the kth subcarrier as

yk = CkkĈ(0)xk + ek. (20)

When a simple ZF detection scheme is applied, yk is
processed as

ΘkykĈ
−1(0) = ΘkCkkxk + ΘkekĈ

−1(0) (21)

where Θk = C†
kk. Note that when Nr ≥ Nt and a linear detec-

tion scheme is adopted, a diversity order of Nr −Nt + 1 can
be achieved. Based on (21), the least-square (LS) criterion can
be used to detect the transmitted signal as

x̂kp = argmin︸ ︷︷ ︸
x(i)∈A

∣∣∣[Θk]pykĈ
−1(0)− x(i)

∣∣∣2 , p = 1, . . . , Nt

(22)

where A is the symbol alphabet and [Θk]p is the pth row of Θk.
When the mmse detection scheme is considered, E[‖xk −

Ḿ
H

k yk‖2
F ] is minimized by finding an matrix Ḿk, which is

easily obtained as

Ḿk =
(

CkkCH
kk

∣∣∣Ĉ(0)
∣∣∣2 + Ńk

)−1

CkkĈ(0) (23)

where Ńk was given in (17). Thus, the mmse criterion yields

x̂k =Ḿ
H

k yk

=CH
kkĈ

∗(0)
(

CkkCH
kk

∣∣∣Ĉ(0)
∣∣∣2 + Ńk

)−1

yk. (24)

The decorrelating DF and the mmse-DF schemes have been
shown to provide better performance than the ZF and the
mmse schemes [25]. In the decorrelating DF detection, yk is
premultiplied by L−1CH

kkĈ
−1(0) as

ỹk =L−1CH
kkĈ

−1(0)yk

=L−1CH
kkCkkxk + L−1CH

kkĈ
−1(0)ek

=LHxk + dk (25)

where LH is an upper triangular matrix obtained by using the
Cholesky decomposition as

R = CH
kkCkk = LLH.

The pth component of ỹk is given by

ỹkp = {LH}ppxkp +
Nt∑

i=p+1

{LH}pixki + dkp. (26)

Finally, the transmitted symbols are detected as

x̂kNt =dec (ỹkNt)

x̂kp =dec

ỹkp−
Nt∑

i=p+1

{LH}pix̂ki

 , p=1, . . . , Nt−1
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Fig. 1. CIR comparisons with different number of subcarriers and phase noise
linewidth (vs = 100 km/h).

where dec(·) is the slice function corresponding to the specific
modulation applied. The mmse-DF scheme is the one that
minimizes the average energy of ỹkp − xkp, p = 1, . . . , Nt,
under the assumption that previously detected signals in the
feedback filter are correct. Details of this scheme can be found
in [16], [17] and [26].

V. SIMULATION RESULTS AND DISCUSSION

Simulations are carried out based on the “SUI-5” channel
model [27], which is one of six channel models adopted by
IEEE 802.16a for evaluating broadband wireless systems in
the 2–11-GHz band. We consider a system with two transmit
antennas and three receive antennas which employs quaternary
phase-shift keying (QPSK) modulation. The doubly selective
Rayleigh fading channel is assumed to have three resolvable
multipath components. These paths are modeled as independent
complex Gaussian random variables and have relative delays
of 0, 5, and 10 µs. The rms delay spread of the channel is
3.05 µs and the maximum Doppler shift of the channel is
calculated based on a carrier frequency of fc = 2 GHz.

Fig. 1 shows the CIR values as a function of data symbol
period Ts, the 3-dB phase noise linewidth β, and the number
of subcarriers Ns within one OFDM symbol. These curves
are obtained by using the analytical expression given in (11)
and simulations based on the maximum Doppler shift under
a vehicle speed of vs = 100 km/h. Simulation results match
well with the theoretical results. CIR is found to be inversely
proportional to Ts, Ns, and β; thus, increasing β or Ts makes
the MIMO-OFDM system more vulnerable to phase noise or
time variations of the channel coefficients.

In Fig. 2, SINR versus Es/N0 curves under different val-
ues of βTs and vs are obtained by using (12) and computer
simulations. The OFDM symbol is assumed to have Ns =
256 subcarriers, and data symbol period is Ts = 10−6 s. It is
observed that SINR is inversely proportional to βTs. With a
fixed but large value of βTs (e.g., 10−3), however, the difference
between SINR curves corresponding to different vehicle speeds

Fig. 2. SINR versus Es/N0 for MIMO-OFDM with different vehicle speed
and phase noise variance (Ns = 256, Ts = 10−6 s).

Fig. 3. SER versus Es/N0 for MIMO-OFDM with phase noise βTs = 10−6

(Ns = 128, Ts = 10−7 s, vs = 30 km/h).

diminishes. This is because when βTs is large, ICI is dominated
by phase noise. On the other hand, with a smaller βTs value
such as βTs = 10−4, increasing the Doppler shift (or vehicle
speed) clearly lowers the SINR value.

Fig. 3 shows the SER performance of the proposed mmse-
based phase noise suppression scheme, together with those of
a phase-noise-free system, and a system without phase noise
correction when the mmse detection scheme given by (24) is
considered. System parameters chosen are the following: Ns =
128, Ts = 10−7 s, β = 10 Hz, and vs = 30 km/h. It is observed
that without phase noise correction, even a very mild amount
of phase noise (βTs = 10−6) causes a high error floor. On the
other hand, the proposed scheme significantly reduces the effect
of phase noise. Note that performance of the proposed scheme
does not approach that of the phase-noise-free system because
this scheme mitigates only CPE, and it does not eliminate ICI,
which is caused by both phase noise and time-selective fading.
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Fig. 4. SER versus Es/N0 for MIMO-OFDM with different phase noise
variance (Ns = 64, Ts = 10−7 s, vs = 100 km/h).

Fig. 5. SER versus Es/N0 for MIMO-OFDM with different detection
schemes (βTs = 3 × 10−6, Ns = 64, vs = 100 km/h).

Shown in Fig. 4 are the simulated SER performances of the
system when the proposed mmse-based phase noise suppres-
sion scheme given by (19) and the mmse detection scheme
described by (24) are employed. Other parameters chosen are
the following: Ns = 64, Ts = 10−7 s, and vs = 100 km/h. Per-
formances with different values of the 3-dB phase noise vari-
ance (βTs = 10−7, 10−6, 3× 10−6, and 10−5) are compared.
The performance curve of a phase-noise-free MIMO-OFDM
system is used as the baseline performance. It appears that the
scheme works effectively only when βTs is small.

In Fig. 5, we compare the performances of four different de-
tection methods: the ZF, mmse, decorrelating DF (also known
as the ZF–DF), and mmse-DF schemes when the mmse-based
phase noise suppression scheme given by (19) is applied. Other
than that β = 30 Hz, all other parameters are the same as those
applied for Fig. 4. Performance of the maximum-likelihood
scheme is used as the benchmark for other detection schemes.
Since these schemes are not specifically optimized for MIMO-

Fig. 6. SER versus Es/N0 for MIMO-OFDM with different mse
(βTs = 10−6, Ns = 64, vs = 100 km/h).

OFDM systems with phase noise over fast time-varying fading
channels for which ICI should be dealt with, error floors are
observed for all cases. Note that from (10) and (11), the energy
of ICI due to the phase noise and time-selective fading is
found to spread over all subcarriers, which is different from
the assumption in [28] that most of ICI on each subcarrier
comes from several neighboring subcarriers. Consequently, ICI
suppression for the scenario studied in this paper becomes more
challenging than the case dealt with in [28].

We have assumed perfect CSI for all numerical results so far.
In practical systems, however, there exist channel estimation
errors. It is beyond the scope of this paper to discuss channel
estimation schemes for time-selective fading channels. To ac-
cess its impact, channel estimation error is emulated by intro-
ducing an error with a normalized average mean square error

(mse) defined as mse = E[‖ ˆ̆
H − H̆‖2

F ]/E[‖H̆‖2
F ], where H̆

has the same form as (4), except that phase noise terms and
OFDM symbol index are neglected. The performance results of
MIMO-OFDM systems with various mse values are shown in
Fig. 6, where all parameters, except β = 10 Hz, are the same
as those applied in Fig. 5. The proposed mmse-based phase-
noise suppression scheme and the mmse detection scheme are
employed in this simulation. It is observed that the performance
degradation is negligible only when the mse value of channel
estimation errors is small (e.g., 10−3).

VI. CONCLUSION

We have analyzed the impact of phase noise and channel
time selectivity on the performance of MIMO-OFDM systems.
Specifically, we have quantified ICI caused by phase noise
and channel time-variations. A phase noise suppression scheme
based on the minimum mean-square-error criterion is proposed,
which is shown to effectively reduce the effect of phase noise.
Performances of four detection schemes are compared, and it
seems that none of them can effectively eliminate the error floor
of MIMO-OFDM systems in the presence of phase noise and
doubly selective fading. It is also observed that an increase
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in the 3-dB phase noise linewidth, the data symbol period,
or the number of OFDM subcarriers lowers the achievable
carrier-to-interference power ratio. Moreover, it is found that
an increase in channel estimation error could deteriorate the
system performance dramatically.

APPENDIX A
PROOF THAT Υ IS A CIRCULANT MATRIX

AND DERIVATION OF (10)

Since Υ with dimension Ns ×Ns in (8) is the same for
any antenna index (i, j), we can replace matrix H l(n) of the
channel matrix H in (4) with a scalar hl(n) (note that OFDM
symbol index is omitted for notational simplicity) and replace
the zero matrix 0 with a scalar 0, forming a newNs ×Ns matrix
H. If we denote H as the sum ofLmatrices as H =

∑L−1
l=0 H(l),

where H(l) is a matrix formed by cyclically left-shifting the
diagonal matrix diag{hl(0)ejφ(0), . . . , hl(Ns − 1)ejφ(Ns−1)}
by l columns, we have

G = UHUH =
L−1∑
l=0

Gl =
L−1∑
l=0

UH(l)U
H (27)

where U = [u0, . . . ,uNs−1] is the unitary DFT matrix. With
the conditions that

E
[
hl(n)ejφ(n)

]
= 0, l = 0, . . . , L− 1; n = 0, . . . , Ns − 1

E
[
hl(r)ejφ(r) · h∗l′(s)e−jφ(s)

]
= E [hl(r) · h∗l′(s)]E

[
ejφ(r) · e−jφ(s)

]
= J0(2π|r − s|fdTs)δl−l′e

− τl
τrms

−|r−s|πβTs ,

r, s = 0, . . . , Ns − 1 (28)

it is recognized that Υ =
∑L−1

l=0 Υl, where Υl is an Ns ×Ns

matrix and {Υl}ij = var({Gl}ij). Since the sum of circulant
matrices of the same dimension is also a circulant matrix, we
only need to prove that each Υl is a circulant matrix.

For any integer n, let [n] denote n modulo Ns, i.e., [n] is the
remainder from dividing n by Ns. The {Gl}ij is obtained as

{Gl}ij = uT
i H(l)u

∗
j = ηT

ijhl (29)

where ηij =[ηij0, . . . , ηij,(Ns−1)]T, ui=[ui0, . . . , ui,(Ns−1)]T,
ηijn = uinu

∗
j,[n−l], and hl = [hl(0)ejφ(0), . . . , hl(Ns −

1)ejφ(Ns−1)]T. Thus

{Υl}ij =var(ηT
ijhl)

=
Ns−1∑
r=0

Ns−1∑
s=0

ηijrχ(r, s)η∗ijs

=
1
N2

s

Ns−1∑
r=0

Ns−1∑
s=0

χ(r, s)e−(2π
√
−1/Ns)tijrs (30)

where χ(r, s) = cov(hl(r)ejφ(r) · h∗l (s)e−jφ(s)) and tijrs =
ir − j[r − l]− is+ j[s− l]. It suffices to show, for any fixed

r and s, that [tijrs] = [ir − j[r − l]− is+ j[s− l]] = [j −
i][s− r]. Also note that an Ns ×Ns matrix B is circulant if
and only if {B}ij = κ[j−i], i.e., if and only if {B}ij depends

only on [j − i] and e−(2π
√
−1/Ns)k = e−(2π

√
−1/Ns)[k] because

e2π
√
−1 = 1. Thus, from (30), we can conclude that Υl is a

circulant matrix if hl(n), n = 0, . . . , Ns − 1, are finite.
Moreover, from (30), we have

{Υ}ij =
L−1∑
l=0

{Υl}ij

=
1
N2

s

L−1∑
l=0

Ns−1∑
r=0

Ns−1∑
s=0

J0(2π|r − s|fdTs)

× e−(2π
√
−1/Ns)tijrse−

τl
τrms

−|r−s|πβTs

=
1
N2

s

L−1∑
l=0

{
Ns + 2

Ns−1∑
m=1

(Ns −m)J0(2πmfdTs)

× cos
(
2π
Ns

[j − i]m
)
e−πβTsm

}
e−

τl
τrms

(31)

APPENDIX B
DERIVATIONS OF (11) AND (12)

The derivation of (11) is given by (32) and (33), shown at the
top of the next page.

APPENDIX C
DERIVATION OF (17)

From the assumptions made in (5), it is clear that ρl,ij(n)
are independent Gaussian random variables with E[ρl,ij(n)
ρ∗l′,i′j′(n′)]= e−(τl/τrms)(1−J2

0 (2πnfdTs))δl−l′δi−i′δj−j′δn−n′ .
With some simple manipulations, we have

E
[
(P kkxk) (P kkxk)

H
]

= E
[
P kkP H

kk

]
=

{
Nt

N2
s

L−1∑
l=0

e−
τl

τrms

Ns−1∑
n=1

(
1− J2

0 (2πnfdTs)
)}

INr . (34)

Together with E[{H l(n)}ij{H l(n)}∗i′j′ ]=e−(τl/τrms)δi−i′δj−j′ ,
we have E[{Gkk′}ij{Gkk′}∗i′j′ ] = 0, i �= i′ or j �= j′, be-

cause {Gkk′}ij =
∑L−1

l=0

∑Ns−1
n=0 uknu

∗
k′,[n−l]{H l(n)}ije

jφ(n).
Thus, we obtain

E


Ns−1∑

k′=0
k′ �=k

Gkk′xk′


Ns−1∑

k′=0
k′ �=k

Gkk′xk′


H

=
Ns−1∑
k′=0
k′ �=k

E
[
Gkk′GH

kk′
]

=

(
Nt

Ns−1∑
k′=1

γk′

)
INr . (35)
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CIR =
E
[
‖Gkkxk‖2

F

]
E

∥∥∥∥∥∥
Ns−1∑
k′=0
k′ �=k

Gkk′xk′

∥∥∥∥∥∥
2

F


=

tr
{
E
[
GkkxkxH

k GH
kk

]}
tr

E

Ns−1∑

k′=0
k′ �=k

Gkk′xk′

Ns−1∑
k′=0
k′ �=k

Gkk′xk′

H



=
γ0

Ns−1∑
k′=1

γk′

=

L−1∑
l=0

{
Ns + 2

Ns−1∑
i=1

(Ns − i)αie
−πβTsi

}
e−

τl
τrms

Ns−1∑
k′=1

L−1∑
l=0

{
Ns + 2

Ns−1∑
i=1

(Ns − i)αi cos
(

2π
Ns
k′i
)
e−πβTsi

}
e−

τl
τrms

=
Ns + 2

Ns−1∑
i=1

(Ns − i)J0(2πifdTs)e−πβTsi

Ns−1∑
k′=1

{
Ns + 2

Ns−1∑
i=1

(Ns − i)J0(2πifdTs) cos
(

2π
Ns
k′i
)
e−πβTsi

} (32)

SINR =
E
[
‖Gkkxk‖2

F

]
E

∥∥∥∥∥∥
Ns−1∑
k′=0
k′ �=k

Gkk′xk′ + nk

∥∥∥∥∥∥
2

F


=

tr
{
E
[
GkkxkxH

k GH
kk

]}
tr

E

Ns−1∑

k′=0
k′ �=k

Gkk′xk′

Ns−1∑
k′=0
k′ �=k

Gkk′xk′

H

+ nknH
k




=
Ntγ0

Nt

Ns−1∑
k′=1

γk′ + σ2

(33)

Since E[nknH
k ] = σ2INr , we have

E
[
eke

H
k

]
=E


P kkxk +

Ns−1∑
k′=0
k′ �=k

Gkk′xk′ + nk



×

P kkxk +
Ns−1∑
k′=0
k′ �=k

Gkk′xk′ + nk


H

=E
[
P kkP H

kk

]
+

Ns−1∑
k′=0
k′ �=k

E
[
Gkk′GH

kk′
]
+ E

[
nknH

k

]

=

{
Nt

N2
s

L−1∑
l=0

e−
τl

τrms

Ns−1∑
n=1

(
1− J2

0 (2πnfdTs)
)

+ Nt

Ns−1∑
k′=1

γk′ + σ2

}
INr . (36)
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