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ABSTRACT This paper develops a unified solution for time-difference-of-arrival (TDOA) localization in
the presence of sensor position errors. This technique starts with maximum likelihood estimation (MLE),
which is known to be nonconvex. A semidefinite programming technique to effectively transform the MLE
problem into a convex optimization is proposed, together with a unified solution for four scenarios: 1) without
a calibration emitter; 2) with a single calibration emitter, whose position is subject to measurement errors;
3) with a single calibration emitter, whose position is perfectly known; and 4)with a single calibration emitter,
whose position is completely unknown. The results are finally extended to the case of multiple calibration
emitters, whose positions are also subject to errors. Similar to the existing schemes that are known to have
good performances, the proposed solution also reaches the Cramér–Rao lower bound when sensor position
errors and TDOAmeasurement noise are sufficiently small. However, as TDOAmeasurement noise or sensor
position errors increase, comparison with the existing state-of-the-art methods for each scenario shows that
the proposed solution performs significantly better.

INDEX TERMS Source localization, sensor position error, time-difference-of-arrival (TDOA), semidefinite
programming (SDP).

I. INTRODUCTION
Source localization finds a number of applications in wire-
less communications [1], [2], wireless sensor networks
(WSNs) [3], [4], and navigation [5]. A popular positioning
approach is to use the time-difference-of-arrival (TDOA)
measurements between spatially distributed sensors. TDOA
techniques require the sensors to be time-synchronized. There
exist some time synchronization approaches in WSN [6]–[8].
Each TDOA measurement equation corresponds to one
hyperbola/hyperboloid in 2-dimensional (2D) plane or
3D space. In the case of perfect TDOA measurements,
the source position is the intersection of the hyperbolas/
hyperboloids. There exist many source localization algo-
rithms, which commonly assume that the sensor positions
are perfectly known. The Taylor-series method [9] is an iter-
ative scheme, which requires an initial value, and it cannot
guarantee convergence. The closed-form solution in [10] is

computationally efficient, and it does not have the divergence
problem as the Taylor-series method. This solution can reach
the Cramér-Rao lower bound (CRLB) in sufficiently small
noise as the noise increases, however, its performance may
degrade drastically.

Due to measurement errors, likely caused by the envi-
ronment (e.g., multipath and noise), or sensor position
errors, or both, the intersections of the multiple hyperbolas/
hyperboloids will not be unique. In most practical scenarios,
the sensor positions cannot be known or measured precisely.
If not taken into account in the TDOA positioning algorithm,
a slight sensor position error could drastically degrade the
accuracy.

TDOA localization in the presence of sensor loca-
tion errors has attracted considerable amount of research
recently [11]–[13]. Ho et al. [14] analyze how much the
source location accuracy degrades as a result of sensor
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position errors. They also propose an algorithm that takes the
statistical distributions of the sensor positions into account
to improve the localization accuracy, and the algorithm has a
closed-form solution. This solution could approach the CRLB
when the source is far away from the sensors.

Ho and Yang [15] also investigate the use of a single
calibration emitter with accurately known position to reduce
the loss in localization accuracy due to the random sensor
position errors. This algorithm is based on weighted least-
squares (WLS) in several stages and has a closed-form solu-
tion. It is shown that the algorithm can attain the CRLB when
the TDOA measurement noise and the sensor position errors
are sufficiently small.

Yang and Ho [16] extend the work in [15] to a more
practical scenario where the exact position of a calibration
emitter is unknown. By modeling the calibration emitter
position error as an additive Gaussian noise, analysis results
show that the performance penalty could be very high if the
calibration position errors are ignored. A closed-form solu-
tion that accounts for the calibration emitter position error
is proposed in [16], which is also extended to the case of
multiple calibration emitters. Yang et al. conclude that their
algorithm could reach the CRLB when TDOA measurement
noise and the position errors of the sensors and the calibration
emitter are sufficiently small.

Yang and Ho [17] consider another scenario that the cali-
bration emitter position is completely unknown. In this case,
the calibration emitter and the source are called as disjoint
sources. A key assumption made in [17] is that the TDOA
measurements from multiple disjoint sources are subject to
the same sensor position displacement from the available
sensor positions. Based on this, an algorithm that jointly esti-
mates the unknown sources and sensor positions is proposed.
Exploiting the coupling of the source and sensor positions in
the measurement equations, Yang et al. introduce a hypothe-
sized source location to form a set of pseudo-linear equations,
thereby leading to a closed-form solution for source location
estimates. This closed-form solution could reach the CRLB
when the sensor position errors and the TDOA measurement
noise are sufficiently small.

The novelty of this paper is that semidefinite program-
ming (SDP) method is introduced for the problem of alle-
viating sensor position error in TDOA localization. Most of
the state-of-art methods are based on WLS, which have bad
performance when the noise are increase.

The goal of this paper is to develop a unified source posi-
tioning framework that employs SDP, whichworks efficiently
for various scenarios: a single calibration emitter with accu-
rately known position [15], a single calibration emitter whose
position is subject to errors [16], a single calibration emit-
ter with completely unknown position [17], no calibration
emitters [11]–[14], and multiple calibration emitters whose
positions are subject to errors [16]. The proposed unified
solution starts from the asymptotically optimum maximum
likelihood estimator (MLE) [18], which is known to be non-
convex. However, its optimality motivates us to transform

the MLE into a convex optimization for TDOA source local-
ization in the presence of sensor position errors. In addition
to the unified framework of the proposed solution, which
can be conveniently adopted for any deployment scenarios,
it significantly outperforms existing state-of-the-art schemes
for each scenario, which will be verified in extensive amount
of simulation.

The rest of this paper is organized as follows. Sec. II estab-
lishes the positioning network and measurement models. The
proposed SDP solution for cases of no calibration emitters,
a single calibration emitter whose position is subject to errors,
a single calibration emitter with perfectly known position,
and a single calibration emitter with a completely unknown
position is derived in detail in Sec. III. Extension of the
proposed solution to the case of multiple calibration emitters
is discussed in IV. Extensive simulation results are obtained
in Sec. V to compare the location estimation performances of
the proposed unified solution and state-of-the-art methods for
various deployment scenarios.

II. PROBLEM FORMULATION
The following notations are used throughout the paper. Bold
lowercase and uppercase letters denote vectors and matrices,
respectively; A(:, i) denotes the ith column of matrix A, and
A(i : j, k : l) denotes a submatrix of A, formed from its
ith row, kth column to its jth row, lth column; tr(A) is the
trace of A; Im is the m × m identity matrix; 1m denotes the
column vector whose elements are all 1’s; ‖·‖ is the l2 norm
and ‖·‖F is the Frobenius norm; A � B means that A− B is
positive semidefinite.

Consider a network with M sensors, where the unknown
m-dimensional (m = 2 or 3) source location u is to be
estimated. Let s0i and si represent, respectively, the true
(unknown) location and the network acquired (available but
inaccurate) position of the ith sensor. The known sensor
positions can be denoted as

si = s0i + β i, i = 1, · · · ,M (1)

where β i is a zero-mean white Gaussian vector with covari-
ance matrix δ2i Im [15]. Thus, di =

∥∥u− s0i
∥∥ is the actual

but unknown distance between the ith sensor and the source.
Let sensor 1 be the reference sensor, without loss of gener-
ality. The range-difference-of-arrival (RDOA) measurements
between sensor i and the reference sensor using the source’s
transmitted signal are expressed as [15]

ri1 = di − d1 + ni1, i = 2, · · · ,M (2)

where ni1, i = 1, · · · ,M , are the measurement errors, called
range difference noise here, and are modeled as zero-mean
Gaussian random variables [15]. Let n = [n21, · · · , nM1]T

with covariance matrix Qd .
It will improve the localization performance by adding

an emitter(s) in the network, whose positions may or may
not know accurately. The goal in this paper is to establish a
unified solution for all these cases using an SDP approach.
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III. UNIFIED LOCALIZATION USING
SEMIDEFINITE PROGRAMMING
A. CALIBRATION EMITTER POSITION IS
ACCURATELY KNOWN
In this case, the TDOAs of the signal from the calibration
emitter at accurately known position c to the sensors are also
measured [15], giving the calibration RDOA measurements

hi1 = hi − h1 + ei1, i = 2, · · · ,M (3)

where hi1 is the measured calibration RDOA between sen-
sor pair i and 1, hi =

∥∥c− s0i
∥∥ is the unknown distance

between the ith sensor and calibration emitter, and e =
[e21, · · · , eM1]T is assumed to be a zero-mean Gaussian vec-
tor with covariance matrix Qc [15].

The noise vectors n, β i, i = 1, · · · ,M , and e are assumed
to be independent of one another. Conditioned on indepen-
dent Gaussian noises, the MLE problem is expressed as

min
u,s0i

M∑
i=2

M∑
j=2

(
ri1−

∥∥∥u−s0i ∥∥∥+∥∥∥u−s01∥∥∥ ) [Q−1d ]
(i−1)(j−1)

·

(
rj1 −

∥∥∥u− s0j
∥∥∥+ ∥∥∥u− s01

∥∥∥ )+ M∑
i=1

∥∥si − s0i
∥∥2

δ2i

+

M∑
i=2

M∑
j=2

(
hi1−

∥∥∥c−s0i ∥∥∥+∥∥∥c−s01∥∥∥ ) [Q−1c ]
(i−1)(j−1)

·

(
hj1 −

∥∥∥c− s0j
∥∥∥+ ∥∥∥c− s01

∥∥∥ ). (4)

It will be shown next that thisMLE problem is a nonconvex
optimization problem, and a solution for it is difficult to
obtain.

An SDP technique to solve the problem in (4) is described
next. First, (4) can be rewritten in vector-matrix form as

min
d,X,h

(rd − Ad)TQ−1d (rd − Ad)+ (hd − Ah)TQ−1c

· (hd − Ah)+
∥∥∥(X(:, 2 : M + 1)− S)W

1
2

∥∥∥2
F

(5a)

s.t. di = ‖X(:, 1)− X(:, i+ 1)‖, i = 1, · · · ,M , (5b)

hi = ‖c− X(:, i+ 1)‖, i = 1, · · · ,M (5c)

where rd = [r21, · · · , rM1]T , d = [d1, · · · , dM ]T , A =
[−1M−1, IM−1], X = [u, s01, · · · , s

0
M ], S = [s1, · · · , sM ],

W = diag([δ−21 , · · · , δ−2M ]), hd = [h21, · · · , hM1]T , and
h = [h1, · · · , hM ]T .

Clearly, the constraints in (5b) and (5c) are nonconvex for
the optimization variables; thus the above MLE problem is
nonconvex. Let D = ddT , H = hhT , and Y = XTX. The
objective function in (5) can then be written as

tr(DATQ−1d A)− 2dTATQ−1d rd
+ tr(WY(2 :M+1, 2 :M+1))− 2tr(WX(:,2 :M+1)TS)

+ tr(HATQ−1c A)− 2hTATQ−1c hd (6)

where three constant terms are discarded, since they do not
affect the optimization results.

The constraints in (5b) and (5c) can be written as

Di,i = Y (1, 1)− 2Y (1, i+ 1)+ Y (i+ 1, i+ 1), (7a)

Hi,i = cT c− 2cTX(:, i+ 1)+ Y (i+ 1, i+ 1). (7b)

where i = 1, · · · ,M . Applying the Cauchy-Schwartz
inequality [19] results in

Di,j ≥ |Y (1, 1)−Y (1, i+ 1)−Y (1, j+1)+ Y (i+1, j+ 1)|,

(8a)

Hi,j ≥ |cT c−cT (X(:, i+1)+ X(:, j+1))+ Y (i+1, j+1)|.

(8b)

where 1 ≤ i < j ≤ M . However, the three nonconvex
constraints in the form of equalities D = ddT ,H = hhT , and
Y = XTX are still in the problem. We employ semidefinite
relaxation (SDR) [20] to transform these constraints into
convex inequalities D � ddT , H � hhT , and Y � XTX.
These convex inequalities can be written as linear matrix
inequalities (LMI) [19][

1 dT

d D

]
� 0,

[
1 hT

h H

]
� 0,

[
Im X
XT Y

]
� 0. (9)

Note thatATQ−1d A andATQ−1c A in the objective function
are singular matrices. To deal with this issue, similar to the
approach in [21], a penalty term ηtr(D + H) is introduced
into the objective function and the second-order-cone (SOC)
constraints are added:

‖X(:, 1)− X(:, i+ 1)‖ ≤ di, i = 1, 2, · · · ,M , (10a)

‖c− X(:, i+ 1)‖ ≤ hi, i = 1, 2, · · · ,M . (10b)

to make the constraints tight.
These lead to the proposed SDP algorithm expressed as

min
d,D,h,H,X,Y

tr(DATQ−1d A)− 2dTATQ−1d rd

+ tr(HATQ−1c A)− 2hTATQ−1c hd

+ tr(WY(2 : M + 1, 2 : M + 1))

− 2tr(WX(:, 2 : M + 1)S)+ ηtr(D+H)

(11a)

s.t. Di,i = Y (1, 1)− 2Y (1, i+ 1)+ Y (i+ 1, i+ 1),

(11b)

Hi,i = cT c− 2cTX(:, i+ 1)+ Y (i+ 1, i+ 1),

(11c)

‖X(:, 1)− X(:, i+ 1)‖ ≤ di, (11d)

‖c− X(:, i+ 1)‖ ≤ hi, (11e)

Di,j ≥ |Y (1, 1)− Y (1, i+ 1)− Y (1, j+ 1)

+ Y (i+ 1, j+ 1)|, (11f)

Hi,j ≥ |cT c− cT (X(:, i+ 1)+ X(:, j+ 1))

+ Y (i+ 1, j+ 1)|, (11g)[
1 dT

d D

]
� 0, (11h)
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FIGURE 1. RMSE vs. η, u = [2,8]T m, c = [0,0]T m, δ = 0.1m, σ = 0.1m.[
1 hT

h H

]
� 0, (11i)[

Im X
XT Y

]
� 0. (11j)

where η is the regularization parameter.
A suitable value of η is important to achieve a good estima-

tion performance, as will be shown in Fig. 1. However, it is not
easy to analytically obtain the optimal value of parameter η,
which depends on the distance between the sensor and the
source nodes as well as the RDOA noise level [21]. A pro-
posedmethod is to createK values of η, ηk , k = 1, 2, · · · ,K ,
and for each ηk , (11) will be computed. Note that the K
times of computation in (11) could take place in parallel.
The estimated results X̂k , k = 1, 2, · · · ,K , are then used to
determine an optimal û = X̂(:, 1) thatminimizes Jk expressed
as

Jk = (rd − Ad̂k )TQ−1d (rd − Ad̂k ), k = 1, 2, · · · ,K

(12)

where d̂k = [d̂k1, d̂k2, · · · , d̂kM ]T , and d̂ki =
∥∥∥X̂k (:, 1)−

X̂k (:, i+ 1)
∥∥∥, i = 1, 2, · · · ,M .

B. CALIBRATION EMITTER LOCATION IS INACCURATE
Here the case of a single calibration emitter whose acquired
location is not perfectly accurate [16] is considered. Let
c0 and c be, respectively, the true (but unknown) and known
(but erroneous) locations of the calibration emitter, and

c = c0 + ε (13)

where ε is a zero-mean Gaussian vector with covariance
matrix κ2Im [16].
The noise vectors n, β i, i = 1, · · · ,M , e and ε are assumed

to be independent of one another. The MLE problem for this
case is formulated as

min
u,c0,s0i

M∑
i=2

M∑
j=2

(
ri1−

∥∥∥u−s0i ∥∥∥+∥∥∥u−s01∥∥∥ ) [Q−1d ]
(i−1)(j−1)

·

(
rj1 −

∥∥∥u− s0j
∥∥∥+ ∥∥∥u− s01

∥∥∥ )+ M∑
i=1

∥∥si − s0i
∥∥2

δ2i

+

M∑
i=2

M∑
j=2

(
hi1−

∥∥∥c0−s0i ∥∥∥+∥∥∥c0−s01∥∥∥ )[Q−1c ](i−1)(j−1)
·

(
hj1 −

∥∥∥c0 − s0j
∥∥∥+ ∥∥∥c0 − s01

∥∥∥ )+ ∥∥c− c0
∥∥2

κ2
.

(14)

Next, an SDP method will be developed to solve the above
MLE problem. Similar to (4), (14) can also be written in
vector-matrix form as

min
d,X,h

(rd − Ad)TQ−1d (rd − Ad)+ (hd − Ah)TQ−1c

· (hd − Ah)+
∥∥∥(X(:, 2 : M + 2)− S)W

1
2

∥∥∥2
F

(15a)

s.t. di = ‖X(:, 1)− X(:, i+ 2)‖ , i = 1, · · · ,M , (15b)

hi = ‖X(:, 2)− X(:, i+ 2)‖ , i = 1, · · · ,M . (15c)

where X = [u, c0, s01, · · · , s
0
M ], S = [c, s1, · · · , sM ], and

W = diag([κ−2, δ−21 , · · · , δ−2M ]).
The SDP technique for the case of inaccurate calibration

emitter position is expressed as

min
d,D,h,H,X,Y

tr(DATQ−1d A)− 2dTATQ−1d rd

+ tr(H · ATQ−1c A)− 2hTATQ−1c hd
− 2tr(WX(:, 2 : M + 2)S)

+ tr(WY(2 : M+2, 2 : M+2))+ηtr(D+H)

(16a)

s.t. Di,i = Y (1, 1)− 2Y (1, i+ 2)+ Y (i+ 2, i+ 2),

(16b)

Hi,i = Y (2, 2)− 2Y (2, i+ 2)+ Y (i+ 2, i+ 2),

(16c)

‖X(:, 1)− X(:, i+ 2)‖ ≤ di, (16d)

‖X(:, 2)− X(:, i+ 2)‖ ≤ hi, (16e)

Di,j ≥ |Y (1, 1)− Y (1, i+ 2)− Y (1, j+ 2)

+ Y (i+ 2, j+ 2)|, (16f)

Hi,j ≥ |Y (2, 2)− Y (2, i+ 2)− Y (2, j+ 2)

+ Y (i+ 2, j+ 2)|, (16g)[
1 dT

d D

]
� 0, (16h)[

1 hT

h H

]
� 0, (16i)[

Im X
XT Y

]
� 0. (16j)

where η is the regularization parameter.
As the previous case, a proper value of η is important

for this algorithm, and again a proposed approach is to use
different values of ηk , k = 1, 2, · · · ,K , to compute (16),
and then use the estimated results X̂k , k = 1, 2, · · · ,K to
determine û = X̂(:, 1) that minimizes Jk expressed as

Jk = (rd − Ad̂k )TQ−1d (rd − Ad̂k ), k = 1, 2, · · · ,K .

(17)
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where d̂k = [d̂k1, d̂k2, · · · , d̂kM ]T , and d̂ki =
∥∥∥X̂k (:, 1)−

X̂k (:, i+ 2)
∥∥∥ , i = 1, 2, · · · ,M .

C. CALIBRATION EMITTER LOCATION IS
COMPLETELY UNKNOWN
A more or less unrealistic case where the calibration emitter
location is completely unknown [17] is considered in this
section. Nevertheless, this scenario will be very useful to
assess how much value an emitter adds in terms of perfor-
mance improvement when no attempts are made to obtain its
position. The corresponding MLE problem is expressed as

min
u,c,s0i

M∑
i=2

M∑
j=2

(
ri1−

∥∥∥u−s0i ∥∥∥+∥∥∥u− s01
∥∥∥ ) [Q−1d ]

(i−1)(j−1)

·

(
rj1 −

∥∥∥u− s0j
∥∥∥+ ∥∥∥u− s01

∥∥∥ )+ M∑
i=1

∥∥si − s0i
∥∥2

δ2i

+

M∑
i=2

M∑
j=2

(
hi1−

∥∥∥c−s0i ∥∥∥+∥∥∥c−s01∥∥∥ )[Q−1c ]
(i−1)(j−1)

·

(
hj1 −

∥∥∥c− s0j
∥∥∥+ ∥∥∥c− s01

∥∥∥ ). (18)

This MLE problem can be written in vector-matrix form as

min
d,X,h

(rd − Ad)TQ−1d (rd − Ad)+ (hd − Ah)TQ−1c

· (hd − Ah)+
∥∥∥(X(:, 3 : M + 2)− S)W

1
2

∥∥∥2
F

(19a)

s.t. di = ‖X(:, 1)− X(:, i+ 2)‖ , i = 1, · · · ,M , (19b)

hi = ‖X(:, 2)− X(:, i+ 2)‖ , i = 1, · · · ,M . (19c)

where X = [u, c, s01, · · · , s
0
M ], S = [s1, · · · , sM ], and

W = diag([δ−21 , · · · , δ−2M ]).
The proposed SDP algorithm for this case is written as

min
d,D,h,H,X,Y

tr(DATQ−1d A)− 2dTATQ−1d rd

+ tr(H · ATQ−1c A)− 2hTATQ−1c hd

− 2tr(WX(:, 3 : M + 2)S)

+ tr(WY(3 : M+2, 3 : M+2))+ηtr(D+H)

(20a)

s.t. Di,i = Y (1, 1)− 2Y (1, i+ 2)+ Y (i+ 2, i+ 2),

(20b)

Hi,i = Y (2, 2)− 2Y (2, i+ 2)+ Y (i+ 2, i+ 2),

(20c)

‖X(:, 1)− X(:, i+ 2)‖ ≤ di, (20d)

‖X(:, 2)− X(:, i+ 2)‖ ≤ hi, (20e)

Di,j ≥ |Y (1, 1)− Y (1, i+ 2)− Y (1, j+ 2)

+ Y (i+ 2, j+ 2)|, (20f)

Hi,j ≥ |Y (2, 2)− Y (2, i+ 2)− Y (2, j+ 2)

+ Y (i+ 2, j+ 2)|, (20g)

[
1 dT

d D

]
� 0, (20h)[

1 hT

h H

]
� 0, (20i)[

Im X
XT Y

]
� 0. (20j)

Again, K different values of η, ηk , k = 1, 2, · · · ,K ,
can be used to compute (20), and the estimated results X̂k ,

k = 1, 2, · · · ,K , can then be used to determine a proper
û = X̂(:, 1) that minimizes Jk expressed as

Jk = (rd − Ad̂k )TQ−1d (rd − Ad̂k ), k = 1, 2, · · · ,K

(21)

where d̂k = [d̂k1, d̂k2, · · · , d̂kM ]T , and d̂ki =
∥∥∥X̂k (:, 1)−

X̂k (:, i+ 2)
∥∥∥ , i = 1, 2, · · · ,M .

D. NO CALIBRATION EMITTERS
In the absence of a calibration emitter, the MLE problem is
formed as

min
u,s0i

M∑
i=2

M∑
j=2

(
ri1−

∥∥∥u− s0i
∥∥∥+∥∥∥u− s01

∥∥∥ ) [Q−1d ]
(i−1)(j−1)

·

(
rj1 −

∥∥∥u− s0j
∥∥∥+ ∥∥∥u− s01

∥∥∥ )+ M∑
i=1

∥∥si − s0i
∥∥2

δ2i

(22)

which can be formulated in vector-matrix form as

min
d,X,h

(rd − Ad)T Q−1d (rd − Ad)

+

∥∥∥(X(:, 2 : M + 1)− S)W
1
2

∥∥∥2
F

(23a)

s.t. di = ‖X(:, 1)− X(:, i+ 1)‖, i = 1, · · · ,M , (23b)

where X = [u, s01, · · · , s
0
M ], S = [s1, · · · , sM ], and

W = diag([δ−21 , · · · , δ−2M ]).
The proposed SDP algorithm for this case is formulated as

min
d,D,X,Y

tr(DATQ−1d A)− 2dTATQ−1d rd

+ tr(WY(2 : M + 1, 2 : M+1))

− 2tr(WX(:, 2 : M+1)S)+ ηtr(D) (24a)

s.t. Di,i = Y (1, 1)− 2Y (1, i+ 1)+ Y (i+ 1, i+ 1),

(24b)

‖X(:, 1)− X(:, i+ 1)‖ ≤ di, (24c)

Di,j ≥ |Y (1, 1)− Y (1, i+ 1)− Y (1, j+ 1)

+ Y (i+ 1, j+ 1)|, (24d)[
1 dT

d D

]
� 0, (24e)[

Im X
XT Y

]
� 0. (24f)
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A proposed method to compute (24) is to consider its K
different values, ηk , k = 1, 2, · · · ,K , and then use the
estimated results X̂k , k = 1, 2, · · · ,K to select the optimal
û = X̂(:, 1) that minimizes Jk expressed as

Jk = (rd − Ad̂k )TQ−1d (rd − Ad̂k ), k = 1, 2, · · · ,K

(25)

where d̂k = [d̂k1, d̂k2, · · · , d̂kM ]T , and d̂ki =
∥∥∥X̂k (:, 1)−

X̂k (:, i+ 1)
∥∥∥ , i = 1, 2, · · · ,M .

IV. WITH MULTIPLE CALIBRATION EMITTERS
The focus so far has been on cases without or with a single
calibration emitter. The goal here is to extend the proposed
SDP solutions to the case when multiple calibration emitters
are available [16]. The analysis and algorithm development
so far have shown that the case when the position of the cali-
bration emitter is subject to error is a general case; the cases
of emitter whose position is perfectly known or completely
unknown can be treated as special cases. Thus, here only the
case when all calibration emitters’ locations are available but
are subject to errors is considered.

Let c0l , l = 1, · · · ,N , be the true but unknown locations
of the lth calibration emitter. The acquired but inaccurate
locations of the emitters can be written as

cl = c0l + εl, l = 1, · · · ,N (26)

where εl is a zero-mean Gaussian vector with covariance
matrix κ2l Im [16].

The TDOAs of the signal from the N calibration emitters
to the sensors are also measured [16], giving the following
calibration RDOA measurements:

hli1 = hli − h
l
1 + e

l
i1, i = 2, · · · ,M , l = 1, · · · ,N . (27)

where hli1 is the estimated RDOA between the lth calibra-
tion emitter and sensor pair i and 1, hli =

∥∥c0l − s0i
∥∥, and

el = [el21, · · · , e
l
M1]

T is assumed to be a zero-mean Gaussian
vector with covariance matrix Qc.
Under the assumption that the noise vectors n, β i, i =

1, · · · ,M , el, l = 1, · · · ,N and εl, l = 1, · · · ,N are
mutually independent, the MLE problem is formulated as

min
u,c0l ,s

0
i

M∑
i=2

M∑
j=2

(
ri1−

∥∥∥u−s0i ∥∥∥+∥∥∥u−s01∥∥∥ )[Q−1d ]
(i−1)(j−1)

·

(
rj1 −

∥∥∥u− s0j
∥∥∥+ ∥∥∥u− s01

∥∥∥ )+ M∑
i=1

∥∥si − s0i
∥∥2

δ2i

+

N∑
l=1

M∑
i=2

M∑
j=2

(
hli1 −

∥∥∥c0l − s0i
∥∥∥+ ∥∥∥c0l − s01

∥∥∥ )
·

[
Q−1c

]
(i−1)(j−1)

(
hlj1 −

∥∥∥c0l − s0j
∥∥∥+ ∥∥∥c0l − s01

∥∥∥ )
+

N∑
l=1

∥∥cl − c0l
∥∥2

κ2l
. (28)

Similarly, (28) can be written in vector-matrix form as

min
d,X,hl

(rd − Ad)TQ−1d (rd − Ad)+
N∑
l=1

(hld − Ahl)TQ−1c

· (hld − Ahl)+
∥∥∥(X(:, 2 : M + N + 1)− S)W

1
2

∥∥∥2
F

(29a)

s.t. di = ‖X(:, 1)− X(:, i+ N + 1)‖ , i = 1, · · · ,M ,

(29b)

hli = ‖X(:, 1+ l)− X(:, i+ N + 1)‖,

i = 1, · · · ,M , l = 1, · · · ,N . (29c)

where hld = [hl21, · · · , h
l
M1]

T , hl = [hl1, · · · , h
l
M ]T , X =

[u, c01, · · · , c
0
N , s

0
1, · · · , s

0
M ], S = [c1, · · · , cN , s1, · · · , sM ],

and W = diag([κ−21 , · · · , κ−2N , δ−21 , · · · , δ−2M ]).
The proposed SDP algorithm for this case is formulated as

min
d,D,hl ,Hl ,X,Y

tr(DATQ−1d A)− 2dTATQ−1d rd

+

N∑
l=1

[tr(HlATQ−1c A)− 2hl
T
ATQ−1c hld ]

− 2tr(WX(:, 2 : M + N + 1)S)

+ tr(WY(2 : M + N + 1, 2 : M + N + 1))

+ ηtr(
N∑
l=1

Hl
+ D) (30a)

s.t. Di,i = Y (1, 1)− 2Y (1, i+ N + 1)

+ Y (i+ N + 1, i+ N + 1), (30b)

H l
i,i = Y (l + 1, l + 1)− 2Y (l + 1, i+ N + 1)

+ Y (i+ N + 1, i+ N + 1), (30c)

‖X(:, 1)− X(:, i+ N + 1)‖ ≤ di, (30d)

‖X(:, l + 1)− X(:, i+ N + 1)‖ ≤ hli, (30e)

Di,j ≥ |Y (1, 1)−Y (1, i+ N + 1)−Y (1, j+ N+1)

+ Y (i+ N + 1, j+ N + 1)|, (30f)

H l
i,j ≥ |Y (l + 1, l + 1)− Y (l + 1, i+ N + 1)

− Y (l+1, j+N+1)+Y (i+ N + 1, j+ N + 1)|,

(30g)[
1 dT

d D

]
� 0, (30h)[

1 hl T

hl Hl

]
� 0, (30i)[

Im X
XT Y

]
� 0. (30j)

Again, K different values of ηk , k = 1, 2, · · · ,K , can be
used to compute (30), and then the estimated results X̂k , k =
1, 2, · · · ,K , can be used to determine a proper û = X̂(:, 1)
that minimizes Jk expressed as

Jk = (rd − Ad̂k )TQ−1d (rd − Ad̂k ), k = 1, 2, · · · ,K

(31)
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TABLE 1. Comparison of the proposed SDP algorithms and existing algorithms.

where d̂k = [d̂k1, d̂k2, · · · , d̂kM ]T , and d̂ki =
∥∥∥X̂k (:, 1)−

X̂k (:, i+ N + 1)
∥∥∥ , i = 1, 2, · · · ,M .

V. SIMULATION RESULTS
The performances of the proposed SDP algorithms (labeled
as Proposed) and state-of-the-art existing algorithms for var-
ious cases listed in Table 1 are compared in this section.

The proposed model is suitable for networks and also
depend on the networks size. A network with four sensors
and one source is considered. The unknown true positions
of the sensor are [10, 10]Tm, [10,−10]Tm, [−10, 10]Tm,
[−10,−10]Tm. The calibration emitter can take any of the
two positions at [0, 0]Tm or [5, 5]Tm. The RDOA mea-
surements are created by adding to the true values a zero-
mean Gaussian noise vector with covariance matrices Qd =

Qc = σ 2R, where the diagonal elements of matrix R are all
equal to 1 and the off-diagonal elements of R are all equal
to 0.5 [15].

The ith (i = 1, · · · ,M ) noisy sensor position is created by
adding to its true position a zero-mean Gaussian noise vector
with covariance matrix δ2I2. The jth (j = 1, · · · ,N ) noisy
calibration emitter’s position is created by adding to its true
position a zero-mean Gaussian noise vector with covariance
matrix κ2I2.
The performance metric is the root mean-square

error (RMSE), which is defined as

RMSE =

√√√√√ 1
Nc

Nc∑
j=1

∥∥ûj − u
∥∥2 (32)

where ûj is the the source position estimate in the jth run and
Nc is the number of Monte Carlo runs. A total of 500 real-
izations are generated in the following simulations. The pro-
posed SDP algorithm is implemented in CVX toolbox [22]
by using SeDuMi as a solver [23], and the precision is set to
best. The simulation is executed by Matlab 2012b in personal
computer (CPU I3, 2.4GHz).

Fig. 1 shows the RMSE of the proposed algorithm (11) ver-
sus the penalty parameter η, which varies from 10−4 to 100.
These results show that a suitable value of η is impor-
tant to achieve a good estimation performance. However,
it is not easy to analytically obtain the optimal value of
parameter η, which depends on the distance between the
sensor and the source nodes as well as the RDOA noise
level [21]. In the following simulations, η1 = 10−4,
η2 = 10−3, η3 = 10−2, η4 = 10−1, η5 = 100 for the

FIGURE 2. RMSE vs. σ , u = [2,8]T m, c = [0,0]T m, δ = 0.01m.

FIGURE 3. RMSE vs. δ, u = [2,8]T m, c = [0,0]T m, σ = 0.01m.

five proposed algorithms, i.e., (11), (16), (20), (24), and (30),
respectively.

Fig. 2 and Fig. 3 evaluate, respectively, the performance of
the proposed algorithm versus σ and δ, assuming a single cal-
ibration emitter located at c = [0, 0]Tm (accurately known).
These results lead to the following observations. First, both
the algorithm in [15] and the proposed algorithm can reach
the CRLB when the RDOA measurement noise and sensor
position errors are sufficiently small. Second, the proposed
algorithm is superior to the one in [15] when the RDOA
measurement noise or sensor position errors are large.

The results in Figs. 4 and 5 are also for a single cali-
bration emitter located at c = [0, 0]Tm, but this position
is not accurately known to the algorithms. It is observed
that the algorithm in [16] reaches the CRLB only when
the RDOA measurement noise, sensor position errors, and
calibration emitter position errors are sufficiently small, and
its performance degrades significantly as σ and δ increase.
On the other hand, the performance of the proposed algorithm
approaches the CRLB for all values of σ and δ evaluated.

The case of a single calibration emitter placed at c =
[0, 0]Tm (but this position is completely unknown to the
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FIGURE 4. RMSE vs. σ , u = [2,8]T m, c0 = [0,0]T m, δ = 0.01m, κ = 0.01m.

FIGURE 5. RMSE vs. δ, u = [2,8]T m, c0 = [0,0]T m, σ = 0.01m, κ = 0.01m.

FIGURE 6. RMSE vs. σ , u = [2,8]T m, c = [0,0]T m, δ = 0.01m.

FIGURE 7. RMSE vs. δ, u = [2,8]T m, c = [0,0]T m, σ = 0.01m.

network) is assessed in Fig. 6 and Fig. 7. Again, for all values
of σ and δ evaluated, the proposed algorithm approaches
the CRLB and significantly outperforms the algorithm
in [17].

FIGURE 8. RMSE vs. σ , u = [2,8]T m, δ = 0.01m.

FIGURE 9. RMSE vs. δ, u = [2,8]T m, σ = 0.01m.

FIGURE 10. RMSE vs. σ , u = [2,8]T m, c0
1 = [0,0]T m, c0

2 = [5,5]T m,
δ = 0.01m, κ = 0.01m.

Figs. 8 and 9 compare the performances of the pro-
posed algorithm, and the algorithms proposed in [13], [14],
and [17], all addressing the same configuration. It is found
that the proposed algorithm can reach the CRLB in the whole
range of noise levels evaluated, while the other three algo-
rithms approach the CRLB only when σ and δ are sufficiently
small.

The last case listed in Table 1−two calibration emitters
whose positions are not accurately known−is studied in
Figs. 10 and 11. Similar to the previous cases studied, it is
observed that the location estimation performances of the
algorithm in [16] can reach the CRLB only when the RDOA
measurement noise, sensor position errors, and calibration
emitter position errors are sufficiently small, whereas the
proposed algorithm performs close to the CRLB for thewhole
range of noise levels evaluated.
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FIGURE 11. RMSE vs. δ, u = [2,8]T m, c0
1 = [0,0]T m, c0

2 = [5,5]T m,
σ = 0.01m, κ = 0.01m.

Note that the computational complexity of the proposed
SDP algorithms are higher than that of the existing least-
squares based algorithms. However, for many indoor pisi-
tioning applications, the estimation performance is more
important than the computational complexity, for which the
proposed algorithms will be attractive.

VI. CONCLUSIONS
A unified solution of TDOA-based source localization in
the presence of random sensor position errors is established
in this paper. After investigating three possible cases of a
network with a single calibration emitter and the case with-
out a calibration emitter, the algorithms developed are then
generalized to the case of multiple calibration emitters. The
proposed unified solution is based on SDP for all these cases.
It starts from the MLE problems (nonconvex), which are
transformed into convex optimization problems. In addition
to a unified solution that is applicable for various scenar-
ios, another key feature of the proposed algorithms is that
their performances reach the CRLB, whereas existing state-
of-the-art algorithms can reach the CRLB only when the
TDOA measurements noise, the sensor position errors, and
calibration emitter position errors are sufficiently small. This
is verified via extensive amount of simulation results.
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