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Joint Synchronization and Localization in Wireless Sensor
Networks Using Semidefinite Programming

Yanbin Zou, Huaping Liu, and Qun Wan

Abstract—A new joint synchronization and localization
method for wireless sensor networks (WSNs) using two-way
exchanged time-stamps is proposed in this paper. The goal is
to jointly localize and synchronize the source node, assuming
that the locations and clock parameters of the anchor nodes are
known. We first form the measurement model and derive the
Cramér-Rao lower bound (CRLB). An analysis of the advantages
and disadvantages of a recent scheme on joint synchronization
and localization motivates us to develop a maximum likelihood
estimator (MLE) that effectively resolves the issues of this
existing scheme. A novel semidefinite programming method is
then proposed to transform the nonconvex MLE problem into
a convex optimization problem. Extensive simulation results
are obtained to compare the synchronization and localization
performances of proposed scheme and a few state-of-the-art
existing schemes.

Index Term-Synchronization and localization, maximum like-
lihood (ML), semidefinite programming (SDP).

I. INTRODUCTION

Clock synchronization is the premise for most of the ap-
plications of wireless sensor networks (WSNs) that have been
used in tracking, monitoring, and control [1], and will likely
be a core part of the future internet of things. For example,
power management and transmission scheduling among the
nodes require all nodes to have a common time reference [2].
There are many clock-synchronization schemes [3], but the
classical two-way message-exchange-based schemes remain to
be the most commonly used ones.

There are two types of nodes in a general WSN: anchor
nodes with known locations and source nodes whose po-
sitions are to be estimated. It is common and reasonable
to assume that the anchor nodes are synchronized and the
source nodes need to be synchronized. When time-of-arrival
(TOA) measurements are used to localize the source nodes, a
small clock difference between the source node and anchor
nodes could lead to significant localization errors [4]–[7].
Joint time synchronization and localization in WSNs was first
studied in [8]. Before that, these two issues were investigated
separately; synchronization was studied mainly from proto-
col design perspectives while localization was studied from
signal processing perspectives. With such approaches, even
a moderate synchronization error could lead to a significant
localization performance loss [9]. Recent joint synchronization
and localization schemes aim to improve the performances
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of previous schemes that separately address synchronization
and localization [4], [10], [11]. However, there are remaining
issues with these schemes. For example, the scheme proposed
in [10] requires three-way message exchanges to reach the
Cramér-Rao lower bound (CRLB); the approaches that use
averaging proposed in [4], [11], although simplify the problem
formulation, have compromised performance bounds.

In this paper we propose a novel joint time-synchronization
and localization algorithm that uses two-way exchanged time-
stamps in WSNs to achieve an improved performance over
recent schemes such as the one in [4]. Although the averag-
ing strategy presented in [4] simplifies the original problem
formulation, it deteriorates the performance bound because
the simplified problem using averaging is different from the
original problem when there are more than one round of
message exchange. The method being proposed in this paper
starts from the original problem formulation and develops a
maximum likelihood estimator (MLE), followed by a semidef-
inite programming (SDP) technique to relax the nonconvex
MLE problem into a convex problem. This technique performs
better than the SDP algorithm in [4] at the expanse of a slightly
higher computational complexity.

The rest of this paper is organized as follows. The measure-
ments model and CRLB are given in Sec. II. In Sec. III, the ad-
vantages and disadvantages of the scheme in [4] are analyzed.
An SDP technique to relax the nonconvex MLE problem into
a convex problem is established in Sec. IV. Sec. V provides
numerical results to evaluate the estimation performance of
the proposed estimator, followed by conclusions in Sec. VI.

Notations: Im denotes the m×m identity matrix; 1m is a
column vector consisting of m ones; � denotes the Hadamard
product; ‖·‖ is the l2 norm; A(:, i) denotes the ith column of
matrix A; and for arbitrary symmetric matrices of equal size,
A � B means that A−B is positive semidefinite.

II. PROBLEM DESCRIPTION

A. Measurement Model

In a WSN consisting of M anchor nodes and one source
node, for v-dimentions localization (v = 1, 2 or 3), let sm ∈
Rv be the position of the mth anchor node, u ∈ Rv be the
unknown position of the source node, and dm = ‖u− sm‖ be
the distance from the mth anchor node to the source node.

In the two-way message exchange synchronization scheme,
the source and anchor nodes exchange messages as illustrated
in Fig. 1. The relationship between the source node’s local
clock time and the reference time is

tlocal,x = ωxt+ θx (1)
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Fig. 1. Two-way message exchange between the source and the mth anchor
nodes.

where tlocal,x and t are the local time of the source node and the
reference time, respectively, and ωx and θx are the unknown
clock skew and clock offset, respectively.

Similar, the relationship between the mth anchor node’s
local clock time and the reference time is

tlocal,m = ωmt+ θm (2)

where tlocal,m is the local time of the mth anchor node, and ωm

and θm are the known time skew and time offset, respectively.
Assume L rounds of message exchanges, and take the lth

round for example: the source node transmits a signal at time
Tml and the mth anchor node receives it at time Rml, which,
at T̄ml, replies with a signal that contains the information of
Rml and T̄ml. The source node receives the reply signal at
R̄ml. Note that Tml and R̄ml are the local time of the source
node, and Rml and T̄ml are the local time of the mth anchor
node. In a line-of-sight (LOS) propagation environment, the
measured time stamps are expressed as [4], [12] (ch. 21), [13]
(ch. 2)

Rml =
ωm

ωx
Tml + ωm(tm + nml)−

ωm

ωx
θx + θm (3a)

R̄ml =
ωx

ωm
T̄ml + ωx(tm + n̄ml)−

ωx

ωm
θm + θx (3b)

where tm = dm/c, c is the speed of light, nml and n̄ml denote
the measurement noises, which are modeled as i.i.d. zero-mean
Gaussian variables with variance σ2

ml and σ̄2
ml, respectively. It

is reasonable to assume σ2
ml = σ̄2

ml = σ2, m = 1, · · · ,M, l =
1, · · · , L.

B. CRLB for Joint Synchronization and Localization

Given the measurement model in (3), the performance
of any unbiased estimator of κ = [uT , ωx, θx]T would be
bounded by the CRLB. The CRLB of an estimator of κ is
derived as follows.

From (3):

Rml

ωm
=
Tml

ωx
+ tm −

θx
ωx

+
θm
ωm

+ nml (4a)

R̄ml =
ωx

ωm
T̄ml + ωxtm −

ωx

ωm
θm + θx + ωxn̄ml. (4b)

The Fisher information matrix (FIM) is calculated as [14]

I(κ) =
L∑

l=1

I1l(κ) + I2l(κ) (5)

where

I1l(κ) = q1lQ
−1qT

1l (6a)

I2l(κ) =
1

ω2
x

q2lQ
−1qT

2l (6b)

q1l(:,m) =

[
(u− sm)T

‖u− sm‖ c
,
−(Tml − θx)

ω2
x

,
−1

ωx

]T
(6c)

q2l(:,m) =

[
ωx(u−sm)T

‖u−sm‖ c
,

(T̄ml−θm)

ωm
+
‖u−sm‖

c
, 1

]T
(6d)

Q = σ2IM . (6e)

The CRLB on the variance of the unknown parameter κ is
computed as

Var([κ]i) ≥ [I−1(κ)]i,i, i = 1, · · · , v + 2. (7)

III. JOINT SYNCHRONIZATION AND LOCALIZATION USING
AVERAGING

In the cooperative joint synchronization and localization
algorithm in WSNs developed in [4], the following variables
are defined:

Tm =
1

L

L∑
l=1

Tml, Rm =
1

L

L∑
l=1

Rml (8a)

T̄m =
1

L

L∑
l=1

T̄ml, R̄m =
1

L

L∑
l=1

R̄ml. (8b)

Taking the average of (3) results in

Rm =
ωm

ωx
Tm + ωm(tm + nm)− ωm

ωx
θx + θm (9a)

R̄m =
ωx

ωm
T̄m + ωx(tm + n̄m)− ωx

ωm
θm + θx (9b)

where nm and n̄m are zero-mean Gaussian random variables
with the same variance of σ2/L.

The CRLB on the variances of κ in model (9) can be derived
similarly to the previous case. The FIM is calculated as

Î(κ) = Î1(κ) + Î2(κ) (10)
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where

Î1(κ) = q̂1Q̂
−1q̂T

1 (11a)

Î2(κ) =
1

ω2
x

q̂2Q̂
−1q̂T

2 (11b)

q̂1(:,m) =

[
(u− sm)T

‖u− sm‖ c
,
−(Tm − θx)

ω2
x

,
−1

ωx

]T
(11c)

q̂2(:,m) =

[
ωx(u− sm)T

‖u− sm‖ c
,

(T̄m − θm)

ωm
+
‖u− sm‖

c
, 1

]T
(11d)

Q̂ = σ2IM/L. (11e)

The CRLB on the variance of the unknown parameter κ is
computed as

Var([κ]i) ≥ [Î−1(κ)]i,i, i = 1, · · · , v + 2. (12)

Proposition 1: The CRLB on the variance of κ with the
model described by (9) is not smaller than that with the model
given in (3).

Proof. For L = 1, it is easy to verify that the CRLB with the
models given in (9) and (3) is the same.

For L > 1, we show that the CRLB based on model (9)
is not smaller than that based on model (3). Note that the
expressions q1l(:,m) and q̂1(:,m) differ only in the v + 1th
element, and so are q2l(:,m) and q̂2(:,m). Additionally,
the averaging operator in (8) is linear; thus the elements of(
I(κ)− Î(κ)

)
are zeros except the v+ 1th diagonal element,

which is written as
L∑

l=1

M∑
m=1

[
(Tml − θx)2

w4
x

+ (
T̄ml − θm
wm

+
‖u− sm‖

c
)2
]
−

L
M∑

m=1

[
(Tm − θx)2

w4
x

+ (
T̄m − θm
wm

+
‖u− sm‖

c
)2
]
. (13)

Eq. (13) is equivalent to

L∑
l=1

M∑
m=1

(
T 2
ml

w4
x

+
T̄ 2
ml

w2
m

)
− L

M∑
m=1

(
T 2
m

w4
x

+
T̄ 2
m

w2
m

)
, (14)

which can be split into the following two parts:

L∑
l=1

M∑
m=1

T 2
ml

w4
x

− L
M∑

m=1

T 2
m

w4
x

, (15a)

L∑
l=1

M∑
m=1

T̄ 2
ml

w2
m

− L
M∑

m=1

T̄ 2
m

w2
m

. (15b)

The time parameters Tml, Tm, wx, T̄ml, T̄m, as well as wm

are all positive. Applying Cauchy-Schwartz inequality yields

L∑
l=1

T 2
ml > L

(
1

L

L∑
l=1

Tml

)2

= LT 2
m (16)

and
L∑

l=1

T̄ 2
ml > L

(
1

L

L∑
l=1

T̄ml

)2

= LT̄ 2
m. (17)

The analysis above shows that

I(κ)− Î(κ) � 0. (18)

Therefore,
I−1(κ) � Î−1(κ). (19)

Proposition 1 shows that while the averaging strategy in [4]
simplifies the original problem formulation, it also increases
the CRLB of original problem.

IV. PROPOSED ALGORITHM

A. Maximum Likelihood Estimator

Here we formulate the maximum likelihood estimator
(MLE), and in Sec. IV-B, we propose an SDP algorithm to
solve this MLE problem. The time-stamp measurements nml,
n̄ml, Rml, Tml, R̄ml, and T̄ml are transformed into range
measurements through nmlc, n̄mlc, Rmlc, Tmlc, R̄mlc, and
T̄mlc, respectively. From (3):

Rmlβm = dm + Tmlβx − αx + αm + nml (20a)
R̄mlβx = dm + T̄mlβm + αx − αm + n̄ml. (20b)

where βm = 1/ωm, αm = cθm/ωm, βx = 1/wx, and αx =
cθx/ωx. Let h = [uT , βx, αx]T represent the vector of the
unknown parameters. The MLE problem is expressed as

min
h

L∑
l=1

M∑
m=1

(Rmlβm − dm − Tmlβx + αx − αm)2

σ2
+

L∑
l=1

M∑
m=1

(R̄mlβx − dm − T̄mlβm − αx + αm)2

σ2
. (21)

B. Proposed Algorithm

An SDP algorithm is developed in this section to solve the
MLE problem expressed in (21). The proposed algorithm is
developed directly from model (3), which will perform better
than the algorithm in [4], as shown by Proposition 1.

The MLE problem in (21) is written in a compact form as

min
u,y

L∑
l=1

‖Rl � β − d−α−Aly‖2 +

L∑
l=1

∥∥−T̄l � β − d + α−Hly
∥∥2 (22)

where Rl = [R1l, · · · , RMl]
T , Tl = [T1l, · · · , TMl]

T ,
R̄l = [R̄1l, · · · , R̄Ml]

T , T̄l = [T̄1l, · · · , T̄Ml]
T , β =

[β1, · · · , βM ]T , α = [α1, · · · , αM ]T , d = [d1, · · · , dM ]T ,
Al = [Tl,−1M ], Hl = [−R̄l,1M ], and y = [βx, αx]T .

Instead of estimating u and y jointly, y can be expressed as
a function of u. Letting the gradient of the objective function
in (22) with respect to y to zero as below

−2
L∑

l=1

AT
l (Rl � β −α− d−Aly)−

2
L∑

l=1

HT
l (−T̄l � β + α− d−Hly) = 0, (23)
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yields
y = g −Gd (24)

where

g =

[
L∑

l=1

(AT
l Al + HT

l Hl)

]−1

·

L∑
l=1

[
(AT

l (Rl�β −α)+HT
l (−T̄l�β+α)

]
(25a)

G =

[
L∑

l=1

(AT
l Al + HT

l Hl)

]−1 L∑
l=1

(AT
l + HT

l ). (25b)

Substituting (24) into (22) results in the optimization problem
expressed as

min
u,d

L∑
l=1

‖Rl � β −α−Alg + (AlG− IM )d‖2 +

L∑
l=1

∥∥−T̄l�β+α−Hlg+(HlG−IM )d
∥∥2 (26a)

s.t. dm = ‖u− sm‖ ,m = 1, · · · ,M. (26b)

Define

el = Rl � β −α−Alg (27a)
fl = −T̄l � β + α−Hlg (27b)
El = AlG− IM (27c)
Fl = HlG− IM . (27d)

The optimization problem in (26) can be written as

min
u,d

dT
L∑

l=1

[
(ET

l El+FT
l Fl) d+2(ET

l el+FT
l fl)

]
(28a)

s.t. dm = ‖u− sm‖ ,m = 1, · · · ,M. (28b)

where the constant terms are discarded since they do not affect
the optimization results.

Finally, by using the semidefinite relaxation (SDR) [15]
method, (28) is rewritten into an SDP problem as

min
u,ys,d,D

tr

(
D

L∑
l=1

(ET
l El+FT

l Fl)

)
+2dT

L∑
l=1

(ET
l el+FT

l fl)

(29a)

s.t. Dm,m = ys − 2uT sm + sTmsm, m = 1, · · · ,M
(29b)

Di,j ≥ |ys−uT (si+sj)+sTi sj |, 1 ≤ i < j ≤M.
(29c)[

1 dT

d D

]
� 0 (29d)[

I2 u
uT ys

]
� 0 (29e)

where (29c) is obtained by using the Cauchy-Schwartz in-
equality.

Next, we use the estimated û to calculate dm = ‖û− sm‖,
and then substitute it into (24) to estimate y. Once y is

determined, the estimates of clock skew and clock offset are
expressed as

ω̂x = 1/y(1) (30a)

θ̂x = y(2)/(cy(1)). (30b)

Simulation results as will be shown in the next section
reveal an interesting phenomenon: when L = 1, the smallest
eigenvalue of matrix

∑L
l=1(ET

l El + FT
l Fl) is very close to

zero. Thus the proposed algorithm (29) cannot effectively
provide a solution. Similar to the approach adopted in [16], we
also introduce the second-order-cone constraints and a penalty
term to improve the accuracy of (29) for L = 1. This results
in the following algorithm:

min
u,ys,d,D

tr(D
L∑

l=1

(ET
l El + FT

l Fl))+

2dT
L∑

l=1

(ET
l el + FT

l fl) + ηtr(D) (31a)

s.t. Dm,m = ys − 2uT sm + sTmsm, i = m, · · · ,M.
(31b)

‖u− sm‖ ≤ dm, m = 1, · · · ,M. (31c)

Di,j ≥ |ys − uT (si + sj) + sTi sj |, 1 ≤ i < j ≤M.
(31d)[

1 dT

d D

]
� 0 (31e)[

I2 u
uT ys

]
� 0 (31f)

where η is a regularization factor. Similar to [16], we also
take K constant values ηk, k = 1, · · · ,K to compute (31),
and then use the estimated results ûk, k = 1, · · · ,K to select
the optimal û that results in the minimum cost function Jk
expressed as

Jk =dT
k

[
L∑

l=1

(ET
l El+FT

l Fl)dk+2(ET
l el+FT

l fl)

]
(32)

k = 1, · · · ,K.

where d̂k = [d̂k1, · · · , d̂kM ]T and d̂km = ‖ûk − sm‖ , m =
1, · · · ,M .

V. SIMULATION RESULTS AND DISCUSSIONS

The performances of the proposed SDP algorithms (labeled
as: ‘Proposed A’ and ‘Proposed B’, correspond to (29) and
(31), respectively), a recent SDP algorithm proposed in [4],
and SEP [9] (a two-step approach: synchronization using the
scheme in [2] and then localization using the synchronization
results [17]) are simulated and compared. The two proposed
algorithms and the scheme developed in [4] are implemented
in CVX toolbox [18] using SeDuMi as a solver [19]. In the
following figures, the CRLB on the variance of κ with model
(3) is labeled CRLB; the CRLB on the variance of κ with
model (9) is labeled ACRLB.
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The performance metric chosen is the root mean-square
errors (RMSEs), which include location, clock skew, and clock
offset, and are, respectively, defined as

RMSElo =
√

1
N

∑N
j=1 ‖ûj − u‖2

RMSEcs =
√

1
N

∑N
j=1(ω̂xj − ωx)2

RMSEco =
√

1
N

∑N
j=1(θ̂xj − θx)2

where N is the number of Monte Carlo runs, ûj , ω̂xj , and θ̂xj
are, respectively, the estimates of the source node position, the
source node clock skew, and the source node clock offset in
the jth run. A total of N = 1000 Monte Carlo realizations are
generated for each of the cases.

A WSN with four anchor nodes and one source node
in 2-D plane is considered. Here, in order to avoid flip
ambiguity [20]–[22], the positions of the anchor nodes, chosen
so that they are not collinear, are [20, 20]Tm, [20,−20]Tm,
[−20, 20]Tm, [−20,−20]Tm. The location of the source node
is randomly generated in a square: [−30, 30]m× [−30, 30]m.
The clock offset and skew of the nodes are drawn from
uniform distributions U[1, 10]ns and U[0.998, 1.002], respec-
tively. The transmission times of the nodes Tml and T̄ml are
drawn from uniform distributions U[5l, 5l + 1] × 10−5s and
U[5l+3, 5l+4]×10−5s, respectively. The range measurement
noise is a zero-mean Gaussian variable with variance σ2.

Figs. 2-4 show the performances of the algorithms versus σ
assuming L = 4. The CRLB on the variance of κ with model
(9) is clearly higher than that with model (3), and the RMSEs
with algorithm [4] is larger than the ACRLB. Additionally,
Fig. 2 shows that the location estimate accuracy of ‘Proposed
A’ is superior to the that of SEP and is lower than the ACRLB.
The estimated results of clock skew and clock offset are shown
in Fig. 3 and Fig. 4, respectively. It is observed that both
‘Proposed A’ and SEP could approach the CRLB. The results
of ‘Proposed B’ are not included in these figures, because for
L > 1, ‘Proposed B’ has the same performance as ‘Proposed
A‘ when L > 1.

Figs. 5-7 show the performances of the algorithms versus
σ assuming L = 2. A comparison between L = 4 and L = 2
reveals the following observation: the more rounds of message
exchanges the better performance.

Figs. 8-10 evaluate the performances of the various algo-
rithms versus σ assuming L = 1. In the computation for algo-
rithm ‘Proposed B’, η is set to 10−4, 10−3, 10−2, 10−1, 100.
From the three figures, it is observed that the CRLBs on the
variance of κ with model (9) and model (3) are identical,
as we had discussed earlier in the paper. In that case, SEP
is found to perform the worst. The reason is that SEP is
a two-step algorithm, in which when L = 1 the first step
(synchronization) has a poor performance, which directly
degrades the performance of localization (in the second step)
that uses the time skew and offset estimates of the first step.
When L = 1, the performance of the first step is poor because
the matrix that needs to be inverted in the least squares based
algorithm has a large condition number. ‘Proposed B’ performs
the best. Fig. 8 shows that the location estimation accuracy
with algorithm [4] is slightly better than that with ‘Proposed

TABLE I
THE AVERAGE RUNNING TIME [S] OF THE CONSIDERED ALGORITHMS.

CPU: INTEL CORE 3 2.4 GHZ

Algorithms. L = 4 L = 2 L = 1
Proposed A 0.5278 0.5197 0.5146

Algorithm in [4] 0.3401 0.3399 0.3414
Algorithm SEP 0.0025 0.0025 0.0025

A’. However, Figs. 9-10 show that the clock skew and clock
offset estimate accuracies of algorithm [4] are worse than that
with ‘Proposed A’.
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Fig. 2. RMSE of location estimate vs. σ (L = 4).
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Fig. 3. RMSE of clock skew estimate vs. σ (L = 4).

The SEP algorithm is based on the least squares method;
therefore, its computational complexity is lower than that of
the SDP based algorithms, i.e., the proposed algorithm and
the algorithm [4]. Here we list the relative running time
of ‘Proposed A’, the algorithm [4], and the SEP algorithm
obtained in experiments in Table I. It is observed that ‘Pro-
posed A’ requires a slightly more running time than the SDP
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Fig. 4. RMSE of clock offset estimate vs. σ (L = 4).
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Fig. 5. RMSE of location estimate vs. σ (L = 2).
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Fig. 6. RMSE of clock skew estimate vs. σ (L = 2).
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Fig. 7. RMSE of clock offset estimate vs. σ (L = 2).
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Fig. 8. RMSE of location estimate vs. σ (L = 1).
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Fig. 9. RMSE of clock skew estimate vs. σ (L = 1).
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Fig. 10. RMSE of clock offset estimate vs. σ (L = 1).

algorithm in [4], because ‘Proposed A’ has more constraints,
i.e., (29c). The SEP algorithm requires the least amount of
time as expected.

For large networks where there are many source nodes, re-
quiring more than one round of message exchange is strongly
discouraged, because each two-way message exchange would
require some sort of resources for multiple access, for ex-
ample, time or frequency or spatial resources, which are
limited. Besides, the the source nodes are quite often power
limited to require as fewer rounds of message exchanges are
possible. Thus L = 1 is an important deployment scenario
for systems with many source nodes. For this important
deployment scenario, the proposed algorithm is superior to the
SEP algorithm and the algorithm in [4] in terms of accuracy,
albeit at the expense of a higher computational complexity. As
computing power increases and parallel processing becomes
more widely used, for performance-sensitive applications, the
proposed scheme is attractive.

VI. CONCLUSIONS

The problem of joint synchronization and localization in
WSNs by using two-way-exchanged time-stamp measure-
ments is investigated. An analysis of an existing algorithm
reveals that the averaging strategy may simplify the origi-
nal problem formulation, but it deteriorates the performance
bound. We thus propose a new SDP algorithm for joint
synchronization and localization of the original problem. Nu-
merical results of the proposed algorithms and some existing
(recent) algorithms are obtained for performance comparison.
For most cases, the MSE performance of location, clock skew,
and clock offset estimates with the proposed schemes are
superior to that with existing schemes, albeit at the expenses
of an increased algorithm running time.
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