k-best Knuth Algorithm

Liang Huang

August 11, 2005

Knuth (1977) describes an elegant extension of the Dijkstra (1959) algorithm for the case of directed hypergraphs, which is essentially a best-first (also known as uniform-cost) search algorithm for the 1-best hyperpath. The A* parsing of Klein and Manning (2003), for example, is an instance of it on binary-branching hypergraphs with admissible heuristics.

This note further extends the Knuth algorithm to the k-best case, in the fashion of the simple n-best Dijkstra algorithm (Mohri and Riley, 2002). The k-best Knuth algorithm also exploits the lazy frontier idea adapted from k-best Viterbi parsing (Jiménez and Marzal, 2000; Huang and Chiang, 2005).

1 Knuth Algorithm

The pseudo-code in Algorithm 1 is adapted from (Knight and Graehl, 2005) which provides an efficient implementation of Knuth’s original algorithm.

2 k-best Dijkstra Algorithm

The k-best extension of Dijkstra seems to be a folklore from the 1960s. The pseudo-code presented in Algorithm 2 is adapted from (Mohri and Riley, 2002).

3 k-best Knuth Algorithm

We combine the ideas in the previous section and the lazy frontier idea in (Jiménez and Marzal, 2000; Huang and Chiang, 2005) to the Knuth algorithm (pseudo-code in Algorithm 3).

Define 1_m to be the vector of length m whose components are all 1 and b^i_m the vector of length m whose components are all 0 except the i^{th} is 1.

References

Algorithm 1: 1-best Knuth: The Knuth 1977 Algorithm

Input:
Output:

begin
 \(Q \leftarrow \{s\} \)
 \(d(s) \leftarrow 0 \)
 foreach \(e \in E \) do
 \(r[e] \leftarrow |T(e)| \)
 // \(r[e] \) is the number of tail nodes remaining before edge \(e \)
 fires.
while \(Q \neq \emptyset \) do
 \(u \leftarrow \text{Extract-Best}(Q) \)
 foreach \(e \in FS(u) \) do
 \(e = ((u_1, u_2, \ldots, u_i = u, \ldots, u_m), h(e) = v, f_e) \)
 \(r[e] \leftarrow r[e] - 1 \)
 if \(r[e] = 0 \) then
 \(d(v) \oplus = f_e(d(u_1), d(u_2), \ldots, d(u), \ldots, d(u_m)) \)
 \(\text{Improve-Key}(Q, v) \)
end

Algorithm 2: \(k \)-best Dijkstra: The \(k \)-best Dijkstra Algorithm

Input:
Output:

begin
 foreach \(v \in V \) do \(n[v] \leftarrow 0 \)
 //\(n[v] \) is the number of times vertex \(v \) is popped from the queue
 \(Q \leftarrow \{(s, 0)\} \)
while \(Q \neq \emptyset \) do
 \((u, c) \leftarrow \text{Extract-Best}(Q) \)
 \(n[u] \leftarrow n[u] + 1 \)
 if \(n[u] \leq k \) then
 foreach \(e \in FS(u) \) do
 \(e = (u, v, f_e) \)
 \(d' \leftarrow f_e(c) \)
 // more general than \(c \otimes w(e) \)
 \(\text{Enqueue}(Q, (v, c')) \)
end
Algorithm 3: k-best Knuth: The k-best Knuth Algorithm

Input:
Output:

begin
 foreach $v \in V$ do $n[v] \leftarrow 0$
 // $n[v]$ is the number of times vertex v is popped from the queue
 foreach $e \in E$ do
 $r[e] \leftarrow |T(e)|$
 // $r[e]$ is the number of tail nodes remaining before edge e
 fires
 for $i \leftarrow 1 \ldots |T(e)|$ do $\text{need}[e][i] = 1$
 $Q \leftarrow \{(s, 0, \text{null}, 0)\}$
 while $Q \neq \emptyset$ do
 $(u, c, e_0, \hat{j}) \leftarrow \text{Extract-Best}(Q)$
 // c is the cost; e_0 and \hat{j} are backpointers
 $n[u] \leftarrow n[u] + 1$
 if $n[u] \leq k$ then
 $d_{n[u]}(u) \leftarrow c$
 // the cost of u’s $n[u]^{th}$ best derivation is c
 foreach $e \in FS(u)$ do
 $e = ((u_0, \ldots, u_m), v, f_e)$
 if $n[u] = 1$ then
 // a new tail node ready
 $r[e] \leftarrow r[e] - \{|i \mid u_i = u\}$
 // # of occurrences of u in the tail
 if $r[e] = 0$ then
 // fire this edge e
 for $i \leftarrow 1 \ldots m$ do
 if $u_i = u$ and $\text{need}[e][i] = n[u]$ then
 // needed on i^{th} dimension
 $c'' \leftarrow f_e(d_{i}(u_0), \ldots, d_{i}(u_{i-1}), d_{n[u]}(u), d_1(u_{i+1}), \ldots, d_1(u_m))$
 $\text{Enqueue}(Q, (v, c', e, 1_m + b^i_m \cdot (n[u] - 1)))$
 $\text{need}[e][i] = 0$
 if $n[u] < k$ and $e_0 \neq \text{null}$ then
 // get successor along the edge e_0
 $e_0 = ((x_1, \ldots, x_p), u_0, f_0)$
 for $l \leftarrow 1 \ldots p$ do
 $\hat{j}' \leftarrow j + b^l_p$
 if $\hat{j}' \leq \min(n[x_i], k)$ then
 $c''' \leftarrow f_0(d_{\hat{j}'}(x_1), \ldots, d_{\hat{j}'}(x_l), \ldots, d_{\hat{j}'}(x_p))$
 $\text{Enqueue}(Q, (u, c'', e_0, \hat{j}'))$
 else
 $\text{need}[e_0][l] = j'$
 end
end

