STORAGE WebVoyage Request Get Article Copy from...

Subject: STORAGE WebVoyage Request Get Article Copy from Storage
From: Penn Library OPAC <voyager@LIBDB.LIB .upenn.edu>

Date: Tue, 1 Mar 2005 13:34:07 -0500 (EST) |

To: storage@pobox.upenn.edu

patron Info:
Liang Huang

STORAGE WebVoyade Request: (Get Article Copy from Storage)

Datebase: LOCAL)

pick Up At: 186 £ L‘éi%w?

Not Needed After: 2005-05-30 00:00:00

Comment:

Knuth, Donald E. 1977.
A generalization of Dijkstra's Algorithm.
Information Processing Letters, 6(1): 1-5.

Title: Information processing letters,

primary Material: periodical

Publisher: amsterdam, North-Holland pPub. Co.
Description: v, il1l. 26 cm.
Semimonthly

vol. 1 (1971)-

Location: Engineering Library
Call Number: QA76 . 147
Notes: Currently received.

Unbound Issues: 93, no. 6 (2005 Mar. 31

93, no. (2005 Mar. 16)
93, no. (2005 Feb. 28)
93, no. (2005 Feb. 149
93, no. (2005 Jan. 31)

5

4

3

2

93, no. 1 (2005 Jan. 16}
92, no. © (2004 Dec. 31)
92, no. O (2004 Dec. 16)
92, no. 4 (2004 Nov. 287
92, no. 3 (2004 Nov. 157
92, no. 2 (2004 Oct. 313
92, no. 1 (2004 Oct. 16)
91, no. © (2004 Sept. 30)
91, no. % (2004 Sept. 15)

<:<§<!<2<2<1<1<1<§<2<:<<1<1

1 of2

or by
ner.

: Yﬁg(X15

Volume 6, number 1

INFORMATION PROCESSING LETTERS

February 1977

A GENERALIZATION OF DUJKSTRA’S ALGORITHM *

Donald E. KNUTH

Computer Science Department, Stanford University, Stanford, California 943035, U.S.A.

Received 26 July 1976

Shortest paths, AND/OR graphs, context-free grammars, simultaneous minimax equations, decision trees,

dynamic programming -

E.W. Dijkstra [3] has introduced an important al-

~ gorithm for finding shortest paths in a graph, when

the distances on each arc of the graph are nonnegative.

- The purpose of this note is to present an algorithm
- which generalizes Dijkstra’s in essentially the same
- way that tree structures generalize linear lists, or that

context-free languages generalize regular languages.

1. The problem in general

Let R, be the nonnegative real numbers extended
with the value +eo, We shall say that a function g(x;,
ey Xg) from R¥ into R, is a superior function if it is

- monotone nondecreasing in each variable and if

80y,) = max(xy, . xg) forall xyg, ..., xg .

When & =0 the function g is simply a constant element
- of Ry, and it is trivially considered to be a superior

function. When & = 2 several familiar functions g(x, »)
such as max (x, y) and x + y and max (1, x)- max(1,)
are all superior. Any functional composition of supe-

- rior functions is a superior function of the variables

occurring in the composition.
A superior context-free grammar is a context-free

- grammar in which all productions are of the general

form
»Xk),

* This research was supported in part by National Science
Foundation grant MCS 72-03752 A03, by the Oftice of
Naval Research contract N00014-76-C-0330, and by IBM

~ Corporation. Reproduction in whole o in part is permitted
- for any purpose of the United States Government.

where Y, Xy, ..., Xi are nonterminal symbols, gis a
terminal symbol corresponding to a superior function
(possibly a different superior function for each produc-
tion), and the parentheses and commas are also ter-
minal symbols. If £ > 0, there are k — 1 commas; if
k =0 the right-hand side of the production is simply
written “g”, a terminal symbol which corresponds to
a nonnegative real constant.

For example, the following productions define a
superior context-free grammar on the nonterminal
symbols 4 B C and the terminal symbols (),abcdef:

A->a,

A~>bB,0),

B-c(4),
B—=d4,C, 4),

C—>e,
C—f(B,A4).

Herea, b, c,d, e, fare supposed to correspond to
superior functions, and we may for example define

a=4, d(x,v,z)=x+max (y,z),

b(x,y)=max(x,y), e=9,

cx)=x+1, fx,)=ty +max (x,) .
For every nonterminal symbol ¥ of a superior con-
text-free grammar over the terminal alphabet T we let

L(Y)= {ala€T*and Y >* o}

be the set of terminal strings derivable from Y. Every
string & in L(Y) is a composition of superior functions,
s0 it corresponds to a uniquely-defined nonnegative

real number which we shall call val(a). Thus, in the
above example we have

L(A) = {a, b(c(a),), b(c(a), flc(a), a)),
bc(b(c(a), e)), e), ...}

Volume 6, munber 1

and the corresponding numerical values are
{4,9,7,10, ...} .

The problem we shall solve is to compute the smal-
lest values corresponding to these languages, namely

m(Y)=min {val (a)la € L(Y)},

for each nonterminal symbol Y.

2. Applications of the general problem

(A) Consider n + 1 cities {cg, ¢y, ..., ¢, } connected
by a network of roads. For each road from ¢; to ¢, in-
troduce the production

Ci~gi(C)) 5
and the corresponding superior function
gije) =d;j+x ,

where d; 2> 0 is the length of the road. Then add one
more production

Co >0,

where 0 corresponds to the constant function zero.

In this superior context-free grammar, the elements of
“L(C;) correspond to the paths from ¢; to ¢g, and the
corresponding values will be the lengths of those paths.
For example, if there is a path from c¢3 to ¢4 to ¢, to

g, one of the elements of L(C3) willbe g34(g42(g20(0))),
and its corresponding value isd 34 +dgy +d2e + 0.
Therefore m(C;) is the length of the shortest path

from ¢; tocg, for all i.

The algorithm we shall develop for the general
problem reduces to Dijkstra’s algorithm in this speical
case.

(B) Given a context-free grammar, replace each
production Y -0 in which the nonterminal symbols
of string 0 are Xy, ..., Xy from left to right (including
repetitions) by

Y>go(Xy, ., Xi) s

where

g()(xls '-5xk)=xl +...+xk

+ (the number of terminal symbols in 0) .

INFORMATION PROCESSING LETTERS

February 1977

Then m(Y) is the length of the shortest string deriv-
able from Y in the given grammar. Alternatively if we
let

go(X1, X)) =max (xq, ., X)L,

then m(Y) is the minimum height of a parse tree for a
string derivable from Y in the given grammar.
Finally, if we let

go(X 15 s Xp) =max (Xy, oy Xg)

we have m(Y) = 0 or % according as L(Y) is nonempty.
or empty. The algorithm we shall develop for the gen-
eral problem reduces to the classical emptiness-testing
algorithms of Bar-Hillel, Perles, and Shamir [2] or
Greibach [5] in this special case.

(C) Consider the AND/OR graphs which arise in
artificial intelligence applications as in Nilsson [9],
section 4—5. In this case we use one nonterminal sym-
bol for each “problem” to be solved. If some problem-
reduction operator shows that problem Y could be
solved if we could solve all of problems X, ..., X,
then we introduce the production

Y"’g(Xl,...,Xk),

where g(xy, ..., X)) = X1 +... + Xy + (cost of solving
Y given solutions to X, ..., Xx). Then m(Y) is the
minimum cost of a solution to Y, provided that the
cost of solving common subproblems is replicated (all .
problem solutions are considered independent). Our
algorithm will therefore find a smallest AND/OR
graph in this sense; but it is of limited utility for A.L
applications because it deals with the set of all “easy”
subproblems, and this set is usually too large.

A special case of the algorithm to be described
here has been published by Martelli and Montanari.
They deal only with AND/OR graphs whose functions.
g(xy, ..., xi) have the form x; + ...+ xg + ¢ with¢>0
furthermore they restrict their discussion to acyclic '
AND/OR graphs. The algorithm below works also in
the presence of cycles, and in this sense it is more ge
eral than the usual “dynamic programming” approac

(D) given 21 + 1 probabilities py, ..., Pn>d0» s dn
which sum to 1, construct the context free grammar
with nonterminal symbols C; ; for 0 < <j< n,where
the productions are ;
Ci,i -0

Cij~> &if(Ci k-1, Cr)

977

we

or &

npw
gerl-
sting

11

sym-
blem-
be

ks

ing
he
the
' (all
Our
[
AL
‘easy”

=d
rari.
actions
h e>¢
yclic
lSO in
dre gen,
'Proach
* -« {p
Murmar
2, whern

Volume 6, number 1

and let

g, y)y=xtytputotpitgit.typ.

Then m(Co n) ¥ Pyt .. T Pn 1 the expected number
of comparisons in an opfimum binary search tree de-
fine by the given probabilities, in the sense of {6,
434--435]. The general algorithm we shall describe
here is not competitive with the special one in [6} ;
but it appears to be useful in connection with similar
problems, such as that of constructing optimum pro-
grams for decision tables.

(E) The author has successfully used this approach
to generalize the optimum code-generation algorithm
of Aho and Johnson [1], treating the case of machines
with asymmetric registers.

3. The general algorithm

Given a superior context-free grammar, the follow-
ing algorithm determines m(Y) for all nonterminal Y.
The algorithm operates on elements u[Y] and p[Y]
for each Y initially all these elements are undefined,
but when the algorithm terminates u[¥] will equal
m(Y) for all Y. The set D represents those Y for which
u[Y] has been defined.

1) Set D to the empty set.
2) If all nonterminals are in D, stop.
3) For each nonterminal ¥ ¢ D, compute

p[Y] =min {gu[X,], .., ulX)Y~ g(Xy, o Xp) is
a production and {X, ..., Xx} <D}

(If this set is empty, [Y] is infinite.)

4) Choose Y € D such that »[Y] is minimum, and set
plY] <o[Y].
5) Include Y in D, and retum to step 2).

For example, consider the grammar given in sect. L.
The computation proceeds as in table 1, viewed in
step 3). Finally u[C] < 7.

Actually the values v[Y] do not need to be com-
puted explicitly, they have been introduced here only
for convenience in stating and proving the algorithm.
By maintaining a priority queue of the current values
of u[Y] with Y & D, the running time of this algorithm
is bounded by a constant times m log n + ¢, where
there are m productions and n nonterminals, and the
total length of all productions is ¢, Further refinements

INFORMATION PROCESSING LETTERS

February 1977

Table 1

D wld] w{B] w(C] w4l »[B] »[C]
¢ - - - 4 o0 9
{4} 4 - - - s 9
{4,8} 4 5 - - - 7

are also possible, since all productions with Y on the
left-hand side can be deleted from memory as soon as
u[Y] has been defined.

4. Proof of the algorithm

We must show that u[Y] = m(Y) whenever step 5)
is performed, since the relation

(¥) X € D implies p[X] = m(X),

will then be invariant throughout the algorithm.
It is clear that »[Y] =m(Y) in step 3); for if Y]
< oo, (#) implies that

[Y] = val (g(ey 5 ..., O), Where

Y- g(Xl y teey Xk) ->* g(al s “',ak) i

and the terminal strings &y, ..., o satisfy val (o) =
m(X;) for all i. Therefore the algorithm will be valid
unless u[Y] > m(Y) at some occurrence of step 5).
In that case there will exist a terminal string & such
that ¥ =* ¢ and val (o) < ulY].

Assume that a is the shortest terminal string such
that Z -* & for some nonterminal Z ¢ D and such
that val (o) < u[Y], at some occurrence of step 5).
Then a =g(og , ..., &) fOr some @y, ..., Qg where the
grammar contains the production Z > gX1, s Xi)
and X; »* o forall i. If {X, ..., Xjc} & D we have
val (o) = m(X;) = u[X;] for all i, by definition of
m(X;) and (*), hence val (@) = g(u[X 1, ..., uXe),
by the monotonicity of g in each va riable, But
(u[X1 1, oo, w[Xe]) = vIZ] by step 3), and ¥[Z]
>v[Y] = u[Y] by step 4), contradicting val (@) <p{Y].
Therefore X; & D for some i. But now val (a;) < val (o)
by the superiority of g, hence o is a shorter string
having the stated properties of a; this contradiction
completes the proof.

It is easy to prove that the algorithm defines the
[Y] in increasing order of their value, since the new

Volume 6, number 1

element Y introduced into D by steps 4) and 5) can-
not make any of the v’s less than ¢ Y] in the next oc-
currence of step 3). The usual proofs of Dijkstra’s al-
gorithm rely on this monotonicity property; but the
above proof shows that it isn’t really a crucial fact,
ever when the algorithm has been substantially gen-
eralized.

5. Another application

[f the functions g of a superior context-free gram-
mar satisfy the additional condition of strict inequal-
ity,

80y, oy Xg) > max (xy, .y X))

we shall prove that there is a unigue solution to the
set of simultaneous equations

AY)=min {g(AX,), .., (X)) Y
> g(X |, ..., Xx) is a production},
for all nonterminal Y,

namely. A(Y) = m(Y) for all Y,

In the first place, m(Y) is a solution: For if ¥ -
&X'y, ..., Xy) is any production, then g(m (X)), ...,
m(Xy) is infinite or equal to val (@) for some terminal
string o, where

Yorg(Xp, o Xg) ¥ glog, ..., a)=a

for some @y, ..., ax. Thus g(n(X), ..., m(X;))

2 m(Y) by definition of m(Y). Conversely if m(Y)
= val (&) then « has-the form gloq, ..., &), where
there is a production ¥ > g(X, ..., X};); and

gm(X,), ..., m(Xy)) < g(val (ay), ..., val (o))

=val (@) =m(Y).

In the second place, the solution is unique: Suppose
[1 and £, are distinct solutions to the simultaneous
- minimization equations above. Let Y be a nonterminal
-~ such that f,(Y) # £,(Y) and min (f,(Y), F2(Y)) is as
small as possible. Without loss of generality assume
that f{ (V)< fo(Y); then £, (X) = £,(X) for all X such
that £, (X) </, (Y). There must exist a production

Y= g(Xy, ., X)) such that

4

INFORMATION PROCESSING LETTERS

Iebruary 1977

g(f1(X,), e FUX) = 11T

But the strict inequality condition above implies that
NXY <1 (Y) for L i<k, hence £, (X}) = £,(X,))
for all i by our construction, and this is impossible.

Note that something like the strict inequality con-
dition is necessary to guarantee uniqueness, because
of the following example grammar:

A~>q a=5,
A —fb(B), b(x)=x,
B—>c¢(4), ex)=x .

The simultaneous minimization equations are
fA)=min (5,B)), fiB)=f4),
hence the solutions are
fA)Y=AB)=x for0<x<5.

The application discussed here arises for example

in the study of “levels” in a flowchart, as defined by
Floyd [4] and Mont-Reynaud [8].

. Acknowledgments

['wish to thank Edsger W. Dijkstra and Nils J. Nils-
son for their helpful comments on the first draft of
this paper.

References

[1] A.V.Aho and S.C. Johnson, Optimal code generation for
expression trees, J. Assoc. Comput. Mach. 23 (1976)
488-501.

{2} Y. Bar-Hillel, M. Perles and F. Shamir, On formal proper-
ties of simple phase structure grammars, Z. f, Phonetic,
Sprachwissenschaft und Kommunikationsforschung 14
(1961) 143172, CR 1450 (September-October 1963)
213-214. Reprinted in Yehoshua Bar-Hillel, Language
and Information (Addison—Wesley, Reading, MA, 1964)
116-150.

[3] E.W. Dijkstra, A note on two problems in connexion
with graphs, Numer. Math. 1 (1959) 269-271.

[4] R.W. Floyd, Flowchart levels (preliminary draft), un-
published manuscript (July 1965).

bruary 1977

nplies that
=fo(X;)
possible.
uality con-
i, because

ns are

example
efined by

Nils J. Nils -

draft of

neration fo
(1976)

rmal proper
Phonetic,.

schung 14:
ber 1963}

Language
MA, 1964
mexion

f. ’
aft), un-

Volume 6, number 1 INFORMATION PROCESSING LETTERS February 1977

[5] Sheila Greibach, Inverses of phase structure generators,
Math. Linguistics and Automatic Translation Report
NSF—11, Harvard University (June 1963).

[6] Donald E. Knuth, The Art of Computer Programming,
Vol. 3, Sorting and Searching {Addison—-Wesley, Reading,
MA, 1973).

[7] A. Martelli and U. Montanari, Additive AND/OR graphs,
Advance Papers of the Third International Joint Confer-
ence on Artificial Intelligence (1973) 1-11.

[81 B. Mont-Reynaud, personal communication (July 1976).

{9] NilsJ. Nilsson, Problem-Solving Methods in Artificial In-
telligence (McGraw-Hill, New York, 1971).

