
Search-Aware Tuning for Machine Translation

Lemao Liu
Queens College

City University of New York
lemaoliu@gmail.com

Liang Huang
Queens College and Graduate Center

City University of New York
liang.huang.sh@gmail.com

Abstract

Parameter tuning is an important problem in
statistical machine translation, but surpris-
ingly, most existing methods such as MERT,
MIRA and PRO are agnostic about search,
while search errors could severely degrade
translation quality. We propose a search-
aware framework to promote promising par-
tial translations, preventing them from be-
ing pruned. To do so we develop two met-
rics to evaluate partial derivations. Our tech-
nique can be applied to all of the three
above-mentioned tuning methods, and ex-
tensive experiments on Chinese-to-English
and English-to-Chinese translation show up
to +2.6 BLEU gains over search-agnostic
baselines.

1 Introduction

Parameter tuning has been a key problem for ma-
chine translation since the statistical revolution.
However, most existing tuning algorithms treat the
decoder as a black box (Och, 2003; Hopkins and
May, 2011; Chiang, 2012), ignoring the fact that
many potentially promising partial translations are
pruned by the decoder due to the prohibitively
large search space. For example, the popular
beam-search decoding algorithm for phrase-based
MT (Koehn, 2004) only explores O(nb) items for
a sentence of n words (with a beam width of b),
while the full search space is O(2nn2) or worse
(Knight, 1999).

As one of the very few exceptions to the
“search-agnostic” majority, Yu et al. (2013) and
Zhao et al. (2014) propose a variant of the per-
ceptron algorithm that learns to keep the refer-
ence translations in the beam or chart. How-
ever, there are several obstacles that prevent their
method from becoming popular: First of all, they
rely on “forced decoding” to track gold derivations
that lead to the reference translation, but in practice
only a small portion of (mostly very short) sen-

(a)

0 1 2 3 4

(b)

Figure 1: (a) Some potentially promising partial trans-
lations (in red) fall out of the beam (bin 2); (b) We
identify such partial translations and assign them higher
model scores so that they are more likely to survive the
search.

tence pairs have at least one such derivation. Sec-
ondly, they learn the model on the training set, and
while this does enable a sparse feature set, it is or-
ders of magnitude slower compared to MERT and
PRO.

We instead propose a very simple framework,
search-aware tuning, which does not depend on
forced decoding, and thus can be trained on all sen-
tence pairs of any dataset. The key idea is that,
besides caring about the rankings of the complete
translations, we also promote potentially promis-
ing partial translations so that they are more likely
to survive throughout the search, see Figure 1 for
illustration. We make the following contributions:

• Our idea of search-aware tuning can be ap-
plied (as a patch) to all of the three most
popular tuning methods (MERT, PRO, and
MIRA) by defining a modified objective func-
tion (Section 4).

• To measure the “promise” or “potential” of a
partial translation, we define a new concept
“potential BLEU” inspired by future cost in
MT decoding (Koehn, 2004) and heuristics in
A* search (Hart et al., 1968) (Section 3.2).
This work is the first study of evaluating met-
rics for partial translations.

• Our method obtains substantial and consistent

improvements on both the large-scale NIST
Chinese-to-English and English-to-Chinese
translation tasks on top of MERT, MIRA, and
PRO baselines. This is the first time that con-
sistent improvements can be achieved with a
new learning algorithm under dense feature
settings (Section 5).

For simplicity reasons, in this paper we use
phrase-based translation, but our work has the po-
tential to be applied to other translation paradigms.

2 Review: Beam Search for PBMT
Decoding

We review beam search for phrase-based decoding
in our notations which will facilitate the discussion
of search-aware tuning in Section 4. Following Yu
et al. (2013), let 〈x, y〉 be a Chinese-English sen-
tence pair in the tuning set D, and

d = r1 ◦ r2 ◦ . . . ◦ r|d|

be a (partial) derivation, where each ri =
〈c(ri), e(ri)〉 is a rule, i.e., a phrase-pair. Let |c(r)|
be the number of Chinese words in rule r, and
e(d)

∆
= e(r1) ◦ e(r2) . . . ◦ e(r|d|) be the English

prefix (i.e., partial translation) generated so far.
In beam search, each binBi(x) contains the best

k derivations covering exactly i Chinese words,
based on items in previous bins (see Figures 1
and 2):

B0(x) = {ε}
Bi(x) = topkw0

(
⋃
j=1..i

{d ◦ r | d∈Bi−j(x), |c(r)|=j})

where r is a rule covering j Chinese words, and
topkw0

(·) returns the top k derivations according
to the current model w0. As a special case, note
that top1

w0
(S) = argmaxd∈S w0 · Φ(d), so

top1
w0

(B|x|(x)) is the final 1-best result.1 See Fig-
ure 2 for an illustration.

3 Challenge: Evaluating Partial
Derivations

As mentioned in Section 1, the current mainstream
tuning methods such as MERT, MIRA, and PRO are

1Actually B|x|(x) is an approximation to the k-best list
since some derivations are merged by dynamic programming;
to recover those we can use Alg. 3 of Huang and Chiang
(2005).

0 1 2 3 4
B0(x) B1(x) B2(x) B3(x) B4(x)

Figure 2: Beam search for phrase-based decoding. The
item in red is top1

w0
(B4(x)), i.e., the 1-best result.

Traditional tuning only uses the final bin B4(x) while
search-aware tuning considers all binsBi(x) (i = 1..4).

all search-agnostic: they only care about the com-
plete translations from the last bin, B|x|(x), ignor-
ing all partial ones, i.e., Bi(x) for all i < |x|. As
a result, many potentially promising partial deriva-
tions never reach the final bin (See Figure 1).

To address this problem, our new “search-aware
tuning” aims to promote not only the accurate
translations in the final bin, but more importantly
those potentially promising partial derivations in
non-final bins. The key challenge, however, is
how to evaluate the “promise” or “potential” of
a partial derivation. In this Section, we develop
two such measures, a simple “partial BLEU” (Sec-
tion 3.1) and a more principled “potential BLEU”
(Section 3.2). In Section 4, we will then adapt tra-
ditional tuning methods to their search-aware ver-
sions using these partial evaluation metrics.

3.1 Solution 1: Simple and Naive Partial BLEU

Inspired by a trick in (Li and Khudanpur, 2009)
and (Chiang, 2012) for oracle or hope extraction,
we use a very simple metric to evaluate partial
translations for tuning. For a given derivation d,
the basic idea is to evaluate the (short) partial trans-
lation e(d) against the (full) reference y, but using
a “prorated” reference length proportional to c(d)
which is the number of Chinese words covered so
far in d:

|y| · |c(d)|/|x|
For example, if d has covered 2 words on a 8-
word Chinese sentence with a 12-word English
reference, then the “effective reference length” is
12×2/8 = 3. We call this method “partial BLEU”
since it does not complete the translation, and de-
note it by

δ̄|x|y (d) = −δ
(
y, e(d); reflen = |y| · |c(d)|/|x|

)
.

(1)

δ(y, y′) = −Bleu+1(y, y′) string distance metric

δy(d) = δ(y, e(d)) full derivations eval

δxy (d) =

{
δ̄
|x|
y (d) partial bleu (Sec. 3.1)
δ(y, ēx(d)) potential bleu (Sec. 3.2)

Table 1: Notations for evaluating full and partial deriva-
tions. Functions δ̄|x|y (·) and ēx(·) are defined by Equa-
tions 1 and 3, respectively.

where reflen is the effective length of reference
translations, see (Papineni et al., 2002) for details.

3.1.1 Problem with Partial BLEU
Simple as it is, this method does not work well in
practice because comparison of partial derivations
might be unfair for different derivations covering
different set of Chinese words, as it will naturally
favor those covering “easier” portions of the in-
put sentence (which we do observe empirically).
For instance, consider the following Chinese-to-
English example which involves a reordering of
the Chinese PP:

(2) wǒ
I

cóng
from

Shànghǎi
Shanghai

fēi
fly

dào
to

Běijı̄ng
Beijing

“I flew from Shanghai to Beijing”

Partial BLEU will prefer subtranslation “I from” to
“I fly” in bin 2 (covering 2 Chinese words) because
the former has 2 unigram mathces while the latter
only 1, even though the latter is almost identical
to the reference and will eventually lead to a com-
plete translation with substantially higher Bleu+1

score (matching a 4-gram “from Shanghai to Bei-
jing”). Similarly, it will prefer “I from Shanghai”
to “I fly from” in bin 3, without knowing that the
former will eventually pay the price of word-order
difference. This example suggests that we need a
more “global” or less greedy metric (see below).

3.2 Solution 2: Potential BLEU via Extension
Inspired by future cost computation in MT decod-
ing (Koehn, 2004), we define a very simple fu-
ture string by simply concatenating the best model-
score translation (with no reorderings) in each un-
covered span. Let bestw(x[i:j]) denote the best
monotonic derivation for span [i : j], then

future(d, x) = ◦[i:j]∈uncov(d,x) e(bestw(x[i:j]))

where ◦ is the concatenation operator and
uncov(d, x) returns an ordered list of uncovered

e(d) future(d, x)

x =

ēx(d) =

monotonicreordering

�

Figure 3: Example of the extension function ēx(·) (and
future string) on an incomplete derivation d.

spans of x. See Figure 3 for an example. This fu-
ture string resembles (inadmissible) heuristic func-
tion (Hart et al., 1968). Now the “extended trans-
lation” is simply a concatenation of the exist-
ing partial translation e(d) and the future string
future(d, x):

ēx(d) = e(d) ◦ future(d, x). (3)

Instead of calculating bestw(x[i:j]) on-the-fly
for each derivation d, we can precompute it for
each span [i : j] during future-cost computa-
tion, since the score of bestw(x[i:j]) is context-
free (Koehn, 2004). Algorithm 1 shows the
pseudo-code of computing bestw(x[i:j]). In prac-
tice, since future-cost precomputation already
solves the best (monotonic) model-score for each
span, is the only extra work for potential BLEU

is to record (for each span) the subtranslation that
achieves that best score. Therefore, the extra time
for potential BLEU is negligible (the time com-
plexity is O(n2), but just as in future cost, the con-
stant is much smaller than real decoding). The im-
plementation should require minimal hacking on a
phrase-based decoder (such as Moses).

To summarize the notation, we use δxy (d) to
denote a generic evaluation function for par-
tial derivation d, which could be instantiated in
two ways, partial bleu (δ̄|x|y (d)) or potential bleu
(δ(y, ēx(d))). See Table 1 for details. The next
Section will only use the generic notation δxy (d).

Finally, it is important to note that although
both partial and potential metrics are not BLEU-
specific, the latter is much easier to adapt to other
metrics such as TER since it does not change the
original Bleu+1 definition. By contrast, it is not
clear to us at all how to generalize partial BLEU to
partial TER.

4 Search-Aware MERT, MIRA, and PRO

Parameter tuning aims to optimize the weight vec-
tor w so that the rankings based on model score de-
fined by w is positively correlated with those based

Algorithm 1 Computation of best Translations for Potential BLEU.
Input: Source sentence x, a rule set < for x, and w.
Output: Best translations e(bestw(x[i : j])) for all spans [i : j].

1: for l in (0..|x|) do
2: for i in (0..|x| − l) do
3: j = i+ l + 1
4: best score = −∞
5: if <[i : j] 6= ∅ then . <[i : j] is a subset of rules < for span [i : j].
6: bestw(x[i : j]) = argmaxr∈<[i:j] w ·Φ({r}) . {r} is a derivation consisting of one rule r.
7: best score = w ·Φ(bestw(x[i : j]))

8: for k in (i+ 1 .. i+ p) do . p is the phrase length limit

9: if best score < w ·Φ
(

bestw(x[i : k]) ◦ bestw(x[k : j])

)
then

10: bestw(x[i : j]) = bestw(x[i : k]) ◦ bestw(x[k : j])
11: best score = w ·Φ(bestw(x[i : j]))

on some translation metric (such as BLEU (Pap-
ineni et al., 2002)). In other words, for a train-
ing sentence pair 〈x, y〉, if a pair of its trans-
lations y1 = e(d1) and y2 = e(d2) satisfies
BLEU(y, y1) > BLEU(y, y2), then we expect w ·
Φ(d1) > w ·Φ(d2) to hold after tuning.

4.1 From MERT to Search-Aware MERT

Suppose D is a tuning set of 〈x, y〉 pairs. Tra-
ditional MERT learns the weight by iteratively
reranking the complete translations towards those
with higher BLEU in the final bin B|x|(x) for
each x in D. Formally, it tries to minimize the
document-level error of 1-best translations:

`MERT(D,w) =
⊕
〈x,y〉∈D

δy

(
top1

w(B|x|(x))
)
,

(4)
where top1

w(S) is the best derivation in S under
model w, and δ·(·) is the full derivation metric as
defined in Table 1; in this paper we use δy(y′) =
−BLEU(y, y′). Here we follow Och (2003) and
Lopez (2008) to simplify the notations, where the
⊕ operator (similar to

∑
) is an over-simplification

for BLEU which, as a document-level metric, is ac-
tually not factorizable across sentences.

Besides reranking the complete translations as
traditional MERT, our search-aware MERT (SA-
MERT) also reranks the partial translations such
that potential translations may survive in the mid-
dle bins during search. Formally, its objective
function is defined as follows:

`SA-MERT(D,w)=
⊕
〈x,y〉∈D

⊕
i=1..|x|

δxy

(
top1

w(Bi (x))
)

(5)

where top1
w(·) is defined in Eq. (4), and δxy (d),

defined in Table 1, is the generic metric for eval-
uating a partial derivation d which has two imple-
mentations (partial bleu or potential bleu). In or-
der words we can obtain two implementations of
search-aware MERT methods, SA-MERTpar and
SA-MERTpot.

Notice that the traditional MERT is a special
case of SA-MERT where i is fixed to |x|.

4.2 From MIRA to Search-Aware MIRA

MIRA is another popular tuning method for SMT.
It firstly introduced in (Watanabe et al., 2007), and
then was improved in (Chiang et al., 2008; Chiang,
2012; Cherry and Foster, 2012). Its main idea is to
optimize a weight such that the model score dif-
ference of a pair of derivations is greater than their
loss difference.

In this paper, we follow the objective function
in (Chiang, 2012; Cherry and Foster, 2012), where
only the violation between hope and fear deriva-
tions is concerned. Formally, we define d+(x, y)
and d−(x, y) as the hope and fear derivations in
the final bin (i.e., complete derivations):

d+(x, y) = argmax
d∈B|x|(x)

w0 ·Φ(d)− δy(d) (10)

d−(x, y) = argmax
d∈B|x|(x)

w0 ·Φ(d) + δy(d) (11)

where w0 is the current model. The loss function
of MIRA is in Figure 4. The update will be be-
tween d+(x, y) and d−(x, y).

To adapt MIRA to search-aware MIRA (SA-
MIRA), we need to extend the definitions of hope

`MIRA(D,w) =
1

2C
‖w−w0‖2 +

∑
〈x,y〉∈D

[
∆δy

(
d+(x, y), d−(x, y)

)
−w·∆Φ

(
d+(x, y), d−(x, y)

)]
+

(6)

`SA-MIRA(D,w)=
1

2C
‖w−w0‖2+

∑
〈x,y〉∈D

|x|∑
i=1

[
∆δxy

(
d+
i (x, y), d−i (x, y)

)
−w·∆Φ

(
d+
i (x, y), d−i (x, y)

)]
+

(7)

`PRO(D,w) =
∑
〈x,y〉∈D

∑
d1,d2∈B|x|(x), ∆δy(d1,d2)>0

log
(

1 + exp(−w·∆Φ(d1, d2))
)

(8)

`SA-PRO(D,w) =
∑
〈x,y〉∈D

|x|∑
i=1

∑
d1,d2∈Bi (x), ∆δxy (d1,d2)>0

log
(

1 + exp(−w·∆Φ(d1, d2))
)

(9)

Figure 4: Loss functions of MIRA, SA-MIRA, PRO, and SA-PRO. The differences between traditional and search-
aware versions are highlighted in gray. The hope and fear derivations are defined in Equations 10–13, and we
define ∆δy(d1, d2) = δy(d1)− δy(d2), and ∆δxy (d1, d2) = δxy (d1)− δxy (d2). In addition, [θ]+ = max{θ, 0}.

and fear derivations from the final bin to all bins:

d+
i (x, y) = argmax

d∈Bi (x)

w0 ·Φ(d)− δy(d) (12)

d−i (x, y) = argmax

d∈Bi (x)

w0 ·Φ(d) + δy(d) (13)

The new loss function for SA-MIRA is Eq. 7 in
Figure 4. Now instead of one update per sentence,
we will perform |x| updates, each based on a pair
d+
i (x, y) and d−i (x, y).

4.3 From PRO to Search-Aware PRO

Finally, the PRO algorithm (Hopkins and May,
2011; Green et al., 2013) aims to correlate the
ranking under model score and the ranking un-
der BLEU score, among all complete derivations
in the final bin. For each preference-pair d1, d2 ∈
B|x|(x) such that d1 has a higher BLEU score than
d2 (i.e., δy(d1) < δy(d2)), we add one positive ex-
ample Φ(d1) − Φ(d2) and one negative example
Φ(d2)−Φ(d1).

Now to adapt it to search-aware PRO (SA-
PRO), we will have many more examples to con-
sider: besides the final bin, we will include all
preference-pairs in the non-final bins as well. For
each bin Bi(x), for each preference-pairs d1, d2 ∈
Bi(x) such that d1 has a higher partial or potential
BLEU score than d2 (i.e., δxy (d1) < δxy (d2)), we
add one positive example Φ(d1)−Φ(d2) and one

negative example Φ(d2)−Φ(d1). In sum, search-
aware PRO has |x| times more examples than tradi-
tional PRO. The loss functions of PRO and search-
aware PRO are defined in Figure 4.

5 Experiments

We evaluate our new tuning methods on two large
scale NIST translation tasks: Chinese-to-English
(CH-EN) and English-to-Chinese (EN-CH) tasks.

5.1 System Preparation and Data

We base our experiments on Cubit2 (Huang and
Chiang, 2007), a state-of-art phrase-based system
in Python. We set phrase-limit to 7, beam size to
30 and distortion limit 6. We use the 11 dense
features from Moses (Koehn et al., 2007), which
can lead to good performance and are widely used
in almost all SMT systems. The baseline tuning
methods MERT (Och, 2003), MIRA (Cherry and
Foster, 2012), and PRO (Hopkins and May, 2011)
are from the Moses toolkit, which are batch tuning
methods based on k-best translations. The search-
aware tuning methods are called SA-MERT, SA-
MIRA, and SA-PRO, respectively. Their partial
BLEU versions are marked with superscript 1 and
their potential BLEU versions are marked with su-
perscript 2, as explained in Section 3. All these
search-aware tuning methods are implemented on
the basis of Moses toolkit. They employ the de-

2http://www.cis.upenn.edu/˜lhuang3/cubit/

http://www.cis.upenn.edu/~lhuang3/cubit/

Methods nist03 nist04 nist05 nist06 nist08 avg
MERT 33.6 35.1 33.4 31.6 27.9 –

SA-MERTpar -0.2 +0.0 +0.1 -0.1 -0.1 –
SA-MERTpot +0.8 +1.1 +0.9 +1.7 +1.5 +1.2

MIRA 33.5 35.2 33.5 31.6 27.6 –
SA-MIRApar +0.3 +0.3 +0.4 +0.4 +0.6 –
SA-MIRApot +1.3 +1.6 +1.4 +2.2 +2.6 +1.8

PRO 33.3 35.1 33.3 31.1 27.5 –
∗SA-PROpar -2.0 -2.7 -2.2 -1.0 -1.7 –
∗SA-PROpot +0.8 +0.5 +1.0 +1.6 +1.6 +1.1

Table 2: CH-EN task: BLEU scores on test sets (nist03, nist04, nist05, nist06, and nist08). par: partial BLEU; pot:
potential BLEU. ∗: SA-PRO tunes on only 109 short sentences (with less than 10 words) from nist02.

Final bin All bins
MERT 35.5 28.2

SA-MERT -0.1 +3.1

Table 3: Evaluation on nist02 tuning set using two
methods: BLEU is used to evaluate 1-best complete
translations in the final bin; while potential BLEU is
used to evaluate 1-best partial translations in all bins.
The search-aware objective cares about (the potential
of) all bins, not just the final bin, which can explain this
result.

fault settings following Moses toolkit: for MERT

and SA-MERT, the stop condition is defined by the
weight difference threshold; for MIRA, SA-MIRA,
PRO and SA-PRO, their stop condition is defined
by max iteration set to 25; for all tuning methods,
we use the final weight for testing.

The training data for both CH-EN and EN-CH

tasks is the same, and it is collected from the
NIST2008 Open Machine Translation Campaign.
It consists of about 1.8M sentence pairs, including
about 40M/48M words in Chinese/English sides.
For CH-EN task, the tuning set is nist02 (878
sents), and test sets are nist03 (919 sents), nist04
(1788 sents), nist05 (1082 sents), nist06 (616 sents
from news portion) and nist08 (691 from news por-
tion). For EN-CH task, the tuning set is ssmt07
(995 sents)3, and the test set is nist08 (1859 sents).
For both tasks, all the tuning and test sets contain
4 references.

We use GIZA++ (Och and Ney, 2003) for word
alignment, and SRILM (Stolcke, 2002) for 4-gram
language models with the Kneser-Ney smoothing

3On EN-CH task, there is only one test set available for us,
and thus we use ssmt07 as the tuning set, which is provided
at the Third Symposium on Statistical Machine Translation
(http://mitlab.hit.edu.cn/ssmt2007.html).

option. The LM for EN-CH is trained on its target
side; and that for CH-EN is trained on the Xin-
hua portion of Gigaword. We use BLEU-4 (Pap-
ineni et al., 2002) with “average ref-len” to evalu-
ate the translation performance for all experiments.
In particular, the character-based BLEU-4 is em-
ployed for EN-CH task. Since all tuning meth-
ods involve randomness, all scores reported are av-
erage of three runs, as suggested by Clark et al.
(2011) for fairer comparisons.

5.2 Main Results on CH-EN Task

Table 2 depicts the main results of our methods on
CH-EN translation task. On all five test sets, our
methods consistently achieve substantial improve-
ments with two pruning options: SA-MERT pot

gains +1.2 BLEU points over MERT on average;
and SA-MIRApot gains +1.8 BLEU points over
MIRA on average as well. SA-PROpot, however,
does not work out of the box when we use the en-
tire nist02 as the tuning set, which might be at-
tributed to the “Monster” behavior (Nakov et al.,
2013). To alleviate this problem, we only use the
109 short sentences with less than 10 words from
nist02 as our new tuning data. To our supurise,
this trick works really well (despite using much
less data), and also made SA-PROpot an order of
magnitude faster. This further confirms that our
search-aware tuning is consistent across all tuning
methods and datasets.

As discussed in Section 3, evaluation metrics
of partial derivations are crucial for search-aware
tuning. Besides the principled “potential BLEU”
version of search-aware tuning (i.e. SA-MERTpot,
SA-MIRApot, and SA-PROpot), we also run the
simple “partial BLEU” version of search-aware
tuning (i.e. SA-MERTpar, SA-MIRApar, and SA-

30

31

32

33

34

35

 1 2 4 8 16 32 64

B
L
E

U

Beam Size

Traditional MERT Tuning

Search-aware MERT Tuning

Figure 5: BLEU scores against beam size on nist05.
Our search-aware tuning can achieve (almost) the same
BLEU scores with much smaller beam size (beam of 4
vs. 16).

methods nist02 nist05

1-best
MERT 35.5 33.4

SA-MERT -0.1 +0.9

Oracle
MERT 44.3 41.1

SA-MERT +0.5 +1.6

Table 4: The k-best oracle BLEU comparison between
MERT and SA-MERT.

PROpar). In Table 2, we can see that they may
achieve slight improvements over tradition tuning
on some datasets, but SA-MERTpot, SA-MIRApot,
and SA-PROpot using potential BLEU consistently
outperform them on all the datasets.

Even though our search-aware tuning gains sub-
stantially on all test sets, it does not gain signif-
icantly on nist02 tuning set. The main reason is
that, search-aware tuning optimizes an objective
(i.e. BLEU for all bins) which is different from
the objective for evaluation (i.e. BLEU for the final
bin), and thus it is not quite fair to evaluate the
complete translations for search-aware tuning as
the same done for traditional tuning on the tuning
set. Actally, if we evaluate the potential BLEU for
all partial translations, we find that search-aware
tuning gains about 3.0 BLEU on nist02 tuning set,
as shown in Table 3.

5.3 Analysis on CH-EN Task

Different beam size. Since our search-aware tun-
ing considers the rankings of partial derivations
in the middle bins besides complete ones in the
last bin, ideally, if the weight learned by search-
aware tuning can exactly evaluate partial deriva-

Diversity nist02 nist05
MERT 0.216 0.204

SA-MERT 0.227 0.213

Table 5: The diversity comparison based on the k-best
list in the final bin on both tuning and nist05 test sets
by tuning methods. The higher the metric is, the more
diverse the k-best list is.

tions, then accurate partial derivations will rank
higher according to model score. In this way, even
with small beam size, these accurate partial deriva-
tions may still survive in the bins. Therefore, it
is expected that search-aware tuning can achieve
good performance with smaller beam size. To
justify our conjecture, we run SA-MERTpot with
different beam size (2,4,8,16,30,100), its testing
results on nist05 are depicted in Figure 5. our
mehtods achieve better trade-off between perfor-
mance and efficiey. Figure 5 shows that search-
aware tuning is consistent with all beam sizes, and
as a by-product, search-aware MERT with a beam
of 4 can achieve almost identical BLEU scores to
MERT with beam of 16.

Oracle BLEU. In addition, we examine the BLEU

ponits of oracle for MERT and SA-MERT. We
use the weight tuned by MERT and SA-MERT for
k-best decoding on nist05 test set, and calculate
the oracle over these two k-best lists. The oracle
BLEU comparison is shown in Table 4. On nist05
test set, for MERT the oracle BLEU is 41.1; while
for SA-MERT its oracle BLEU is 42.7, i.e. with 1.6
BLEU improvements. Although search-aware tun-
ing employs the objective different from the objec-
tive of evaluation on nist02 tuning set, it still gains
0.5 BLEU improvements.

Diversity. A k-best list with higher diversity can
better represent the entire decoding space, and thus
tuning on such a k-best list may lead to better
tesing performance (Gimpel et al., 2013). Intu-
itively, tuning with all bins will encourage the di-
versity in prefix, infix and suffix of complete trans-
lations in the final bin. To testify this, we need a
diversity metric.

Indeed, Gimpel et al. (2013) define a diversity
metric based on the n-gram matches between two
sentences y and y′ as follows:

d(y, y′) = −
|y|−q∑
i=1

|y′|−q∑
j=1

[[yi:i+q = y′j:j+q]]

Methods
tuning set test sets (4-refs)

set # refs # sents # words nist03 nist04 nist05 nist06 nist08
MERT nist02 4 878 23181 33.6 35.1 33.4 31.6 27.9

SA-MERTpot nist02 4 878 23181 34.4 36.2 34.3 33.3 29.4
MAXFORCE nist02-px 1 434 6227 29.0 30.3 28.7 26.8 24.1
MAXFORCE train-r-part 1 1225 22684 31.7 33.5 31.5 30.3 26.7

MERT nist02-r 1 92 1173 31.6 32.7 31.3 29.3 25.9
SA-MERTpot nist02-r 1 92 1173 33.5 35.0 33.4 31.5 28.0

Table 6: Comparisons with MAXFORCE in terms of BLEU. nist02-px is the non-trivial reachable prefix-data from
nist02 via forced decoding; nist02-r is a subset of nist02-px consisting of the fully reachable data; train-r is a
subset of fully reachable data from training data that is comparable in size to nist02. All experiments use only
dense features.

where q = n− 1, and [[x]] equals to 1 if x is true, 0
otherwise. This metric, however, has the following
critical problems:

• it is not length-normalized: longer strings will
look as if they are more different.

• it suffers from duplicates in n-grams. Af-
ter normalization, d(y, y) will exceed -1 for
any y. In the extreme case, consider y1 =
“the the the the” and y2 = “the ... the” with
10 the’s then will be considered identical af-
ter normalization by length.

So we define a balanced metric based on their met-
ric

d′(y, y′) = 1− 2× d(y, y′)

d(y, y) + d(y′, y′)

which satisfies the following nice properties:

• d′(y, y) = 0 for all y;

• 0 ≤ d′(y, y′) ≤ 1 for all y, y′;

• d′(y, y′) = 1 if y and y′ is completely dis-
joint.

• it does not suffer from duplicates, and can dif-
ferentiate y1 and y2 defined above.

With this new metric, we evaluate the diversity
of k-best lists for both MERT and SA-MERT. As
shown in Table 5, on both tuning and test sets the
k-best list generated by SA-MERT is more diverse.

5.4 Comparison with Max-Violation
Perceptron

Our method considers the rankings of partial
derivations, which is simlar to MAXFORCE

Bùshı́ yǔ Shālóng jǔxı́ng huı̀tán
Bush and Sharon held a meeting

Bush held talks with Sharon

qiāngshǒu bèi jı̌ngfāng jı̄bı̀
police killed the gunman

the gunman was shot dead
⇓

Bùshı́ yǔ Shālóng jǔxı́ng huı̀tán Bush and Sharon held a meeting
Bùshı́ yǔ Shālóng jǔxı́ng huı̀tán Bush held talks with Sharon

qiāngshǒu bèi jı̌ngfāng jı̄bı̀ police killed the gunman
qiāngshǒu bèi jı̌ngfāng jı̄bı̀ the gunman was shot dead

Figure 6: Transformation of a tuning set in forced de-
coding for MAXFORCE: the original tuning set (on the
top) contains 2 source sentences with 2 references for
each; while the transformed set (on the bottom) con-
tains 4 source sentences with one reference for each.

method (Yu et al., 2013), and thus we re-
implement MAXFORCE method. Since the nist02
tuning set contains 4 references and forced decod-
ing is performed for only one reference, we enlarge
the nist02 set to a variant set following the trans-
formation in Figure 6, and obtain a variant tun-
ing set denoted as nist02-px, which consists of 4-
times sentence-pairs. On nist02-px, the non-trivial
reachable prefix-data only accounts for 12% sen-
tences and 7% words. Both these sentence-level
and the word-level percentages are much lower
than those on the training data as shown in Ta-
ble 3 from (Yu et al., 2013). This is because there
are many OOV words on a tuning set. We run the
MAXFORCE with dense feature setting on nist02-
px and its testing results are shown in Table 6. We
can see that on all the test sets, its testing perfor-
mance is lower than that of SA-MERTpot tuning on
nist02 with about 5 BLEU points.

For more direct comparisons, we run MERT and
SA-MERTpot on a data set similar to nist02-px. We
pick up the fully reachable sentences from nist02-
px, remove the sentence pairs with the same source
side, and get a new tuning set denoted as nist02-r.
When tuning on nist02-r, we find that MERT is bet-

Methods tuning-set nist08
MERT ssmt07 31.3

MAXFORCE train-r-part 29.9
SA-MERTpar ssmt07 31.3
SA-MERTpot ssmt07 31.7

Table 7: EN-CH task: BLEU scores on nist08 test set for
MERT, SA-MERT, and MAXFORCE on different tun-
ing sets. train-r-part is a part of fully reachable data
from training data via forced decoding. All the tuning
methods run with dense feature set.

ter than MAXFORCE,4 and SA-MERTpot are much
better than MERT on all the test sets. In addition,
we select about 1.2k fully reachable sentence pairs
from training data, and run the forced decoding
on this new tuning data (denoted as train-r-part),
which is with similar size to nist02. 5 With more
tuning data, the performance of max-violation is
improved largely, but it is still underperformed by
SA-MERTpot.

5.5 Results on EN-CH Translation Task

We also run our search-aware tuning method on
EN-CH task. We use SA-MERT as the representa-
tive of search-aware tuning methods, and compare
its two versions with other tuning methods MERT,
MAXFORCE. For MAXFORCE, we first run forced
decoding on the training data and then select about
1.2k fully reachable sentence pairs as its tuning
set (denoted as train-r-part). For MERT, SA-
MERT pot, and SA-MERT par, their tuning set is
ssmt07. Table 7 shows that SA-MERTpot is much
better than MAXFORCE, i.e. it achieves 0.4 BLEU

improvements over MERT. Finally, comparison
between SA-MERT pot and SA-MERT par shows
that the potential BLEU is better for evaluation of
partial derivations.

5.6 Discussions on Tuning Efficiency

As shown in Figure 2, search-aware tuning consid-
ers all partial translations in the middle bins beside
all complete translations in the last bin, and thus its
total number of training examples is much greater
than that of the traditional tuning. In details, sup-

4Under the dense feature setting, MAXFORCE is worse
than standard MERT. This result is consistent with that in
Figure 12 of (Yu et al., 2013).

5We run MAXFORCE on train-r-part, i.e. a part of reach-
able data instead of the entire reachable data, as we found
that more tuning data does not necessarily lead to better test-
ing performance under dense feature setting in our internal
experiments.

Optimization time MERT MIRA PRO

basline 3 2 2
search-aware 50 7 6

Table 8: Search-aware tuning slows down MERT sig-
nificantly, and MIRA and PRO moderately. The time (in
minutes) is for optimization only (excluding decoding)
and measured at the last iteration during the entire tun-
ing (search aware tuning does not increase the number
of iterations in our experiments). The decoding time is
20 min. on a single CPU but can be parallelized.

pose the tuning data consists of two sentences with
length 10 and 30, respectively. Then, for tradi-
tional tuning its number of training examples is 2;
but for search-aware tuning, the total number is 40.
More training examples makes our search-aware
tuning slower than the traditional tuning.

Table 8 shows the training time comparisons
between search-aware tuning and the traditional
tuning. From this Table, one can see that both
SA-MIRA and SA-PRO are with the same order
of magtitude as MIRA and PRO; but SA-MERT

is much slower than MERT. The main reason is
that, as the training examples increase dramati-
cally, the envelope calculation for exact line search
(see (Och, 2003)) in MERT is less efficient than the
update based on (sub-)gradient with inexact line
search in MIRA and PRO.

One possible solution to speed up SA-MERT is
the parallelization but we leave it for future work.

6 Related Work

Many tuning methods have been proposed for
SMT so far. These methods differ by the ob-
jective function or training mode: their objective
functions are based on either evaluation-directed
loss (Och, 2003; Galley and Quirk, 2011; Gal-
ley et al., 2013) or surrogate loss (Hopkins and
May, 2011; Gimpel and Smith, 2012; Eidelman
et al., 2013); they are either batch (Och, 2003;
Hopkins and May, 2011; Cherry and Foster, 2012)
or online mode (Watanabe, 2012; Simianer et al.,
2012; Flanigan et al., 2013; Green et al., 2013).
These methods share a common characteristic:
they learn a weight by iteratively reranking a set of
complete translations represented by k-best (Och,
2003; Watanabe et al., 2007; Chiang et al., 2008)
or lattice (hypergraph) (Tromble et al., 2008; Ku-
mar et al., 2009), and they do not care about search
errors that potential partial translations may be
pruned during decoding, even if they agree with

that their decoders are built on the beam pruning
based search.

On the other hand, it is well-known that search
errors can undermine the standard training for
many beam search based NLP systems (Huang et
al., 2012). As a result, Collins and Roark (2004)
and Huang et al. (2012) propose the early-update
and max-violation update to deal with the search
errors. Their idea is to update on prefix or par-
tial hypotheses when the correct solution falls out
of the beam. This idea has been successfully
used in many NLP tasks and improves the perfor-
mance over the state-of-art NLP systems (Huang
and Sagae, 2010; Huang et al., 2012; Zhang et al.,
2013).

Goldberg and Nivre (2012) propose the concept
of “dynamic oracle” which is the absolute best po-
tential of a partial derivation, and is more akin to
a strictly admissible heuristic. This idea inspired
and is closely related to our potential BLEU, except
that in our case, computing an admissible heuristic
is too costly, so our potential BLEU is more like an
average potential.

Gesmundo and Henderson (2014) also consider
the rankings between partial translation pairs as
well. However, they evaluate a partial translation
through extending it to a complete translation by
re-decoding, and thus they need many passes of
decoding for many partial translations, while ours
only need one pass of decoding for all partial trans-
lations and thus is much more efficient. In sum-
mary, our tuning framework is more general and
has potential to be employed over all the state-of-
art tuning methods mentioned above, even though
ours is only tested on three popular methods.

7 Conclusions and Future Work

We have presented a simple yet powerful approach
of “search-aware tuning” by promoting promising
partial derivations, and this idea can be applied to
all three popular tuning methods. To solve the key
challenge of evaluating partial derivations, we de-
velop a concept of “potential BLEU” inspired by
future cost in MT decoding. Extensive experi-
ments confirmed substantial BLEU gains with only
dense features. We believe our framework can be
applied to sparse feature settings and other transla-
tion paradigms, and potentially to other structured
prediction problems (such as incremental parsing)
as well.

Acknowledgements

We thank the three anonymous reviewers for sug-
gestions, and Kai Zhao and Feifei Zhai for dis-
cussions. In particular, we thank reviewer #3 and
Chin-Yew Lin for pushing us to think about di-
versity. This project was supported by DARPA
FA8750-13-2-0041 (DEFT), NSF IIS-1449278, a
Google Faculty Research Award, and a PSC-
CUNY Award.

References
Colin Cherry and George Foster. 2012. Batch tuning

strategies for statistical machine translation. In Pro-
ceedings of NAACL-HLT, pages 427–436, Montréal,
Canada, June.

David Chiang, Yuval Marton, and Philip Resnik. 2008.
Online large-margin training of syntactic and struc-
tural translation features. In Proceedings of EMNLP
2008.

David Chiang. 2012. Hope and fear for discriminative
training of statistical translation models. J. Machine
Learning Research (JMLR), 13:1159–1187.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and
Noah A. Smith. 2011. Better hypothesis testing for
statistical machine translation: Controlling for opti-
mizer instability. In Proc. of ACL 2011.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of ACL.

Vladimir Eidelman, Yuval Marton, and Philip Resnik.
2013. Online relative margin maximization for sta-
tistical machine translation. In Proceedings of ACL,
pages 1116–1126, Sofia, Bulgaria, August.

Jeffrey Flanigan, Chris Dyer, and Jaime Carbonell.
2013. Large-scale discriminative training for statis-
tical machine translation using held-out line search.
In Proceedings of NAACL-HLT, pages 248–258, At-
lanta, Georgia, June.

Michel Galley and Chris Quirk. 2011. Optimal search
for minimum error rate training. In Proceedings of
EMNLP, pages 38–49, Edinburgh, Scotland, UK.,
July.

Michel Galley, Chris Quirk, Colin Cherry, and Kristina
Toutanova. 2013. Regularized minimum error rate
training. In Proceedings of EMNLP, pages 1948–
1959, Seattle, Washington, USA, October.

Andrea Gesmundo and James Henderson. 2014. Undi-
rected machine translation with discriminative rein-
forcement learning. In Proceedings of the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics, April.

Kevin Gimpel and Noah A. Smith. 2012. Struc-
tured ramp loss minimization for machine transla-
tion. In Proceedings of NAACL-HLT, pages 221–
231, Montréal, Canada, June.

Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gregory
Shakhnarovich. 2013. A systematic exploration of
diversity in machine translation. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, October.

Yoav Goldberg and Joakim Nivre. 2012. Training
deterministic parsers with non-deterministic oracles.
In Proceedings of COLING 2012.

Spence Green, Sida Wang, Daniel Cer, and Christopher
Manning. 2013. Fast and adaptive online training
of feature-rich translation models. In Proc. of ACL
2013.

P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A for-
mal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of EMNLP.

Liang Huang and David Chiang. 2005. Better k-best
Parsing. In Proceedings of the Ninth International
Workshop on Parsing Technologies (IWPT-2005).

Liang Huang and David Chiang. 2007. Forest rescor-
ing: Fast decoding with integrated language models.
In Proceedings of ACL, Prague, Czech Rep., June.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In
Proceedings of ACL 2010.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Pro-
ceedings of NAACL.

Kevin Knight. 1999. Decoding complexity in word-
replacement translation models. Computational Lin-
guistics, 25(4):607–615.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: open source toolkit
for statistical machine translation. In Proceedings of
ACL: Demonstrations.

Philipp Koehn. 2004. Pharaoh: a beam search decoder
for phrase-based statistical machine translation mod-
els. In Proceedings of AMTA, pages 115–124.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and
Franz Och. 2009. Efficient minimum error rate
training and minimum bayes-risk decoding for trans-
lation hypergraphs and lattices. In Proceedings of
ACL-IJCNLP, Suntec, Singapore, August.

Zhifei Li and Sanjeev Khudanpur. 2009. Efficient
extraction of oracle-best translations from hyper-
graphs. In Proceedings of HLT-NAACL Short Pa-
pers.

Adam Lopez. 2008. Statistical machine translation.
ACM Comput. Surv., 40(3).

Preslav Nakov, Francisco Guzmn, and Stephan Voge.
2013. A tale about pro and monsters. In Proceedings
of ACL Short Papers.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Comput. Linguist., 29(1):19–51, March.

Franz Joseph Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
ACL, pages 160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL,
pages 311–318, Philadephia, USA, July.

Patrick Simianer, Stefan Riezler, and Chris Dyer. 2012.
Joint feature selection in distributed stochastic learn-
ing for large-scale discriminative training in smt. In
Proceedings of ACL, pages 11–21, Jeju Island, Ko-
rea, July.

Andreas Stolcke. 2002. Srilm - an extensible lan-
guage modeling toolkit. In Proceedings of ICSLP,
volume 30, pages 901–904.

Roy Tromble, Shankar Kumar, Franz Och, and Wolf-
gang Macherey. 2008. Lattice Minimum Bayes-
Risk decoding for statistical machine translation. In
Proceedings of EMNLP, pages 620–629, Honolulu,
Hawaii, October.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and
Hideki Isozaki. 2007. Online large-margin training
for statistical machine translation. In Proceedings of
EMNLP-CoNLL.

Taro Watanabe. 2012. Optimized online rank learning
for machine translation. In Proceedings of NAACL-
HLT, pages 253–262, Montréal, Canada, June.

Heng Yu, Liang Huang, Haitao Mi, and Kai Zhao.
2013. Max-violation perceptron and forced decod-
ing for scalable mt training. In Proceedings of
EMNLP 2013.

Hao Zhang, Liang Huang, Kai Zhao, and Ryan McDon-
ald. 2013. Online learning with inexact hypergraph
search. In Proceedings of EMNLP 2013.

Kai Zhao, Liang Huang, Haitao Mi, and Abe Itty-
cheriah. 2014. Hierarchical mt training using max-
violation perceptron. In Proceedings of ACL, Balti-
more, Maryland, June.

