Dependency-based Convolutional Neural Networks for Sentence Embedding

What is Hawaii’s state flower?

Mingbo Ma Liang Huang Bing Xiang Bowen Zhou
CUNY IBM T. J. Watson

ACL 2015
Beijing
Kalchbrenner et al. (2014) and Kim (2014) apply CNNs to sentence modeling

- alleviates data sparsity by word embedding
- sequential order (sentence) instead of spatial order (image)

Should use more linguistic and structural information!
Sequential Convolution

Sequential convolution

What is Hawaii's state flower?
Sequential Convolution

What is Hawaii’s state flower?
What is Hawaii’s state flower?
Sequential Convolution

Sequential convolution

What
is
Hawaii’s
state
flower

1
2
3
4
5
6

word rep.

convolution direction
Sequential Convolution

Sequential convolution

What is Hawaii’s state flower?

Word rep. convolution direction
Try different convolution filters and repeat the same process
What is Hawaii's state flower?

Sequential convolution

word rep.

1 2 3 4

state flower

convolution direction
Sequential Convolution

Sequential convolution

What is Hawaii 's state flower

Max pooling

word rep.

convolution direction
Convolution direction

Sequential convolution

What is Hawaii's state flower?

Max pooling
Classification

Feed into NN
What is Hawaii's state flower?

Sequential Convolution: Location

Gold standard: Entity
What is Hawaii’s state flower?

Sequential convolution
Sequential convolution

What is Hawaii’s state flower.

Sequential Convolution
What is Hawaii’s state flower?
What is Hawaii's state flower?

Sequential convolution
What is Hawaii’s state flower?
Sequential convolution:

- Traditional convolution operates in surface order
- Cons: No structural information is captured
 No long distance relationships
Dependency-based Convolution

Sequential convolution:

- Traditional convolution operates in surface order
- Cons: No structural information is captured
 No long distance relationships

Structural Convolution:

- operates the convolution filters on dependency tree
- more “important” words are convolved more often
- long distance relationships is naturally obtained
What is Hawaii's state flower?
What is Hawaii’s state flower?
What is Hawaii's state flower?

Convolution on Tree

Word rep.

ROOT

Convolution direction

Dependency convolution

Child

Parent

1

2

3

4

5

6
What is Hawaii's state flower?

Convolution on Tree:

- **ROOT**: What
- **Child**: is
- **Parent**: Hawaii
- **Child**: 's
- **Parent**: state
- **Child**: flower

Convolution Direction

Dependency Convolution

Word Rep.
What is Hawaii's state flower?
What is Hawaii’s state flower?
What is Hawaii’s state flower?
Try different Bigram convolution filters and repeat the same process
What is Hawaii's state flower?
What is Hawaii's state flower?

Convolution on Tree

- **ROOT**
- **word rep.**
 - What 1
 - is 2
 - Hawaii's 3
 - state 4
 - flower 6

Dependency convolution

Max pooling
What is Hawaii’s state flower?
What is Hawaii's state flower?

Convolution on Tree

dependency convolution

Max pooling

convolution direction

ROOT

child

parent

word rep.

1

2

3

4

5

6
What is Hawaii's state flower?
Trigram Convolution on Trees
What is Hawaii's state flower?

Convolution on Tree

Convolution direction

Trigram convolution

word rep.
What is Hawaii’s state flower?

Convolution on Tree

ROOT* ➔ ROOT**

Convolution direction

Trigram convolution

Word rep.
What is Hawaii's state flower?
follow the same steps as before...
What is Hawaii's state flower?

Convolution on Tree

Convolution direction

more important words are convolved more often!
What is Hawaii’s state flower?
What is Hawaii's state flower?

Convolution on Tree

ROOT

What 1
is 2
Hawaii 3
's 4
state 5
flower 6

bigram

trigram

Fully connected NN with softmax output
Besides convolution on ancestor path, we also can capture conjunction information from siblings.
Experiments

Tasks:
- Sentimental analysis
- Question classification

Datasets:

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Dataset</th>
<th># Classes</th>
<th>Size</th>
<th>Testset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentimental Analysis</td>
<td>MR</td>
<td>2</td>
<td>10662</td>
<td>10-CV</td>
</tr>
<tr>
<td></td>
<td>SST1</td>
<td>5</td>
<td>11855</td>
<td>2210</td>
</tr>
<tr>
<td>Question Classification</td>
<td>TREC</td>
<td>6</td>
<td>5952</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>TREC-2</td>
<td>50</td>
<td>5952</td>
<td>500</td>
</tr>
</tbody>
</table>
Sentimental Analysis Data Examples

Sentimental analysis from Rotten Tomatoes (MR & SST-1)

straightforward statements:
- simplistic, silly and tedious
 Negative

subtle statements:
- the film tunes into a grief that could lead a
 man across centuries
 Positive

sentences with adversative:
- not for everyone, but for those with whom it
 will connect, it's a nice departure from
 standard moviegoing fare
 Positive
Sentimental Analysis Experiments Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Model</th>
<th>MR</th>
<th>SST-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>ancestor</td>
<td>80.4</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td>ancestor+sibling</td>
<td>81.7</td>
<td>48.3</td>
</tr>
<tr>
<td></td>
<td>ancestor+sibling+sequential</td>
<td>81.9</td>
<td>49.5</td>
</tr>
<tr>
<td>CNNs</td>
<td>CNNs-non-static (Kim ’14) — baseline</td>
<td>81.5</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td>CNNs-multichannel (Kim ’14)</td>
<td>81.1</td>
<td>47.4</td>
</tr>
<tr>
<td></td>
<td>Deep CNNs (Kalchbrenner+ ’14)</td>
<td>-</td>
<td>48.5</td>
</tr>
<tr>
<td>Recursive NNs</td>
<td>Recursive Autoencoder (Socher+ ’11)</td>
<td>77.7</td>
<td>43.2</td>
</tr>
<tr>
<td></td>
<td>Recursive Neural Tensor (Socher+ ’13)</td>
<td>-</td>
<td>45.7</td>
</tr>
<tr>
<td></td>
<td>Deep Recursive NNs (Irsoy+ ’14)</td>
<td>-</td>
<td>49.8</td>
</tr>
<tr>
<td>Recurrent NNs</td>
<td>LSTM on tree (Zhu+ ’15)</td>
<td>81.9</td>
<td>48.0</td>
</tr>
<tr>
<td>Other</td>
<td>Paragraph-Vec (Le+ ’14)</td>
<td>-</td>
<td>48.7</td>
</tr>
<tr>
<td>Sentence</td>
<td>Top-level (TREC)</td>
<td>Fine-grained (TREC-2)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>How did serfdom develop in and then leave Russia?</td>
<td>DESC</td>
<td>manner</td>
<td></td>
</tr>
<tr>
<td>What is Hawaii 's state flower ?</td>
<td>ENTY</td>
<td>plant</td>
<td></td>
</tr>
<tr>
<td>What sprawling U.S. state boasts the most airports ?</td>
<td>LOC</td>
<td>state</td>
<td></td>
</tr>
<tr>
<td>When was Algeria colonized ?</td>
<td>NUM</td>
<td>date</td>
<td></td>
</tr>
<tr>
<td>What person 's head is on a dime ?</td>
<td>HUM</td>
<td>ind</td>
<td></td>
</tr>
<tr>
<td>What does the technical term ISDN mean ?</td>
<td>ABBR</td>
<td>exp</td>
<td></td>
</tr>
</tbody>
</table>
Question Classification Experiments Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Model</th>
<th>TREC</th>
<th>TREC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>ancestor</td>
<td>95.4</td>
<td>88.4</td>
</tr>
<tr>
<td></td>
<td>ancestor+sibling</td>
<td>95.6</td>
<td>89.0</td>
</tr>
<tr>
<td></td>
<td>ancestor+sibling+sequential</td>
<td>95.4</td>
<td>88.8</td>
</tr>
<tr>
<td>CNNs</td>
<td>CNNs-non-static (Kim ’14) — baseline</td>
<td>93.6</td>
<td>86.4</td>
</tr>
<tr>
<td></td>
<td>CNNs-multichannel (Kim ’14)</td>
<td>92.2</td>
<td>86.0</td>
</tr>
<tr>
<td></td>
<td>Deep CNNs (Kalchbrenner+ ’14)</td>
<td>93.0</td>
<td>-</td>
</tr>
<tr>
<td>Hand-coded</td>
<td>SVMs (Silva+ ’11)*</td>
<td>95.0</td>
<td>90.8</td>
</tr>
</tbody>
</table>

We achieved the highest published accuracy on TREC.
Cases which we do better than Baseline:

- Gold/Ours: Enty Baseline: Loc
- Gold/Ours: Enty Baseline: Desc
- Gold/Ours: Desc Baseline: Enty
- Gold/Ours: Mild Neg Baseline: Mild Pos

http://cogcomp.cs.illinois.edu/Data/QA/QC/definition.html
Error Analysis :-(

Cases which we make mistakes:

黄金: Num 我们: Enty 基线: Num

Gold: Num Ours: Enty Baseline: Num

Cases which we and baseline make mistakes:

Gold: Num Ours: Enty Baseline: Desc

http://cogcomp.cs.illinois.edu/Data/QA/QC/definition.html
Conclusions

Pros:

- Dependency-based convolution captures long-distance information.
- It outperforms sequential CNN in all four datasets.
 - highest published accuracy on TREC.

Cons:

- Our model’s accuracy depends on parser quality.
Deep Learning can and should be combined with linguistic intuitions.

Thank you!