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Dynamic Programming

® Dynamic Programming is everywhere in NLP
® Viterbi Algorithm for Hidden Markov Models
e CKY Algorithm for Parsing and Machine Trans

® Forward-Backward and Inside-Outside Algorit
® Also everywhere in AI/ML

® Reinforcement Learning, Planning (POMDP)

® Al Search: Uniform-cost, A*, etc.
® This tutorial: a unified theoretical view of DP

® Focusing on Optimization Problems
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Review: DP Basics

® DP = Divide-and-Conquer + Two Principles:

® [required] Optimal Subproblem Property

® [recommended] Sharing of Common Subproblems
® Structure of the Search Space

Incremental
Graph

Knapsack, Edit Dist., Sequence Alignment @/YP %

® Branching ‘ Q VB;;;
o

Hypergraph

NP», ‘3’ \PPB,()’

Matrix-Chain, Polygon Trlangulatlon Optimal BST
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Two Dimensional Survey

traversing order

topological  best-first

graphs with
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Graphs in NLP

part-of-speech tagging

lattice in speech
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Semirings on Graphs

® in a weighted graph, we need two operators:

® extension (multiplicative) and summary (additive)

t

t

ne weight of a path is the product of edge weights

ne weight of a vertex is the summary of path weights

d(m) = X) w(e;) =wler) ® w(ez) ® wles)

e, &cm

e ,0*‘
D w(m)

UE

w(p1) ®w(p2) & - -
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Semiring Definitions

A monoid is a triple (4, ®, 1) where

1. ® is a closed associative binary operator on the set A,
2. 1 is the identity element for ®, i.e., foralla € A, a®1=1®a = a.

A monoid is commutative if ® is commutative.
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Examples

Semiring - intuition/application
Boolean V logical deduction, recognition

Viterbi prob. of the best derivation
Inside prob. of a string

Real i shortest-distance

Tropical i with non-negative weights

Counting number of paths
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Ordering

® idempotent
A semiring (A, ®,®,0,1) is idempotent if for all a in A, a ® a = a.
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Ordering

® idempotent
A semiring (A, ®,®,0,1) is idempotent if for all a in A, a ® a = a.

® comparison
(a <b) < (a® b= a) defines a partial ordering.
® examples: boolean, viterbi, tropical, real, ...
({0,1},V,A,0,1) (RT U {400}, min, +, +0c0,0)

(10,1}, max,®,0,1) (RU {400}, min, 4+, +0o0,0)

® total-order for optimization problems

A semiring is totally-ordered if & defines a total ordering.

® examples:all of the above
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Monotonicity

® monotonicity

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is monotonic if for all a,b,c € A

(a<b)=(a®c<bRc) (a<b)=(c®a<c®b)

® optimal substructure in dynamic programming

® idempotent => monotone (from distributivity)
® (atb)®c = (a®c)*+(b®c); if a<b, (a®c)=(a®c)+(b®c)

® by def. of comparison, a®c < b®c
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DP on Graphs

optimization problems on graphs
=> generic shortest-path problem

weighted directed graph G=(V, E) with a function w
that assigns each edge a weight from a semiring

compute the best weight of the target vertex t

generic update along edge (u, v)

w(u, v) S @

how to avoid cyclic updates?

® only update when d(u) is fixed

Liang Huang (Penn) 12 Dynamic Programming



Two Dimensional Survey

traversing order

topological  best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs)

hyp.e il 4 it Generalized
weight functions Knuth

e
(e.8., CFGs) terb
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Viterbi Algorithm for DAGs

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each incoming edge (u,v) in E
® use d(u) to update d(v): d(v) ® = d(u) ® w(u,v)

® key observation: d(u) is fixed to optimal at this time

® time complexity: O(V + E)
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Variant |:forward-update

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing edge (v,u) in E
® use d(v) to update d(u): d(u) ® =d(v) @ w(v,u)

® key observation: d(v) is fixed to optimal at this time

B
o\.

® time complexity: O(V + E)
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Examples
® [Number of Paths in a DAG]
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Examples
® [Number of Paths in a DAG]

® just use the counting semiring (N, +, X, 0, |)

® note: this is not an optimization problem!
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Examples
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Examples
® [Number of Paths in a DAG]

® just use the counting semiring (N, +, %X, 0, |)
® note: this is not an optimization problem!
® [Longest Path in a DAG]

® just use the semiring (R U {—oc}, max, +, —00,0)

® [Part-of-Speech Tagging with a Hidden Markov Model]
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Examples
® [Number of Paths in a DAG]

® just use the counting semiring (N, +, %X, 0, |)
® note: this is not an optimization problem!
® [Longest Path in a DAG]

® just use the semiring (R U {—oc}, max, +, —00,0)

® [Part-of-Speech Tagging with a Hidden Markov Model]

Gl Gad)
/. G
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Example: Speech Alignment

time complexity:

O(n?)

also used in:
edit distance
biological sequence
alignment

Liang Huang (Penn) Dynamic Programming



Example:Word Alignment

® key difference
love you . ® reorderings in translation!

e ® sequence/speech alignment
is always monotonic

® complexity under HMM

j ® word alignment is O(n%)

® for every (i, )

enumerate all (i-1, k)

® sequence alignment O(n?)

Liang Huang (Penn) 18 Dynamic Programming



Chinese Word Segmentation

T S
N WK M omE FROK

xia yu tian di mian ji shui
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Chinese Word Segmentation

min-zhu Go ug[e“
beople-dominate

“democracy”

T S
N WK M omE FROK

xia yu tian di mian ji shui
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Chinese Word Segmentation

R=E LER EF

min-zhu Go ugle“ jiang-ze-min zhu-xi
beople-dominate

“democracy” “President Jiang Zemin”

T S
N T LTI 2 W

xia yu tian di mian ji shui
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Chinese Word Segmentation

% —
4’ =l

min-zhu Goug[e‘

\—— \\X
/L7

K £E

jiang-ze-min zhu-xi

people-dominate .. 5 years ago. - people dominate-podium ‘ ‘

€ »
democracy now Google is

good at segmentation!

“President Jiang Zemin”

I\

SN

5

FHIK

xia yu tian di mian ji shui
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Chinese Word Segmentation

RE % AFR EF
min-zhu Go ugle“ jiang-ze-min zhu-xi
beople-dominate - people dominate-podium

this was 5 years ago.

“democracy” now Google is “President Jiang Zemin”
good at segmentation!

T S

N OK Mo\ R OK
xia yu tian di mian ji shui
~— s T T
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Chinese Word Segmentation

% —
4’ =l

min-zhu Goug[e‘

\—— \\X
/L7

K £E

jiang-ze-min zhu-xi

people-dominate .. 5 years ago. - people dominate-podium ‘ ‘

€ »
democracy now Google is

good at segmentation!

“President Jiang Zemin”

I\

SN

5

FHIK

xia yu tian di mian ji shui
~S s 7

SIS

graph search
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Phrase-based Decoding

5 b = 3 X

yu Shalong  juxing le huitan

—

held a talk with Sharon

with Sharon held talks

with Sharon held a talk
yu Shalong juxing le huitan
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Phrase-based Decoding

27 7T 21K source-side: coverage vector

yu Shalong  juxing le huitan m
>< held a talk
target-side: grow hypotheses

held a talk with Sharon strictly left-to-right

held a talk ><he|d a talk with Sharon

N\

space: O(2"), time: O(2" n?) -- cf. traveling salesman problem
Huang and Chiang Forest Rescoring 22




Traveling Salesman Problem & MT

® 2 classical NP-hard problem

® goal: visit each city once and only once

® state: cities visited so far (bit-vector)

® search in this O(2") transformed grap

® MT: each city is a source-language worc

® restrictions in reordering can reduce
complexity => distortion limit

® => syntax-based MT

Huang and Chiang (Held and Karp, 1962; Knight, 1999) Forest Rescoring 23



Traveling Salesman Problem & MT

® 2 classical NP-hard problem

® goal: visit each city once and only once |

{l

® exponential-time dynamic programming ¥ .~

/L

® state: cities visited so far (bit-vector)

® search in this O(2") transformed grap

® MT: each city is a source-language worc

® restrictions in reordering can reduce
complexity => distortion limit
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Adding a Bigram Model

® “refined” graph: annotated with language model words

® still dynamic programming, just larger search space

/ >< 00600 .. Shalong

'YX ... talks
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Adding a Bigram Model

® “refined” graph: annotated with language model words

® still dynamic programming, just larger search space

/ >< 00600 .. Shalong

\ bing

'YX ... talks

space: O(2"), time: O(2"n?)
=> space: O(2" V™), time: O(2" V™! n?)

for m-gram language models
Huang and Chiang Forest Rescoring 24




Two Dimensional Survey

traversing order

topological  best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs)

hyp.e il 4 it Generalized
weight functions Knuth

e
(e.8., CFGs) terb
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Dijkstra Algorithm

d(u) © > O d(u) ® w(e)

w(e)
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Dijkstra Algorithm

® Dijkstra does not require acyclicity
® instead of topological order, we use best-first order

® but this requires superiority of the semiring

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is superior if for all a,b € A

a<a®b, b<a®b.

® intuition: combination always gets worse

d(u) © > O d(u) ® w(e)

w(e)
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Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

dlu) ® =dv) ®w(v,u)

time complexity:
O((V+E) IgV) (binary heap)
O(V IgV + E) (fib. heap)
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Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

WQ ) & = d(6) § wler

/
‘ time complexity:

O((V+E) IgV) (binary heap)
- O(V IgV + E) (fib. heap)
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Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems
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Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems

many
NLP
problems

forward-backward .
(Inside semiring) non-probabilistic cyclic FSMs/

models grammars
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What if both fail?

monotonic optimization problems

many
NLP
problems

generalized Bellman-Ford
(CLR, 1990; Mohri, 2002)

or, first do strongly-connected components (SCC)
which gives a DAG; use Viterbi globally on this SCC-DAG;
use Bellman-Ford locally within each SCC

Liang Huang (Penn) 29 Dynamic Programming



What if both work!?

monotonic optimization problems

many
NLP
problems

full Dijkstra is slower than Viterbi
O((V+E)IgV) s, O(V + E)
but it can finish as early as the target vertex is popped
a(V+E)IgV s V+E

Q: how to (magically) reduce a?
Liang Huang (Penn) 30 Dynamic Programming




A* Search: Intuition

® Dijkstra is “blind” about how far the target is
® may get “trapped” by obstacles
® can we be more intelligent about the future?

® idea: prioritize by s-v distance + v-t estimate

Liang Huang (Penn) Dynamic Programming
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A* Heuristic

® h(v): the distance from v to target t
° Fl(v) must be an optimistic estimate of h(v): h(v)< h(v)
® Dijkstra is a special case where Fl(v) =1 (0 for dist.)
® now, prioritize the queue by d(v) ® h(v)

® can stop when target gets popped -- why!

® optimal subpaths should pop earlier than non-optimal

d(v) @ h(v) < d(v) ® h(v) < d(t) < non-optimal paths of t

Liang Huang (Penn) 32 Dynamic Programming



How to design a heuristic?

more of an art than science

basic idea: projection into coarser space

cluster: w(U,V) =min{w(u,v) |lue UveV}

exact cost in coarser graph is estimate of finer graph
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o
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How to design a heuristic?

more of an art than science

basic idea: projection into coarser space

cluster: w(U,V) =min{w(u,v) |lue UveV}

exact cost in coarser graph is estimate of finer graph

Uu Vv
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Viterbi or A™?

® A¥intuition: d(t) ® h(t) ranks higher among d(v) ® h(v)

® can finish early if lucky
e actually, d(t) ® h(t) = d(t) ® h(t) = d(t) ® T = d(t)

ith the price of maintaining priority queue - O(logV)

: how early? worth the price!?

® if the rank is , then A* is better when r/V logV < |
d(v) ® h(v) pool

ﬂ N =
Liang Huang (Penn) Dijkstra Dynamic Programming




Viterbi or A™?

® A¥intuition: d(t) ® h(t) ranks higher among d(v) ® h(v)

® can finish early if lucky
e actually, d(t) ® h(t) = d(t) ® h(t) = d(t) ® T = d(t)

ith the price of maintaining priority queue - O(logV)

: how early? worth the price!?

® if the rank is , then A* is better when r/V logV < |
d(v) ® h(v) pool

ﬂ i) = r<V/logV
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Two Dimensional Survey

traversing order

topological  best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs)

hyp.e il 4 it Generalized
weight functions Knuth

e
(e.8., CFGs) terb

Liang Huang (Penn) 35 Dynamic Programming
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(e.g., FSMs)

hyp.e il W i Generalized
weight functions Knuth

e
(.8, CFGs) terb

Liang Huang (Penn) 35 Dynamic Programming

search space




Background: CFG and Parsing

* For each diff (<=n)
= Foreach | (<=n)

= Foreachrule X - Y Z

= For each split point k
score[X] [1] [7] = max score[X][1][3].,

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

(S, 0, n)

Wh-|

Liang Huang (Penn) Dynamic Programming



Background: CFG and Parsing

* For each diff (<=n)
= Foreach | (<=n)

= Foreachrule X - Y Z

= For each split point k
score[X] [1] [7] = max score[X][1][3].,

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

(S, 0, n)

Wh-|

Liang Huang (Penn) Dynamic Programming



Background: CFG and Parsing

* For each diff (<=n)
= Foreach | (<=n)

= Foreachrule X - Y Z

= For each split point k
score[X] [1] [7] = max score[X][1][3].,

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

(S, 0, n)

Wh-|

Liang Huang (Penn) Dynamic Programming



Background: CFG and Parsing

* For each diff (<=n)
= Foreach | (<=n)
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= For each split point k
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(Directed) Hypergraphs

® a generalization of graphs

® edge => hyperedge: several vertices to one vertex

® e=(T(e),h(e),fe). arity|e|=|T(e)l

i s
® a totally-ordered weight set R @ @

® we borrow the ® operator to be the comparison
e weight function f.: Rl¢lto R

® generalizes the ® operator in semirings

simple case: fe(a,b) =a ® b ® w(e)

d(v) & = fe(d(u1),d(u2))

Liang Huang (Penn) 38 Dynamic Programming




Hypergraphs and Deduction

(B, i, k) (C, kj) (B.i, k) (C. k)

'a b A—B C
ﬁhﬂa AL

@ :axbxPrA-BC)

), (Nederhof, 2003)
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Hypergraphs and Deduction

(B, i, k) (G, k,j)

(B, i, k) (C, kj)

'a b A—B C
WQ (A1)

@ :axbxPrA-BC)

), (Nederhof, 2003)

.d @ b @ Q b antecedents
Y
‘ :fe (a,b) ‘ fe (a, b)

head consequent

Liang Huang (Penn) Dynamic Programming



hypergraph

Related Formalisms

AND/OR graph

context-free grammar

deductive system

vertex
source-vertex
target-vertex

OR-node
leaf OR-node
root OR-node

symbol
terminal
start symbol

item
axiom
goal item

hyperedge

({u1,u2}, v, f)

Liang Huang (Penn)

AND-node

production

f
V= U U

‘ OR-node

% (& AND-node

00 00 -

40

instantiated deduction
Ui1:a Ug:b

v: f(a,b)
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Packed Forests

® a compact representation of many parses
® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set
VP ¢
A

_ - . VBD12 NPo3 PP3g
NP 5 PP3 ¢ ! VP

oI | SAW hlm 3 With4asmirr0r6

(Klein and Manning, 200 |; Huang and Chiang, 2005)
Liang Huang (Penn) 4| Dynamic Programming




Packed Forests

® a compact representation of many parses

® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set

nodes

a hypergraph

NPs 3

> VP16 hyperedges

- . VBDi12 NP23 PP3g
PP 4 : VP

oI | SAW hlm 3 With4asmirr0r6

Liang Huang (Penn)

(Klein and Manning, 200 |; Huang and Chiang, 2005)
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Weight Functions and Semirings
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Weight Functions and Semirings

fe(al, ..,ak) = aje ..o ake w(e)
‘ head special case

Liang Huang (Penn) Dynamic Programming



Weight Functions and Semirings
(o) > d(u) o w(e)

‘ f fe(a) = a o w(e)

——@ ()

d(u) ©

d(u) ©

Q fe(al, .., a) =aje...e ake w(e)

O @i oo cse
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Weight Functions and Semirings
(o) > d(u) o w(e)

‘ f fe(@d) =a o w(e)

d(u) © f >Q  fe(d(u)) semiring-

composed
O .

fe(al, .., a) =aje...e ake w(e)

O @i spocilcas

Liang Huang (Penn) Dynamic Programming
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Weight Functions and Semirings
(o) > d(u) o w(e)

‘ f fe(@d) =a o w(e)

>Q  fe(d(u)) semiring-

composed

fe(al, .., a) =aje...e ake w(e)
> ‘ head special case

d(u) ©

d(u) ©

fe

can also extend monotonicity and
superiority to general weight functions

Liang Huang (Penn) 42 Dynamic Programming



Generalizing Semiring Properties

® monotonicity
® semiringg a<b=>axc=<bxc

e for all weight function f, for all ay...ak, for all
if ai<a then f(aj..a’j...a) < f(ai...ai...ax)

® superiority

® semiring: a<axb, b<axb

® forallf, foralla.ay foralli, a <f(ai,..,ax)
® acyclicity

® degenerate a hypergraph back into a graph

Liang Huang (Penn) 43 Dynamic Programming



Two Dimensional Survey

traversing order

topological
(acyclic)

graphs with
semirings Viterbi
(e.g., FSMs)

best-first
(superior)

Dijkstra

hypergraphs with

. : Generalized
weight functions

Viterbi

search space

7

Knuth

(e.g., CFGs)

Liang Huang (Penn) 44
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Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each incoming edge (u,v) in E
® use d(u) to update d(v):

® key observation: d(u) is fixed to optimal at this time

® time complexity: O(V + E)

Liang Huang (Penn) 45 Dynamic Programming



Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates

® for each incoming hyperedge e = ((ul, .., Uje|), v, fe)
® use d(ui)’s to update d(v)

® key observation: d(ui)’s are fixed to optimal at this time

Q} o L@ e L) )
O e
&

® time complexity: O(V + E) (assuming constant arity)
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Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S, 0, n) (S, 0, n)

* For each diff (<=n)
* Foreach i (<=n)
» Foreachrule X - Y Z

= For each split point k
score[X] [1] []J] = max

O(n’[P])

Liang Huang (Penn) Dynamic Programming
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* For each diff (<=n)
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Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S, 0, n) (S, 0, n) (S, 0, n)

bottom-up left-to-right right-to-left

O(n’[P])
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Example: Syntax-based MT

® synchronous context-free grammars (SCFGs)
® context-free grammar in two dimensions
® generating pairs of strings/trees simultaneously

® co-indexed nonterminal further rewritten as a unit

VP — PPWO vVP@) vP2 ppl)
VP —  juxing le huitan, held a meeting
PP — yu Shalong, with Sharon

VP VP

/\ /\
PP VP VP PP

yu Shalong juring le huitan  held a meeting with Sharon

Liang Huang (Penn) 49 Dynamic Programming



Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

vP — PPO vP®
VP —  juxing le huitan,
PP —  yu Shalong,

yu Shalong  juxing le huitan

Liang Huang (Penn) Dynamic Programming
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Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

VP — PPO VPO, vP® ppl)
VP —  juxing le huitan, held a meeting _
PP —  yu Shalong, with Sharon held a talk with Sharon

with Sharon held a talk

yu Shalong  juxing le huitan
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Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

VP — PPO VPO, vP® ppl)
VP —  juxing le huitan, held a meeting _
PP —  yu Shalong, with Sharon held a talk with Sharon

with Sharon held a talk

: 3
CKY parsing -- O(n°) yu Shalong  juxing le huitan
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Adding a Bigram Model

- ~GEIREDT

ey - - CTEE
\ bing

held ..{ talk ] with).. Sharon PPi,3 VP3, 6

Y file with ... Sharon held ... talk
along ... Sharon % held ... meeting
hold

with .. Shalong ... talks
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Adding a Bigram Model

Sharon

VPI,¢

held .. talk [ with).. Sharon
VP36 PP1,3

with ... Sharon held ... talk
along ... Sharon % held ... meeting
hold ..

with .. Shalong . talks
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Adding a Bigram Model

Sharon

VPI,¢

held .. talk [ with).. Sharon
VP36 PP1,3

with ... Sharon held ... talk
complexity: O(n3 V4m-1)) along ... Sharon % held ... meeting

with .. Shalong hold ... talks
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Two Dimensional Survey

traversing order

topological  best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs) '
hyp.e il 4 it Generalized
weight functions Knuth

e
(e.8., CFGs) terb

Liang Huang (Penn) 52 Dynamic Programming
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Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates

® for each incoming hyperedge e = ((ul, .., Uje|), v, fe)
® use d(ui)’s to update d(v)

® key observation: d(ui)’s are fixed to optimal at this time

Q} o L@ e L) )
O e
&

® time complexity: O(V + E) (assuming constant arity)
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Forward Variant for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing hyperedge e = ((uy, .., Uje|), h(e), fe)
® if d(ui)’s have all been fixed to optimal

® use d(ui)’s to update d(h(e))

® time complexity: O(V + E)

Liang Huang (Penn) 54 Dynamic Programming
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Forward Variant for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing hyperedge e = ((uy, .., Uje|), h(e), fe)
® if d(ui)’s have all been fixed to optimal

use d(ui)’s to update d(h(e))

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
how many tails yet to be fixed?

fire this hyperedge only if r[e]=0

® time complexity: O(V + E)

Liang Huang (Penn) 54 Dynamic Programming



Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

dlu) ® =dv) ®w(v,u)

time complexity:
O((V+E) IgV) (binary heap)
O(V IgV + E) (fib. heap)

Liang Huang (Penn) Dynamic Programming
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Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

WQ ) & = d(6) § wler

/
‘ time complexity:

O((V+E) IgV) (binary heap)
- O(V IgV + E) (fib. heap)
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Knuth (1977) Algorithm

® keep a cut (S:V - S) where S vertices are fixed

® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

time complexity:
O((V+E) IgV) (binary heap)
V-5 O(V IgV + E) (fib. heap)

Liang Huang (Penn) 56 Dynamic Programming
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Knuth (1977) Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

time complexity:

@ o —©
— O((V+E) IgV) (binary heap)
S O(V IgV + E) (fib. heap)

Liang Huang (Penn) Dynamic Programming



Knuth (1977) Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

time complexity:

@ .0
— O((V+E) IgV) (binary heap)
S V-5 O(V lgV + E) (fib. heap)
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Example: Best-First/A* Parsing

® Knuth for parsing: best-first (Caraballo & Charniak, 1998)
e further speed-up: use A* heuristics

® showed significant speed up with carefully designed
neuristic functions (Klein and Manning, 2003)

neuristic function: an estimate of outside cost

(5,0,n)

A
f‘lx_‘_ o
Grioly (i

-
r
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Example: Best-First/A* Parsing

® Knuth for parsing: best-first (Caraballo & Charniak, 1998)
e further speed-up: use A* heuristics

® showed significant speed up with carefully designed
neuristic functions (Klein and Manning, 2003)

neuristic function: an estimate of outside cost

(S, 0, n)
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Outside Cost in Hypergraph

® outside cost: yet to pay to reach goal h(\()‘...Ae

® let’s only consider semiring-composed case \}

® and only acyclic hypergraphs & )
® after computing d(v) for all v from bottom-up

® backwards Viterbi from top-down (outside-in)

. A

Son —
h(So,) =1

h(v) ®= h(u)®w(e)®d(V))
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Outside Cost in Hypergraph

® outside cost: yet to pay to reach goal h(\()‘...Ao

® let’s only consider semiring-composed case \}

® and only acyclic hypergraphs O d(v)

® after computing d(v) for all v from bottom-up

® backwards Viterbi from top-down (outside-in)

Sn) = T
q h(v) ®= h(u)®w(e)®d(v))
6% Q: d(v)®h(v) = ?

. A

SO,n
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Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

S

.—-'--.---._‘--_--‘-—-—-.
VP
...____..-"“-._____.-
NNS VBD PP

f | T
Faculty payrolls fell IN NNP

| |
in  Sept.
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Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

VP

NNS VBD PP

| | — |

Faculty payrolls fell IN NNp  Faculty payrolls fell P N
| | l |

in  Sept. in  Sept.

(Klein and Manning, 2003)
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Facﬁlty pa}ffﬂlls fgu Faculty payrolls fell P N
l I
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Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

VBD
|

Faculty payrolls fell Faculty payrolls fell P N
l I

in  Sept. L
h (VBD23) = h’ (V23)
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Analogy with Graphs

o o -

NNS VBD PP
I I T
Faculty payrolls fell IN NNP
| I
in Sept.
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Analogy with Graphs

o o -

NNS VBD PP
I I T
Faculty payrolls fell IN NNP Faculty payrolls fell P N
| I l I
in Sept. in Sept.
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More on Coarse-to-Fine

e multilevel coarse-to-fine A*
® heuristic = exact outside cost in previous stage

e hi(v) = hit (projii(v))
e VBD>V>X. h (VBDi5) = hi.i (Vi5); hi.. (Vi5) = hiza (Xi,5)

® multilevel coarse-to-fine Viterbi w/ beam-search
® Viterbi + beam pruning in each stage
® prune according to merit: d(v)®h(v) @ d(TOP)
® hard to derive a provably correct threshold

® in practice: use a preset threshold (but works well!)
Liang Huang (Penn) 63 Dynamic Programming
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Same Picture Again

monotonic optimization problems
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(Inside semiring) _M°N-Prob.  with CNF cyclic .
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Take Home Message

® Dynamic Programming is cool, easy, and universal!
® two frameworks and two types of algorithms
® monotonicity; acyclicity and/or superiority
® topological (Viterbi) vs. best-first style (Dijkstra/Knuth/A%)
when to choose which: A* can finish early if lucky
® graph (lattice) vs. hypergraph (forest)
incremental, finite-state vs. branching, context-free
® covered many typical NLP applications

® a better understanding of theory helps in practice
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Thanks!

Questions!?
Comments!

final slides will be available on my website.
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