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and when was it invented?
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• A. Viterbi (1967)

• E. Dijkstra (1959)

• Hart, Nilsson, and Raphael (1968)

• Dijkstra => A* Algorithm

• D. Knuth (1977)
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Dynamic Programming
• Dynamic Programming is everywhere in NLP

• Viterbi Algorithm for Hidden Markov Models

• CKY Algorithm for Parsing and Machine Translation

• Forward-Backward and Inside-Outside Algorithms

• Also everywhere in AI/ML

• Reinforcement Learning, Planning (POMDP)

• AI Search: Uniform-cost, A*, etc.

• This tutorial:   a unified theoretical view of DP

• Focusing on Optimization Problems
3



Liang Huang (Penn) Dynamic Programming

Review: DP Basics
• DP = Divide-and-Conquer + Two Principles:

• [required] Optimal Subproblem Property

• [recommended] Sharing of Common Subproblems

• Structure of the Search Space

• Incremental

• Graph

• Knapsack, Edit Dist., Sequence Alignment

• Branching

• Hypergraph

• Matrix-Chain, Polygon Triangulation, Optimal BST
4
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Two Dimensional Survey
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Graphs in NLP

6

part-of-speech tagging

lattice in speech
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Semirings on Graphs
• in a weighted graph, we need two operators:

• extension (multiplicative) and summary (additive)

• the weight of a path is the product of edge weights

• the weight of a vertex is the summary of path weights

7
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Semiring Definitions
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A monoid is a triple (A,⊗, 1) where

1. ⊗ is a closed associative binary operator on the set A,

2. 1 is the identity element for ⊗, i.e., for all a ∈ A, a ⊗ 1 = 1 ⊗ a = a.

A monoid is commutative if ⊗ is commutative.
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Examples

9

Semiring Set ⊕ ⊗ 0 1 intuition/application
Boolean {0, 1} ∨ ∧ 0 1 logical deduction, recognition

Viterbi [0, 1] max × 0 1 prob. of the best derivation

Inside R+ ∪ {+∞} + × 0 1 prob. of a string

Real R ∪ {+∞} min + +∞ 0 shortest-distance

Tropical R+ ∪ {+∞} min + +∞ 0 with non-negative weights

Counting N + × 0 1 number of paths
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Ordering

• idempotent

• comparison

• examples: boolean, viterbi, tropical, real, ...

• total-order for optimization problems

• examples: all of the above
10

A semiring (A,⊕,⊗, 0, 1) is idempotent if for all a in A, a ⊕ a = a.

(a ≤ b) ⇔ (a ⊕ b = a) defines a partial ordering.

A semiring is totally-ordered if ⊕ defines a total ordering.

({0, 1},∨,∧, 0, 1) (R+ ∪ {+∞},min,+,+∞, 0)

([0, 1],max,⊗, 0, 1) (R ∪ {+∞},min,+,+∞, 0)
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DP on Graphs

• optimization problems on graphs
=> generic shortest-path problem

• weighted directed graph G=(V, E) with a function w 
that assigns each edge a weight from a semiring

• compute the best weight of the target vertex t

• generic update along edge (u, v)

• how to avoid cyclic updates?

• only update when d(u) is fixed

12

vu w(u, v) d(v) ⊕ = d(u) ⊗ w(u, v)

d(v) ← d(v) ⊕ (d(u) ⊗ w(u, v))
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Two Dimensional Survey
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Viterbi Algorithm for DAGs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming edge (u, v) in E

• use d(u) to update d(v):

• key observation: d(u) is fixed to optimal at this time

• time complexity: O( V + E )
14

v

u w(u, v)

d(v) ⊕ = d(u) ⊗ w(u, v)



Liang Huang (Penn) Dynamic Programming

Variant 1: forward-update
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each outgoing edge (v, u) in E

• use d(v) to update d(u):

• key observation: d(v) is fixed to optimal at this time

• time complexity: O( V + E )
15

d(u) ⊕ = d(v) ⊗ w(v, u)

v

uw(v, u)
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Examples
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Example: Speech Alignment

17

time complexity: 
O(n2)

also used in:
edit distance

biological sequence 
alignment
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Example: Word Alignment

18

• key difference

• reorderings in translation!

• sequence/speech alignment 
is always monotonic

• complexity under HMM

• word alignment is O(n3)

• for every (i, j)

• enumerate all (i-1, k)

• sequence alignment O(n2)

I love you .

Je

t’

aime

.

ii-1

j

k
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Chinese Word Segmentation
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Chinese Word Segmentation
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民主
min-zhu

    people-dominate

 “democracy”

   江泽民  主席
jiang-ze-min   zhu-xi

               ... - ... - people   dominate-podium

          “President   Jiang Zemin”

this was 5 years ago.

now Google is
good at segmentation!

下  雨  天  地  面  积  水
   xia  yu  tian  di  mian  ji  shui  

graph search
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Phrase-based Decoding
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yu Shalong juxing le huitan

与    沙龙 举行   了   会谈

held a talk with Sharon

_ _●●●
held a talk held a talk with Sharon

_ _ _ _ _

...

...

...

●●●●●

...

_ _●●●
held a talk

source-side: coverage vector

target-side: grow hypotheses
               strictly left-to-right

space: O(2n), time: O(2n n2) -- cf. traveling salesman problem
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Traveling Salesman Problem & MT

• a classical NP-hard problem

• goal: visit each city once and only once

• exponential-time dynamic programming

• state: cities visited so far (bit-vector)

• search in this O(2n) transformed graph

• MT: each city is a source-language word

• restrictions in reordering can reduce 
complexity => distortion limit

• => syntax-based MT

23(Held and Karp, 1962; Knight, 1999)
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Adding a Bigram Model
• “refined” graph: annotated with language model words

• still dynamic programming, just larger search space

24

_ _●●●                 ... talk_ _ _ _ _ ●●●●●  ... Sharon

_ _●●●              ... talks

_ _●●●    ... meeting ●●●●●  ... Shalong

with   Sharon

bigram

   space: O(2n),        time: O(2n n2) 
 =>  space: O(2n Vm-1),  time: O(2n Vm-1 n2)

for m-gram language models
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26
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Dijkstra Algorithm
• Dijkstra does not require acyclicity

• instead of topological order, we use best-first order

• but this requires superiority of the semiring

• intuition: combination always gets worse

26

Let K = (A,⊕,⊗, 0, 1) be a semiring, and ≤ a partial ordering over A.
We say K is superior if for all a, b ∈ A
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Dijkstra Algorithm

• keep a cut (S : V - S) where S vertices are fixed

• maintain a priority queue Q of  V - S vertices

• each iteration choose the best vertex v from Q

• move v to S, and use d(v) to forward-update others

27

S V - S

s ...

d(u) ⊕ = d(v) ⊗ w(v, u)

time complexity:
O((V+E) lgV) (binary heap)

O(V lgV + E) (fib. heap)
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Viterbi vs. Dijkstra

• structural vs. algebraic constraints

• Dijkstra only applicable to optimization problems

28

monotonic optimization problems

  acyclic:
  Viterbi

             superior:
            Dijkstra   

many 
NLP 

problems

forward-backward
(Inside semiring) non-probabilistic 

models

cyclic FSMs/
grammars
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What if both fail?

29

monotonic optimization problems

  acyclic:
  Viterbi

             superior:
            Dijkstra   

many 
NLP 

problems

generalized Bellman-Ford
(CLR, 1990; Mohri, 2002)

or, first do strongly-connected components (SCC)
which gives a DAG; use Viterbi globally on this SCC-DAG;

use Bellman-Ford locally within each SCC
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What if both work?

30

monotonic optimization problems

  acyclic:
  Viterbi

             superior:
            Dijkstra   

many 
NLP 

problems

full Dijkstra is slower than Viterbi
O((V + E) lgV)      vs.        O(V + E)

but it can finish as early as the target vertex is popped
a (V + E) lgV      vs.            V + E

Q: how to (magically) reduce a?
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A* Search: Intuition

• Dijkstra is “blind” about how far the target is

• may get “trapped” by obstacles

• can we be more intelligent about the future?

• idea: prioritize by s-v distance + v-t estimate

31
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A* Heuristic

• h(v): the distance from v to target t

• ĥ(v) must be an optimistic estimate of h(v): ĥ(v)≤ h(v)

• Dijkstra is a special case where ĥ(v) = ī   (0 for dist.)

• now, prioritize the queue by d(v) ⊗ ĥ(v)

• can stop when target gets popped -- why?

• optimal subpaths should pop earlier than non-optimal

• d(v) ⊗ ĥ(v) ≤ d(v) ⊗ h(v) ≤ d(t) ≤ non-optimal paths of t
32

s v t

d(v) h(v)

ĥ(v)
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How to design a heuristic?
• more of an art than science

• basic idea: projection into coarser space

• cluster:    w’(U, V) = min { w(u, v) | u ∈ U, v ∈ V }

• exact cost in coarser graph is estimate of finer graph

33  (Raphael, 2001)
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Viterbi or A*?
• A* intuition: d(t) ⊗ ĥ(t) ranks higher among d(v) ⊗ ĥ(v)

• can finish early if lucky

• actually, d(t) ⊗ ĥ(t) = d(t) ⊗ h(t) = d(t) ⊗ ī = d(t)

• with the price of maintaining priority queue - O(log V)

• Q: how early? worth the price?

• if the rank is r,   then A* is better when   r/V log V < 1

34Dijkstra

d(v) pool

d(t)
A*
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r < V / log V

Dijkstra

d(v) pool

d(t)
A*

d(v) ⊗ ĥ(v) pool

d(t) r

1

V
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(Directed) Hypergraphs
• a generalization of graphs

• edge => hyperedge: several vertices to one vertex

• e = (T(e), h(e), fe).    arity |e| = |T(e)|

• a totally-ordered weight set R

• we borrow the ⊕ operator to be the comparison

• weight function fe : R|e| to R

• generalizes the ⊗ operator in semirings 

38

v
u1

u2

fe

ta
ils

head
d(v) ⊕ = fe(d(u1), d(u2))

simple case:  fe(a, b) = a ⊗ b ⊗ w(e)

Yi,j e

Zj,k
Xi,k
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Hypergraphs and Deduction

39

(Nederhof, 2003)

: b

v

u1 u2

fe

: a

: a × b × Pr(A → B C)

(A, i, j)

(C, k, j)(B, i, k) (B, i, k)        (C, k, j) 

(A, i, j)
A→B C
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Hypergraphs and Deduction

39

(Nederhof, 2003)

: b

v

u1 u2

fe

: a

: a × b × Pr(A → B C)

(A, i, j)

(C, k, j)(B, i, k) (B, i, k)        (C, k, j) 

(A, i, j)
A→B C

v

u1 u2tails

head

fe

: a

: fe (a,b) v

u1 u2

fe

: a : b

: fe (a,b)

antecedents

consequent

: b
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Related Formalisms

40

v

u1 u2

e

v

u1 u2

e AND-node

OR-node

OR-nodes
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Packed Forests
• a compact representation of many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

41

(Klein and Manning, 2001; Huang and Chiang, 2005)
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• a compact representation of many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

41

(Klein and Manning, 2001; Huang and Chiang, 2005)

0  I 1 saw  2  him  3  with 4 a 5 mirror 6

nodes hyperedges

a hypergraph
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Weight Functions and Semirings

42

d(u) d(u) ⊗ w(e)
w(e)

d(u) fe(d(u))
fe

fe(a) = a ⊗ w(e)

v

u1

u2

ta
ils head

uk

fe

...

fe(a1, ..., ak) 

semiring-
composed

can also extend monotonicity and 
superiority to general weight functions

= a1 ⊗ ... ⊗ ak ⊗ w(e)
special case
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Generalizing Semiring Properties
• monotonicity

• semiring:   a ≤ b => a x c ≤ b x c

• for all weight function f,   for all a1... ak,   for all i, 
if  a’i ≤ ai    then   f(a1... a’i ... ak) ≤ f(a1... ai ... ak)

• superiority

• semiring:   a ≤ a x b,   b ≤ a x b

• for all f,   for all a1... ak,   for all i,     ai ≤ f(a1, ..., ak)

• acyclicity

• degenerate a hypergraph back into a graph
43
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Viterbi Algorithm for DAGs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming edge (u, v) in E

• use d(u) to update d(v):

• key observation: d(u) is fixed to optimal at this time

• time complexity: O( V + E )
45

v

u w(u, v)

d(v) ⊕ = d(u) ⊗ w(u, v)
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Viterbi Algorithm for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming hyperedge e = ((u1, .., u|e|), v, fe)

• use d(ui)’s to update d(v)

• key observation: d(ui)’s are fixed to optimal at this time

• time complexity: O( V + E )    (assuming constant arity)
46

v
u1

u2

fe
d(v) ⊕ = fe(d(u1), · · · , d(u|e|))
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Example: CKY Parsing
• parsing with CFGs in Chomsky Normal Form (CNF)

• typical instance of the generalized Viterbi for DAHs

• many variants of CKY ~ various topological ordering

47
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Example: Syntax-based MT

49

• synchronous context-free grammars (SCFGs)

• context-free grammar in two dimensions

• generating pairs of strings/trees simultaneously

• co-indexed nonterminal further rewritten as a unit

VP

PP

yu Shalong

VP

juxing le huitan

VP

VP

held a meeting

PP

with Sharon

VP → PP(1) VP(2)
, VP(2) PP(1)

VP → juxing le huitan, held a meeting
PP → yu Shalong, with Sharon
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Translation as Parsing

50

• translation with SCFGs => monolingual parsing

• parse the source input with the source projection

• build the corresponding target sub-strings in parallel

PP1, 3 VP3, 6

VP1, 6

yu  Shalong juxing  le  huitan
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Translation as Parsing

50

• translation with SCFGs => monolingual parsing

• parse the source input with the source projection

• build the corresponding target sub-strings in parallel

PP1, 3 VP3, 6

VP1, 6

yu  Shalong juxing  le  huitan

with Sharon held a talk

held a talk  with Sharon

VP → PP(1) VP(2)
, VP(2) PP(1)

VP → juxing le huitan, held a meeting
PP → yu Shalong, with Sharon

complexity: same as 
CKY parsing -- O(n3)
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Adding a Bigram Model

51

PP1, 3 VP3, 6

VP1, 6

_ _●●●                 ... talk_ _ _ _ _ ●●●●●  ... Sharon

_ _●●●              ... talks

_ _●●●    ... meeting ●●●●●  ... Shalong

with ... Sharon

along ... Sharon
with ... Shalong

held ... talk
held ... meeting

hold ... talks

with   Sharon

bigram

held  ...   talk

VP3, 6

with ...  Sharon

PP1, 3

bigram
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Adding a Bigram Model

51

PP1, 3 VP3, 6

VP1, 6

_ _●●●                 ... talk_ _ _ _ _ ●●●●●  ... Sharon

_ _●●●              ... talks

_ _●●●    ... meeting ●●●●●  ... Shalong

with ... Sharon

along ... Sharon
with ... Shalong

held ... talk
held ... meeting

hold ... talks

with   Sharon

bigram

complexity: O(n3 V4(m-1) )

held  ...   talk

VP3, 6

with ...  Sharon

PP1, 3

bigram

held               ...             Sharon

VP1, 6
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Two Dimensional Survey
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Viterbi Algorithm for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming hyperedge e = ((u1, .., u|e|), v, fe)

• use d(ui)’s to update d(v)

• key observation: d(ui)’s are fixed to optimal at this time

• time complexity: O( V + E )    (assuming constant arity)
53

v
u1

u2

fe
d(v) ⊕ = fe(d(u1), · · · , d(u|e|))
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Forward  Variant for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each outgoing hyperedge e = ((u1, .., u|e|), h(e), fe)

• if d(ui)’s have all been fixed to optimal 

• use d(ui)’s to update d(h(e))

• time complexity: O( V + E )
54

v = ui

h(e)
u1

v

fe

u2 = 

h(e)
fe
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1. topological sort

2. visit each vertex v in sorted order and do updates

• for each outgoing hyperedge e = ((u1, .., u|e|), h(e), fe)

• if d(ui)’s have all been fixed to optimal 

• use d(ui)’s to update d(h(e))

• time complexity: O( V + E )
54

v = ui

h(e)
u1

v

fe

u2 = 

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
   how many tails yet to be fixed?
fire this hyperedge only if r[e]=0

h(e)
fe
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Dijkstra Algorithm

• keep a cut (S : V - S) where S vertices are fixed

• maintain a priority queue Q of  V - S vertices

• each iteration choose the best vertex v from Q

• move v to S, and use d(v) to forward-update others

55

S V - S

s ...

d(u) ⊕ = d(v) ⊗ w(v, u)

time complexity:
O((V+E) lgV) (binary heap)

O(V lgV + E) (fib. heap)
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• move v to S, and use d(v) to forward-update others
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Knuth (1977) Algorithm

• keep a cut (S : V - S) where S vertices are fixed

• maintain a priority queue Q of  V - S vertices

• each iteration choose the best vertex v from Q

• move v to S, and use d(v) to forward-update others
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Example: Best-First/A* Parsing

• Knuth for parsing:  best-first  (Caraballo & Charniak, 1998)

• further speed-up: use A* heuristics

• showed significant speed up with carefully designed 
heuristic functions (Klein and Manning, 2003)

• heuristic function: an estimate of outside cost

57

[open problem] can you still define heuristic function 
if weight functions are not semiring-composed?

(S, 0, n)
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Outside Cost in Hypergraph
• outside cost:  yet to pay to reach goal

• let’s only consider semiring-composed case

• and only acyclic hypergraphs

• after computing d(v) for all v from bottom-up

• backwards Viterbi from top-down (outside-in)

58

e

...

...
h(S0,n) = ī
h(v) ⊕= h(u)⊗w(e)⊗d(v’) 

v v’

u

d(v)

s

v

t

d(v)

h(v)

S0,n

h(v)

d(v)



Liang Huang (Penn) Dynamic Programming

Outside Cost in Hypergraph
• outside cost:  yet to pay to reach goal

• let’s only consider semiring-composed case

• and only acyclic hypergraphs

• after computing d(v) for all v from bottom-up

• backwards Viterbi from top-down (outside-in)

58

e

...

...
h(S0,n) = ī
h(v) ⊕= h(u)⊗w(e)⊗d(v’) 

v v’

u

d(v)

Q: d(v)⊗h(v) = ?

s

v

t

d(v)

h(v)

S0,n

h(v)

d(v)



Liang Huang (Penn) Dynamic Programming

Projection-based Heuristics

• how to guess? project onto a coarser-grained space

• and parse with the coarser grammar

• outside cost of of the coarser item as heuristics

59

 (Klein and Manning, 2003)
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• outside cost of of the coarser item as heuristics
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Analogy with Graphs
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More on Coarse-to-Fine
• multilevel coarse-to-fine A*

• heuristic = exact outside cost in previous stage

• ĥi (v) = hi-1 (proj i-1(v))

• VBD>V>X.  ĥi (VBD1,5) = hi-1 (V1,5); ĥi-1 (V1,5) = hi-2 (X1,5)

• multilevel coarse-to-fine Viterbi w/ beam-search

• Viterbi + beam pruning in each stage

• prune according to merit:  d(v)⊗h(v) ⊘ d(TOP)

• hard to derive a provably correct threshold

• in practice: use a preset threshold (but works well!)
63
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Same Picture Again
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Take Home Message

• Dynamic Programming is cool, easy, and universal!

• two frameworks and two types of algorithms

• monotonicity;   acyclicity and/or superiority

• topological (Viterbi) vs. best-first style (Dijkstra/Knuth/A*)

• when to choose which:  A* can finish early if lucky

• graph (lattice) vs. hypergraph (forest)

• incremental, finite-state vs. branching, context-free

• covered many typical NLP applications

• a better understanding of theory helps in practice
65



THE END - Thanks!Thanks!

66final slides will be available on my website.

(S, 0, n)

w0  w1           ...           wn-1 

Questions?
Comments?


