Advanced Dynamic Programming in CL:

Theory, Algorithms, and Applications

(S, 0, n)

Liang Huang

University of Pennsylvania

A Little Bit of History...

Liang Huang (Penn) Dynamic Programming

A Little Bit of History...

® Who invented Dynamic Programming!?
and when was it invented!?

Liang Huang (Penn) Dynamic Programming

A Little Bit of History...

I-I_—ﬁ.-. 1::":':...:-.|

Who invented Dynamic Programming!?
and when was it invented!?

R. Bellman (1940s-50s)

A.Viterbi (1967)

E. Dijkstra (1959)

Hart, Nilsson, and Raphael (1968)

® Dijkstra => A* Algorithm "
e D.Knuth (1977) I

® Dijkstra on Grammar (Hypergraph)

Andrew Viterbi
Liang Huang (Penn) 2 Dynamic Programming

A Little Bit of History...

I-I_—ﬁ.-. 1::":':...:-.|

Who invented Dynamic Programming!?
and when was it invented!?

R. Bellman (1940s-50s)
A.Viterbi (1967)

E. Dijkstra (1959)
Hart, Nilsson, and Raphael (1968)
® Dijkstra => A* Algorithm

e D. Knuth (1977)

® Dijkstra on Grammar (Hypergraph)
Andrew Viterbi
Liang Huang (Penn) 2 Dynamic Programming

Dynamic Programming

® Dynamic Programming is everywhere in NLP
® Viterbi Algorithm for Hidden Markov Models
e CKY Algorithm for Parsing and Machine Trans

® Forward-Backward and Inside-Outside Algorit
® Also everywhere in AI/ML

® Reinforcement Learning, Planning (POMDP)

® Al Search: Uniform-cost, A*, etc.
® This tutorial: a unified theoretical view of DP

® Focusing on Optimization Problems

Liang Huang (Penn) 3 Dynamic Programming

Review: DP Basics

® DP = Divide-and-Conquer + Two Principles:

® [required] Optimal Subproblem Property

® [recommended] Sharing of Common Subproblems
® Structure of the Search Space

Incremental
Graph

Knapsack, Edit Dist., Sequence Alignment @/YP %

® Branching ‘ Q VB;;;
o

Hypergraph

NP», ‘3’ \PPB,()’

Matrix-Chain, Polygon Trlangulatlon Optimal BST

Liang Huang (Penn) Dynamic Programming

Two Dimensional Survey

traversing order

topological best-first

graphs with

i Viterbi Dijkstra
semirings

)
O
S
al
7}
e
O
ul
S
)
%)

)y isaplis il Generalized

weight functions Viterbi Knuth

Liang Huang (Penn) Dynamic Programming

Graphs in NLP

part-of-speech tagging

lattice in speech
_ e VY

N ssty ol RS T) — T\

= \
N Al r_s

[tr2 |7 \---/ @ _
R | LRSS [sy 7 T

—_—

TN N\ _/‘\f‘i&_)_:f LR_7 |

/-~ -
.' LR_1 l"L-_S_(EQTd) / _\ N
\)

™R3

B N\

Liang Huang (Penn) 6 Dynamic Programming

Semirings on Graphs

® in a weighted graph, we need two operators:

® extension (multiplicative) and summary (additive)

t

t

ne weight of a path is the product of edge weights

ne weight of a vertex is the summary of path weights

d(m) = X) w(e;) =wler) ® w(ez) ® wles)

e, &cm

e ,0*‘
D w(m)

UE

w(p1) ®w(p2) & - -

Liang Huang (Penn) Dynamic Programming

Semiring Definitions

A monoid is a triple (4, ®, 1) where

1. ® is a closed associative binary operator on the set A,
2. 1 is the identity element for ®, i.e., foralla € A, a®1=1®a = a.

A monoid is commutative if ® is commutative.

Liang Huang (Penn) Dynamic Programming

Semiring Definitions

A monoid is a triple (4, ®, 1) where
1. ® is a closed associative binary operator on the set A,

2. 1 is the identity element for ®, i.e., foralla € A, a®1=1®a = a.

A monoid is commutative if ® is commutative. ([0’ |]’ +, O)

([0, 1], %, 1)
([0, 1], max, 0)

Liang Huang (Penn) Dynamic Programming

Semiring Definitions

A monoid is a triple (4, ®, 1) where
1. ® is a closed associative binary operator on the set A,

2. 1 is the identity element for ®, i.e., foralla € A, a®1=1®a = a.

A monoid is commutative if ® is commutative. ([0’ |]’ +, O)

([0, 1], %, 1)

A semiring is a 5-tuple R = (A, ®, ®,0, 1) such that ([0, 17, max, 0)

1. (A, ®,0) is a commutative monoid.
2. (A,®,1) is a monoid.

3. ® distributes over ¢: for all a,b,c in A,

(a@b)@c=(a®c) D (bR c),
cR(adb)=(c®a) P (cxD).

4. 0 is an annihilator for ®: forallain 4, 0®@a=a® 0 = 0.

Liang Huang (Penn) 8 Dynamic Programming

Semiring Definitions

A monoid is a triple (4, ®, 1) where
1. ® is a closed associative binary operator on the set A,

2. 1 is the identity element for ®, i.e., foralla € A, a®1=1®a = a.

A monoid is commutative if ® is commutative. ([0’ |]’ +, O)

([0, 1], %, 1)

A semiring is a 5-tuple R = (A, ®, ®,0, 1) such that ([0, 17, max, 0)

1. (A, ®,0) is a commutative monoid.

2. (A,®,1) is a monoid.
([0, 1], max, %, 0, I)
([O’ |]9 +’ X, 09 I)

3. ® distributes over ¢: for all a,b,c in A,

(a@b)@c=(a®c) D (bR c),
cR(adb)=(c®a) P (cxD).

4. 0 is an annihilator for ®: forallain 4, 0®@a=a® 0 = 0.

Liang Huang (Penn) 8 Dynamic Programming

Semiring Definitions

A monoid is a triple (4, ®, 1) where
1. ® is a closed associative binary operator on the set A,

2. 1 is the identity element for ®, i.e., foralla € A, a®1=1®a = a.

A monoid is commutative if ® is commutative. ([0’ |]’ +, O)

([0, 1], %, 1)

A semiring is a 5-tuple R = (A, ®, ®,0, 1) such that ([0, 17, max, 0)

1. (A, ®,0) is a commutative monoid.

2. (A,®,1) is a monoid.
([0, 1], max, %,0, |)v

3. ® distributes over ¢: for all a,b,c in A,
([O’ I]’ +’ x’o’ I) x

(a@b)@c=(a®c) D (bR c),
cR(adb)=(c®a) P (cxD).

4. 0 is an annihilator for ®: forallain 4, 0®@a=a® 0 = 0.

Liang Huang (Penn) 8 Dynamic Programming

Examples

Semiring - intuition/application
Boolean V logical deduction, recognition

Viterbi prob. of the best derivation
Inside prob. of a string

Real i shortest-distance

Tropical i with non-negative weights

Counting number of paths

Liang Huang (Penn) Dynamic Programming

Ordering

Liang Huang (Penn) Dynamic Programming

Ordering

® idempotent
A semiring (A, ®,®,0,1) is idempotent if for all a in A, a ® a = a.

Liang Huang (Penn) Dynamic Programming

Ordering

® idempotent
A semiring (A, ®,®,0,1) is idempotent if for all a in A, a ® a = a.

® comparison
(a <b) < (a® b= a) defines a partial ordering.

® examples: boolean, viterbi, tropical, real, ...
({0,1},V,A,0,1) (RT U {400}, min, +, +0c0,0)

(10,1}, max,®,0,1) (RU {400}, min, 4+, +0o0,0)

Liang Huang (Penn) Dynamic Programming

Ordering

® idempotent
A semiring (A, ®,®,0,1) is idempotent if for all a in A, a ® a = a.

® comparison
(a <b) < (a® b= a) defines a partial ordering.
® examples: boolean, viterbi, tropical, real, ...
({0,1},V,A,0,1) (RT U {400}, min, +, +0c0,0)

(10,1}, max,®,0,1) (RU {400}, min, 4+, +0o0,0)

® total-order for optimization problems

A semiring is totally-ordered if & defines a total ordering.

® examples:all of the above

Liang Huang (Penn) 10 Dynamic Programming

Monotonicity

Liang Huang (Penn) Dynamic Programming

Monotonicity

® monotonicity

Liang Huang (Penn) Dynamic Programming

Monotonicity

® monotonicity

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is monotonic if for all a,b,c € A

(a<b)=(a®c<bRc) (a<b)=(c®a<c®b)

Liang Huang (Penn) Dynamic Programming

Monotonicity

® monotonicity

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is monotonic if for all a,b,c € A

(a<b)=(a®c<bRc) (a<b)=(c®a<c®b)

® optimal substructure in dynamic programming

Liang Huang (Penn) Dynamic Programming

Monotonicity

® monotonicity

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is monotonic if for all a,b,c € A

(a<b)=(a®c<bRc) (a<b)=(c®a<c®b)

® optimal substructure in dynamic programming

Liang Huang (Penn) Dynamic Programming

Monotonicity

® monotonicity

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is monotonic if for all a,b,c € A

(a<b)=(a®c<bRc) (a<b)=(c®a<c®b)

® optimal substructure in dynamic programming

Liang Huang (Penn) Dynamic Programming

Monotonicity

® monotonicity

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is monotonic if for all a,b,c € A

(a<b)=(a®c<bRc) (a<b)=(c®a<c®b)

® optimal substructure in dynamic programming

® idempotent => monotone (from distributivity)

Liang Huang (Penn) Dynamic Programming

Monotonicity

® monotonicity

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is monotonic if for all a,b,c € A

(a<b)=(a®c<bRc) (a<b)=(c®a<c®b)

® optimal substructure in dynamic programming

® idempotent => monotone (from distributivity)

® (atb)®c = (a®c)*+(b®c); if a<b, (a®c)=(a®c)+(b®c)

Liang Huang (Penn) Dynamic Programming

Monotonicity

® monotonicity

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is monotonic if for all a,b,c € A

(a<b)=(a®c<bRc) (a<b)=(c®a<c®b)

® optimal substructure in dynamic programming

® idempotent => monotone (from distributivity)
® (atb)®c = (a®c)*+(b®c); if a<b, (a®c)=(a®c)+(b®c)

® by def. of comparison, a®c < b®c

Liang Huang (Penn) N Dynamic Programming

DP on Graphs

optimization problems on graphs
=> generic shortest-path problem

weighted directed graph G=(V, E) with a function w
that assigns each edge a weight from a semiring

compute the best weight of the target vertex t

generic update along edge (u, v)

w(u, v) S @

how to avoid cyclic updates?

® only update when d(u) is fixed

Liang Huang (Penn) 12 Dynamic Programming

Two Dimensional Survey

traversing order

topological best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs)

hyp.e il 4 it Generalized
weight functions Knuth

e
(e.8., CFGs) terb

Liang Huang (Penn) 13 Dynamic Programming

search space

Viterbi Algorithm for DAGs

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each incoming edge (u,v) in E
® use d(u) to update d(v): d(v) ® = d(u) ® w(u,v)

® key observation: d(u) is fixed to optimal at this time

® time complexity: O(V + E)

Liang Huang (Penn) 14 Dynamic Programming

Variant |:forward-update

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing edge (v,u) in E
® use d(v) to update d(u): d(u) ® =d(v) @ w(v,u)

® key observation: d(v) is fixed to optimal at this time

B
o\.

® time complexity: O(V + E)

Liang Huang (Penn) 15 Dynamic Programming

Examples

Liang Huang (Penn) Dynamic Programming

Examples
® [Number of Paths in a DAG]

Liang Huang (Penn) Dynamic Programming

Examples
® [Number of Paths in a DAG]

® just use the counting semiring (N, +, X, 0, |)

® note: this is not an optimization problem!

Liang Huang (Penn) Dynamic Programming

Examples
® [Number of Paths in a DAG]

® just use the counting semiring (N, +, X, 0, |)

® note: this is not an optimization problem!

® [Longest Path in a DAG]

Liang Huang (Penn) Dynamic Programming

Examples
® [Number of Paths in a DAG]

® just use the counting semiring (N, +, X, 0, |)

® note: this is not an optimization problem!

® [Longest Path in a DAG]

® just use the semiring (R U {—oc}, max, +, —00,0)

Liang Huang (Penn) Dynamic Programming

Examples
® [Number of Paths in a DAG]

® just use the counting semiring (N, +, %X, 0, |)
® note: this is not an optimization problem!
® [Longest Path in a DAG]

® just use the semiring (R U {—oc}, max, +, —00,0)

® [Part-of-Speech Tagging with a Hidden Markov Model]

Liang Huang (Penn) Dynamic Programming

Examples
® [Number of Paths in a DAG]

® just use the counting semiring (N, +, %X, 0, |)
® note: this is not an optimization problem!
® [Longest Path in a DAG]

® just use the semiring (R U {—oc}, max, +, —00,0)

® [Part-of-Speech Tagging with a Hidden Markov Model]

Gl Gad)
/. G

Liang Huang (Penn) Dynamic Programming

Example: Speech Alignment

time complexity:

O(n?)

also used in:
edit distance
biological sequence
alignment

Liang Huang (Penn) Dynamic Programming

Example:Word Alignment

® key difference
love you . ® reorderings in translation!

e ® sequence/speech alignment
is always monotonic

® complexity under HMM

j ® word alignment is O(n%)

® for every (i,)

enumerate all (i-1, k)

® sequence alignment O(n?)

Liang Huang (Penn) 18 Dynamic Programming

Chinese Word Segmentation

T S
N WK M omE FROK

xia yu tian di mian ji shui

Liang Huang (Penn) Dynamic Programming

Chinese Word Segmentation

min-zhu Go ug[e“
beople-dominate

“democracy”

T S
N WK M omE FROK

xia yu tian di mian ji shui

Liang Huang (Penn) Dynamic Programming

Chinese Word Segmentation

R=E LER EF

min-zhu Go ugle“ jiang-ze-min zhu-xi
beople-dominate

“democracy” “President Jiang Zemin”

T S
N T LTI 2 W

xia yu tian di mian ji shui

Liang Huang (Penn) Dynamic Programming

Chinese Word Segmentation

% —
4’ =l

min-zhu Goug[e‘

\—— \\X
/L7

K £E

jiang-ze-min zhu-xi

people-dominate .. 5 years ago. - people dominate-podium ‘ ‘

€ »
democracy now Google is

good at segmentation!

“President Jiang Zemin”

I\

SN

5

FHIK

xia yu tian di mian ji shui

Liang Huang (Penn)

Dynamic Programming

Chinese Word Segmentation

RE % AFR EF
min-zhu Go ugle“ jiang-ze-min zhu-xi
beople-dominate - people dominate-podium

this was 5 years ago.

“democracy” now Google is “President Jiang Zemin”
good at segmentation!

T S

N OK Mo\ R OK
xia yu tian di mian ji shui
~— s T T

Liang Huang (Penn) Dynamic Programming

Chinese Word Segmentation

% —
4’ =l

min-zhu Goug[e‘

\—— \\X
/L7

K £E

jiang-ze-min zhu-xi

people-dominate .. 5 years ago. - people dominate-podium ‘ ‘

€ »
democracy now Google is

good at segmentation!

“President Jiang Zemin”

I\

SN

5

FHIK

xia yu tian di mian ji shui
~S s 7

SIS

graph search

Liang Huang (Penn)

19

Dynamic Programming

Phrase-based Decoding

5 b = 3 X

yu Shalong juxing le huitan

—

held a talk with Sharon

with Sharon held talks

with Sharon held a talk
yu Shalong juxing le huitan

Huang and Chiang Forest Rescoring 20

Phrase-based Decoding

5 s 5 T S

yu Shalong juxing le huitan

—

held a talk with Sharon

with Sharon held talks

with Sharon held a talk
yu Shalong juxing le huitan

Huang and Chiang Forest Rescoring 20

Phrase-based Decoding

5 b = 3 X

yu Shalong juxing le huitan

—

held a talk with Sharon

) — &2

with Sharon held talks

with Sharon held a talk
yu Shalong juxing le huitan

Huang and Chiang Forest Rescoring 20

Phrase-based Decoding

5 b = 3 X

yu Shalong juxing le huitan

—

held a talk with Sharon

with Sharon held talks

with Sharon held a talk
yu Shalong juxing le huitan

Huang and Chiang Forest Rescoring 20

Phrase-based Decoding

5 b = 3 X

yu Shalong juxing le huitan

—

held a talk with Sharon

) — &2

with Sharon held talks

with Sharon held a talk
yu Shalong juxing le huitan

Huang and Chiang Forest Rescoring 21

Phrase-based Decoding

5 b = 3 X

yu Shalong juxing le huitan

—

held a talk with Sharon

with Sharon held talks

with Sharon held a talk
yu Shalong juxing le huitan

Huang and Chiang Forest Rescoring 21

Phrase-based Decoding

27 7T 21K source-side: coverage vector

yu Shalong juxing le huitan m
>< held a talk
target-side: grow hypotheses

held a talk with Sharon strictly left-to-right

held a talk ><he|d a talk with Sharon

N\

space: O(2"), time: O(2" n?) -- cf. traveling salesman problem
Huang and Chiang Forest Rescoring 22

Traveling Salesman Problem & MT

® 2 classical NP-hard problem

® goal: visit each city once and only once

® state: cities visited so far (bit-vector)

® search in this O(2") transformed grap

® MT: each city is a source-language worc

® restrictions in reordering can reduce
complexity => distortion limit

® => syntax-based MT

Huang and Chiang (Held and Karp, 1962; Knight, 1999) Forest Rescoring 23

Traveling Salesman Problem & MT

® 2 classical NP-hard problem

® goal: visit each city once and only once |

{l

® exponential-time dynamic programming ¥ .~

/L

® state: cities visited so far (bit-vector)

® search in this O(2") transformed grap

® MT: each city is a source-language worc

® restrictions in reordering can reduce
complexity => distortion limit

® => syntax-based MT

Huang and Chiang (Held and Karp, 1962; Knight, 1999) Forest Rescoring 23

Adding a Bigram Model

® “refined” graph: annotated with language model words

® still dynamic programming, just larger search space

/ >< 00600 .. Shalong

'YX ... talks

Huang and Chiang Forest Rescoring 24

Adding a Bigram Model

® “refined” graph: annotated with language model words

® still dynamic programming, just larger search space

/ >< 00600 .. Shalong

& CEED - - CTEED

'YX ... talks

Huang and Chiang Forest Rescoring 24

Adding a Bigram Model

® “refined” graph: annotated with language model words

® still dynamic programming, just larger search space

/ >< 00600 .. Shalong

\ bing

'YX ... talks

Huang and Chiang Forest Rescoring 24

Adding a Bigram Model

® “refined” graph: annotated with language model words

® still dynamic programming, just larger search space

/ >< 00600 .. Shalong

\ bing

'YX ... talks

space: O(2"), time: O(2"n?)
=> space: O(2" V™), time: O(2" V™! n?)

for m-gram language models
Huang and Chiang Forest Rescoring 24

Two Dimensional Survey

traversing order

topological best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs)

hyp.e il 4 it Generalized
weight functions Knuth

e
(e.8., CFGs) terb

Liang Huang (Penn) 25 Dynamic Programming

search space

Dijkstra Algorithm

d(u) © > O d(u) ® w(e)

w(e)

Liang Huang (Penn) 26 Dynamic Programming

Dijkstra Algorithm

® Dijkstra does not require acyclicity
® instead of topological order, we use best-first order

® but this requires superiority of the semiring

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is superior if for all a,b € A

a<a®b, b<a®b.

® intuition: combination always gets worse

d(u) © > O d(u) ® w(e)

w(e)

Liang Huang (Penn) 26 Dynamic Programming

Dijkstra Algorithm

® Dijkstra does not require acyclicity
® instead of topological order, we use best-first order

® but this requires superiority of the semiring

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is superior if for all a,b € A

a<a®b, b<a®b.

® intuition: combination always gets worse

® contrast: monotonicity: combination preserves order
(a <b)=(a®c<b®c)

d(u) © > O d(u) ® w(e)

w(e)

Liang Huang (Penn) 26 Dynamic Programming

Dijkstra Algorithm

® Dijkstra does not require acyclicity
® instead of topological order, we use best-first order

® but this requires superiority of the semiring

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is superior if for all a,b € A

a<a®b, b<a®b.

® intuition: combination always gets worse

® contrast: monotonicity: combination preserves order
(a<b)=(a®ec<b®c) ({0,1},Vv,A,0,1)
(10, 1], max, x,0,1)

| °
>@® d (R* U {400}, min, +, +00, 0)
© dv) o wle) (RU {400}, min, +, +00,0)

Liang Huang (Penn) 26 Dynamic Programming

d(u) ©

w(e)

Dijkstra Algorithm

® Dijkstra does not require acyclicity
® instead of topological order, we use best-first order

® but this requires superiority of the semiring

Let K = (A, ®,®,0,1) be a semiring, and < a partial ordering over A.
We say K is superior if for all a,b € A

a<a®b, b<a®b.

® intuition: combination always gets worse

® contrast: monotonicity: combination preserves order
(a<b)=(a®ec<b®c) ({0,1},Vv,A,0,1) v
([0, 1], max, x,0,1) «

| .
>® d (R™ U {400}, min, +, +00,0) v
O d(u) © wie) (RU {400}, min, +,+00,0) %X

Liang Huang (Penn) 26 Dynamic Programming

d(u) ©

w(e)

Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

dlu) ® =dv) ®w(v,u)

time complexity:
O((V+E) IgV) (binary heap)
O(V IgV + E) (fib. heap)

Liang Huang (Penn) Dynamic Programming

Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

dlu) ® =dv) ®w(v,u)

time complexity:
O((V+E) IgV) (binary heap)
O(V IgV + E) (fib. heap)

Liang Huang (Penn) Dynamic Programming

Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

WQ) & = d(6) § wler

/
‘ time complexity:

O((V+E) IgV) (binary heap)
- O(V IgV + E) (fib. heap)

Liang Huang (Penn) 27 Dynamic Programming

Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems

Liang Huang (Penn) Dynamic Programming

Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems

Liang Huang (Penn) Dynamic Programming

Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems

Liang Huang (Penn) Dynamic Programming

Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems

many
NLP
problems

Liang Huang (Penn) Dynamic Programming

Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems

many
NLP
problems

forward-backward
(Inside semiring)

Liang Huang (Penn) Dynamic Programming

Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems

many
NLP
problems

forward-backward

(Inside semiring) non-probabilistic
models

Liang Huang (Penn) 28 Dynamic Programming

Viterbi vs. Dijkstra

® structural vs. algebraic constraints

® Dijkstra only applicable to optimization problems

monotonic optimization problems

many
NLP
problems

forward-backward .
(Inside semiring) non-probabilistic cyclic FSMs/

models grammars

Liang Huang (Penn) 28 Dynamic Programming

What if both fail?

monotonic optimization problems

many
NLP
problems

generalized Bellman-Ford
(CLR, 1990; Mohri, 2002)

or, first do strongly-connected components (SCC)
which gives a DAG; use Viterbi globally on this SCC-DAG;
use Bellman-Ford locally within each SCC

Liang Huang (Penn) 29 Dynamic Programming

What if both work!?

monotonic optimization problems

many
NLP
problems

full Dijkstra is slower than Viterbi
O((V+E)IgV) s, O(V + E)
but it can finish as early as the target vertex is popped
a(V+E)IgV s V+E

Q: how to (magically) reduce a?
Liang Huang (Penn) 30 Dynamic Programming

A* Search: Intuition

® Dijkstra is “blind” about how far the target is
® may get “trapped” by obstacles
® can we be more intelligent about the future?

® idea: prioritize by s-v distance + v-t estimate

Liang Huang (Penn) Dynamic Programming

A* Search: Intuition

® Dijkstra is “blind” about how far the target is
® may get “trapped” by obstacles
® can we be more intelligent about the future?

® idea: prioritize by s-v distance + v-t estimate

Liang Huang (Penn) Dynamic Programming

A* Search: Intuition

® Dijkstra is “blind” about how far the target is
® may get “trapped” by obstacles
® can we be more intelligent about the future?

® idea: prioritize by s-v distance + v-t estimate

Liang Huang (Penn) Dynamic Programming

A* Heuristic

® h(v): the distance from v to target t
° Fl(v) must be an optimistic estimate of h(v): h(v)< h(v)
® Dijkstra is a special case where Fl(v) =1 (0 for dist.)
® now, prioritize the queue by d(v) ® h(v)

® can stop when target gets popped -- why!

® optimal subpaths should pop earlier than non-optimal

d(v) @ h(v) < d(v) ® h(v) < d(t) < non-optimal paths of t

Liang Huang (Penn) 32 Dynamic Programming

How to design a heuristic?

more of an art than science

basic idea: projection into coarser space

cluster: w(U,V) =min{w(u,v) |lue UveV}

exact cost in coarser graph is estimate of finer graph

L

L

o
L]

—
.

|
L]

Liang Huang (Penn)

»
L

L]
L

>

o

Dynamic Programming

How to design a heuristic?

more of an art than science

basic idea: projection into coarser space

cluster: w(U,V) =min{w(u,v) |lue UveV}

exact cost in coarser graph is estimate of finer graph

Uu Vv

T " | o

—
.

|
L]

»
L

Liang Huang (Penn)

L]
L

>

o

Dynamic Programming

Viterbi or A™?

® A¥intuition: d(t) ® h(t) ranks higher among d(v) ® h(v)

® can finish early if lucky
e actually, d(t) ® h(t) = d(t) ® h(t) = d(t) ® T = d(t)

ith the price of maintaining priority queue - O(logV)

: how early? worth the price!?

® if the rank is , then A* is better when r/V logV < |
d(v) ® h(v) pool

ﬂ N =
Liang Huang (Penn) Dijkstra Dynamic Programming

Viterbi or A™?

® A¥intuition: d(t) ® h(t) ranks higher among d(v) ® h(v)

® can finish early if lucky
e actually, d(t) ® h(t) = d(t) ® h(t) = d(t) ® T = d(t)

ith the price of maintaining priority queue - O(logV)

: how early? worth the price!?

® if the rank is , then A* is better when r/V logV < |
d(v) ® h(v) pool

ﬂ i) = r<V/logV

Liang Huang (Penn) Dijkstra Dynamic Programming

Two Dimensional Survey

traversing order

topological best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs)

hyp.e il 4 it Generalized
weight functions Knuth

e
(e.8., CFGs) terb

Liang Huang (Penn) 35 Dynamic Programming

search space

Two Dimensional Survey

traversing order

topological best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs)

hyp.e il W i Generalized
weight functions Knuth

e
(.8, CFGs) terb

Liang Huang (Penn) 35 Dynamic Programming

search space

Background: CFG and Parsing

* For each diff (<=n)
= Foreach | (<=n)

= Foreachrule X - Y Z

= For each split point k
score[X] [1] [7] = max score[X][1][3].,

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

(S, 0, n)

Wh-|

Liang Huang (Penn) Dynamic Programming

Background: CFG and Parsing

* For each diff (<=n)
= Foreach | (<=n)

= Foreachrule X - Y Z

= For each split point k
score[X] [1] [7] = max score[X][1][3].,

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

(S, 0, n)

Wh-|

Liang Huang (Penn) Dynamic Programming

Background: CFG and Parsing

* For each diff (<=n)
= Foreach | (<=n)

= Foreachrule X - Y Z

= For each split point k
score[X] [1] [7] = max score[X][1][3].,

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

(S, 0, n)

Wh-|

Liang Huang (Penn) Dynamic Programming

Background: CFG and Parsing

* For each diff (<=n)
= Foreach | (<=n)

= Foreachrule X - Y Z

= For each split point k
score[X] [1] [7] = max score[X][1][3].,

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

(S, 0, n)

Wh-|

Liang Huang (Penn) Dynamic Programming

(Directed) Hypergraphs

® a generalization of graphs

® edge => hyperedge: several vertices to one vertex

® e=(T(e),h(e),fe). arity|e|=|T(e)l

i s
® a totally-ordered weight set R @ @

® we borrow the ® operator to be the comparison
e weight function f.: Rl¢lto R

® generalizes the ® operator in semirings

simple case: fe(a,b) =a ® b ® w(e)

d(v) & = fe(d(u1),d(u2))

Liang Huang (Penn) 38 Dynamic Programming

Hypergraphs and Deduction

(B, i, k) (C, kj) (B.i, k) (C. k)

'a b A—B C
ﬁhﬂa AL

@ :axbxPrA-BC)

), (Nederhof, 2003)

Liang Huang (Penn) Dynamic Programming

Hypergraphs and Deduction

(B, i, k) (G, k,j)

(B, i, k) (C, kj)

'a b A—B C
WQ (A1)

@ :axbxPrA-BC)

), (Nederhof, 2003)

.d @ b @ Q b antecedents
Y
‘ :fe (a,b) ‘ fe (a, b)

head consequent

Liang Huang (Penn) Dynamic Programming

hypergraph

Related Formalisms

AND/OR graph

context-free grammar

deductive system

vertex
source-vertex
target-vertex

OR-node
leaf OR-node
root OR-node

symbol
terminal
start symbol

item
axiom
goal item

hyperedge

({u1,u2}, v, f)

Liang Huang (Penn)

AND-node

production

f
V= U U

‘ OR-node

% (& AND-node

00 00 -

40

instantiated deduction
Ui1:a Ug:b

v: f(a,b)

Dynamic Programming

Packed Forests

® a compact representation of many parses
® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set
VP ¢
A

_ - . VBD12 NPo3 PP3g
NP 5 PP3 ¢ ! VP

oI | SAW hlm 3 With4asmirr0r6

(Klein and Manning, 200 |; Huang and Chiang, 2005)
Liang Huang (Penn) 4| Dynamic Programming

Packed Forests

® a compact representation of many parses

® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set

nodes

a hypergraph

NPs 3

> VP16 hyperedges

- . VBDi12 NP23 PP3g
PP 4 : VP

oI | SAW hlm 3 With4asmirr0r6

Liang Huang (Penn)

(Klein and Manning, 200 |; Huang and Chiang, 2005)

4] Dynamic Programming

Weight Functions and Semirings

Liang Huang (Penn) Dynamic Programming

Weight Functions and Semirings

fe(al, ..,ak) = aje ..o ake w(e)
‘ head special case

Liang Huang (Penn) Dynamic Programming

Weight Functions and Semirings
(o) > d(u) o w(e)

‘ f fe(a) = a o w(e)

——@ ()

d(u) ©

d(u) ©

Q fe(al, .., a) =aje...e ake w(e)

O @i oo cse

Liang Huang (Penn) Dynamic Programming

Weight Functions and Semirings
(o) > d(u) o w(e)

‘ f fe(@d) =a o w(e)

d(u) © f >Q fe(d(u)) semiring-

composed
O .

fe(al, .., a) =aje...e ake w(e)

O @i spocilcas

Liang Huang (Penn) Dynamic Programming

d(u) ©

Weight Functions and Semirings
(o) > d(u) o w(e)

‘ f fe(@d) =a o w(e)

>Q fe(d(u)) semiring-

composed

fe(al, .., a) =aje...e ake w(e)
> ‘ head special case

d(u) ©

d(u) ©

fe

can also extend monotonicity and
superiority to general weight functions

Liang Huang (Penn) 42 Dynamic Programming

Generalizing Semiring Properties

® monotonicity
® semiringg a<b=>axc=<bxc

e for all weight function f, for all ay...ak, for all
if ai<a then f(aj..a’j...a) < f(ai...ai...ax)

® superiority

® semiring: a<axb, b<axb

® forallf, foralla.ay foralli, a <f(ai,..,ax)
® acyclicity

® degenerate a hypergraph back into a graph

Liang Huang (Penn) 43 Dynamic Programming

Two Dimensional Survey

traversing order

topological
(acyclic)

graphs with
semirings Viterbi
(e.g., FSMs)

best-first
(superior)

Dijkstra

hypergraphs with

. : Generalized
weight functions

Viterbi

search space

7

Knuth

(e.g., CFGs)

Liang Huang (Penn) 44

Dynamic Programming

Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each incoming edge (u,v) in E
® use d(u) to update d(v):

® key observation: d(u) is fixed to optimal at this time

® time complexity: O(V + E)

Liang Huang (Penn) 45 Dynamic Programming

Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates

® for each incoming hyperedge e = ((ul, .., Uje|), v, fe)
® use d(ui)’s to update d(v)

® key observation: d(ui)’s are fixed to optimal at this time

Q} o L@ e L))
O e
&

® time complexity: O(V + E) (assuming constant arity)

Liang Huang (Penn) 46 Dynamic Programming

Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S, 0, n) (S, 0, n)

* For each diff (<=n)
* Foreach i (<=n)
» Foreachrule X - Y Z

= For each split point k
score[X] [1] []J] = max

O(n’[P])

Liang Huang (Penn) Dynamic Programming

Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S, 0, n) (S, 0, n)

* For each diff (<=n)
* Foreach i (<=n)
» Foreachrule X - Y Z

= For each split point k
score[X] [1] []J] = max

bottom-up

O(n’[P])

Liang Huang (Penn) Dynamic Programming

Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S, 0, n) (S, 0, n)

* For each diff (<=n)
* Foreach i (<=n)
» Foreachrule X - Y Z

= For each split point k
score[X] [1] []J] = max

bottom-up left-to-right

O(n’[P])

Liang Huang (Penn) Dynamic Programming

Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S, 0, n) (S, 0, n) (S, 0, n)

bottom-up left-to-right

O(n’[P])

Liang Huang (Penn) Dynamic Programming

Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S, 0, n) (S, 0, n) (S, 0, n)

bottom-up left-to-right right-to-left

O(n’[P])

Liang Huang (Penn) Dynamic Programming

Example: Syntax-based MT

® synchronous context-free grammars (SCFGs)
® context-free grammar in two dimensions
® generating pairs of strings/trees simultaneously

® co-indexed nonterminal further rewritten as a unit

VP — PPWO vVP@) vP2 ppl)
VP — juxing le huitan, held a meeting
PP — yu Shalong, with Sharon

VP VP

/\ /\
PP VP VP PP

yu Shalong juring le huitan held a meeting with Sharon

Liang Huang (Penn) 49 Dynamic Programming

Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

vP — PPO vP®
VP — juxing le huitan,
PP — yu Shalong,

yu Shalong juxing le huitan

Liang Huang (Penn) Dynamic Programming

Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

vP — PPO vP@) vP® ppl)
VP — juxing le huitan, held a meeting
PP — yu Shalong, with Sharon

yu Shalong juxing le huitan

Liang Huang (Penn) Dynamic Programming

Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

VP — PPO VPO, vP® ppl)
VP — juxing le huitan, held a meeting _
PP — yu Shalong, with Sharon held a talk with Sharon

with Sharon held a talk

yu Shalong juxing le huitan

Liang Huang (Penn) Dynamic Programming

Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

VP — PPO VPO, vP® ppl)
VP — juxing le huitan, held a meeting _
PP — yu Shalong, with Sharon held a talk with Sharon

with Sharon held a talk

: 3
CKY parsing -- O(n°) yu Shalong juxing le huitan

Liang Huang (Penn) Dynamic Programming

Adding a Bigram Model

- ~GEIREDT

ey - - CTEE
\ bing

held ..{ talk] with).. Sharon PPi,3 VP3, 6

Y file with ... Sharon held ... talk
along ... Sharon % held ... meeting
hold

with .. Shalong ... talks
Liang Huang (Penn) Dynamic Programming

Adding a Bigram Model

Sharon

VPI,¢

held .. talk [with).. Sharon
VP36 PP1,3

with ... Sharon held ... talk
along ... Sharon % held ... meeting
hold ..

with .. Shalong . talks
Liang Huang (Penn) Dynamic Programming

Adding a Bigram Model

Sharon

VPI,¢

held .. talk [with).. Sharon
VP36 PP1,3

with ... Sharon held ... talk
complexity: O(n3 V4m-1)) along ... Sharon % held ... meeting

with .. Shalong hold ... talks

Liang Huang (Penn) Dynamic Programming

Two Dimensional Survey

traversing order

topological best-first
(acyclic) (superior)

graphs with
semirings Viterbi Dijkstra
(e.g., FSMs) '
hyp.e il 4 it Generalized
weight functions Knuth

e
(e.8., CFGs) terb

Liang Huang (Penn) 52 Dynamic Programming

search space

Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates

® for each incoming hyperedge e = ((ul, .., Uje|), v, fe)
® use d(ui)’s to update d(v)

® key observation: d(ui)’s are fixed to optimal at this time

Q} o L@ e L))
O e
&

® time complexity: O(V + E) (assuming constant arity)

Liang Huang (Penn) 53 Dynamic Programming

Forward Variant for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing hyperedge e = ((uy, .., Uje|), h(e), fe)
® if d(ui)’s have all been fixed to optimal

® use d(ui)’s to update d(h(e))

® time complexity: O(V + E)

Liang Huang (Penn) 54 Dynamic Programming

Forward Variant for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing hyperedge e = ((uy, .., Uje|), h(e), fe)
® if d(ui)’s have all been fixed to optimal

® use d(ui)’s to update d(h(e))

® time complexity: O(V + E)

Liang Huang (Penn) 54 Dynamic Programming

Forward Variant for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing hyperedge e = ((uy, .., Uje|), h(e), fe)
® if d(ui)’s have all been fixed to optimal

use d(ui)’s to update d(h(e))

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
how many tails yet to be fixed?

fire this hyperedge only if r[e]=0

® time complexity: O(V + E)

Liang Huang (Penn) 54 Dynamic Programming

Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

dlu) ® =dv) ®w(v,u)

time complexity:
O((V+E) IgV) (binary heap)
O(V IgV + E) (fib. heap)

Liang Huang (Penn) Dynamic Programming

Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

dlu) ® =dv) ®w(v,u)

time complexity:
O((V+E) IgV) (binary heap)
O(V IgV + E) (fib. heap)

Liang Huang (Penn) Dynamic Programming

Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

WQ) & = d(6) § wler

/
‘ time complexity:

O((V+E) IgV) (binary heap)
- O(V IgV + E) (fib. heap)

Liang Huang (Penn) 55 Dynamic Programming

Knuth (1977) Algorithm

® keep a cut (S:V - S) where S vertices are fixed

® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

time complexity:
O((V+E) IgV) (binary heap)
V-5 O(V IgV + E) (fib. heap)

Liang Huang (Penn) 56 Dynamic Programming

Knuth (1977) Algorithm

® keep a cut (S:V - S) where S vertices are fixed

® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

time complexity:
O((V+E) IgV) (binary heap)
V-5 O(V IgV + E) (fib. heap)

Liang Huang (Penn) 56 Dynamic Programming

Knuth (1977) Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

time complexity:

@ o —©
— O((V+E) IgV) (binary heap)
S O(V IgV + E) (fib. heap)

Liang Huang (Penn) Dynamic Programming

Knuth (1977) Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

time complexity:

@ .0
— O((V+E) IgV) (binary heap)
S V-5 O(V lgV + E) (fib. heap)

Liang Huang (Penn) 56 Dynamic Programming

Example: Best-First/A* Parsing

® Knuth for parsing: best-first (Caraballo & Charniak, 1998)
e further speed-up: use A* heuristics

® showed significant speed up with carefully designed
neuristic functions (Klein and Manning, 2003)

neuristic function: an estimate of outside cost

(5,0,n)

A
f‘lx_‘_ o
Grioly (i

-
r

Liang Huang (Penn) @ mming

Example: Best-First/A* Parsing

® Knuth for parsing: best-first (Caraballo & Charniak, 1998)
e further speed-up: use A* heuristics

® showed significant speed up with carefully designed
neuristic functions (Klein and Manning, 2003)

neuristic function: an estimate of outside cost

(S, 0, n)
,sj'x.‘ 2
Grioy G

—

-~
r

Liang Huang (Penn) @ mming

Outside Cost in Hypergraph

® outside cost: yet to pay to reach goal h(\()‘...Ae

® let’s only consider semiring-composed case \}

® and only acyclic hypergraphs &)
® after computing d(v) for all v from bottom-up

® backwards Viterbi from top-down (outside-in)

. A

Son —
h(So,) =1

h(v) ®= h(u)®w(e)®d(V))

Liang Huang (Penn) Dynamic Programming

Outside Cost in Hypergraph

® outside cost: yet to pay to reach goal h(\()‘...Ao

® let’s only consider semiring-composed case \}

® and only acyclic hypergraphs O d(v)

® after computing d(v) for all v from bottom-up

® backwards Viterbi from top-down (outside-in)

Sn) = T
q h(v) ®= h(u)®w(e)®d(v))
6% Q: d(v)®h(v) = ?

. A

SO,n

Liang Huang (Penn) Dynamic Programming

Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

S

.—-'--.---._‘--_--‘-—-—-.
VP
...____..-"“-._____.-
NNS VBD PP

f | T
Faculty payrolls fell IN NNP

| |
in Sept.

Liang Huang (Penn) Dynamic Programming

Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

VP

NNS VBD PP

| | — |

Faculty payrolls fell IN NNp Faculty payrolls fell P N
| | l |

in Sept. in Sept.

(Klein and Manning, 2003)
Liang Huang (Penn) 59 Dynamic Programming

Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

Facﬁlty pa}ffﬂlls fgu Faculty payrolls fell P N
l I

in Sept. in Sept.

(Klein and Manning, 2003)
Liang Huang (Penn) 60 Dynamic Programming

Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

VBD
|

Faculty payrolls fell Faculty payrolls fell P N
l I

in Sept. in Sept.

(Klein and Manning, 2003)
Liang Huang (Penn) 61 Dynamic Programming

Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

VBD
|

Faculty payrolls fell Faculty payrolls fell P N
l I

in Sept. in Sept.

Liang Huang (Penn) Dynamic Programming

Projection-based Heuristics

® how to guess! project onto a coarser-grained space
® and parse with the coarser grammar

® outside cost of of the coarser item as heuristics

VBD
|

Faculty payrolls fell Faculty payrolls fell P N
l I

in Sept. L
h (VBD23) = h’ (V23)

Liang Huang (Penn) 61 Dynamic Programming

Analogy with Graphs

o o -

NNS VBD PP
I I T
Faculty payrolls fell IN NNP
| I
in Sept.

Liang Huang (Penn) Dynamic Programming

Analogy with Graphs

o o -

NNS VBD PP
I I T
Faculty payrolls fell IN NNP Faculty payrolls fell P N
| I l I
in Sept. in Sept.

Liang Huang (Penn) Dynamic Programming

More on Coarse-to-Fine

e multilevel coarse-to-fine A*
® heuristic = exact outside cost in previous stage

e hi(v) = hit (projii(v))
e VBD>V>X. h (VBDi5) = hi.i (Vi5); hi.. (Vi5) = hiza (Xi,5)

® multilevel coarse-to-fine Viterbi w/ beam-search
® Viterbi + beam pruning in each stage
® prune according to merit: d(v)®h(v) @ d(TOP)
® hard to derive a provably correct threshold

® in practice: use a preset threshold (but works well!)
Liang Huang (Penn) 63 Dynamic Programming

More on Coarse-to-Fine

e multilevel coarse-to-fine A* [F R

® heuristic = exact outside cost in <‘f‘ XakaXake)

* hi(v) = hii (projii(v)) JU L

e VBD>V>X. h; (VBDs) = hii (Vis); hit (Vis) = hia (Xi5)
® multilevel coarse-to-fine Viterbi w/ beam-search

® Viterbi + beam pruning in each stage

® prune according to merit: d(v)®h(v) @ d(TOP)

® hard to derive a provably correct threshold

® in practice: use a preset threshold (but works well!)
Liang Huang (Penn) 63 Dynamic Programming

More on Coarse-to-Fine

® multilevel coarse-to-fine A*

® heuristic = exact outside cost in <: : i) P

e hi(v) = hit (projii(v)) S

e VBD>V>X. h; (VBDs) = hii (Vis); hit (Vis) = hia (Xi5)
® multilevel coarse-to-fine Viterbi w/ beam-search

® Viterbi + beam pruning in each stage

® prune according to merit: d(v)®h(v) @ d(TOP)

® hard to derive a provably correct threshold

® in practice: use a preset threshold (but works well!)
Liang Huang (Penn) 63 Dynamic Programming

Same Picture Again

monotonic optimization problems

many
NLP
problems

Liang Huang (Penn) Dynamic Programming

Same Picture Again

monotonic optimization problems

many
NLP
problems

PCFG parsing
with CNF

Liang Huang (Penn) Dynamic Programming

Same Picture Again

monotonic optimization problems

many
NLP
problems

Inside-Outside Alg. PCFG parsing
(Inside semiring) with CNF

Liang Huang (Penn) Dynamic Programming

Same Picture Again

monotonic optimization problems

many
NLP
problems

Inside-Outside Alg. PCFG parsing
(Inside semiring) non-prob. with CNF
(discriminative)
parsing

Liang Huang (Penn) Dynamic Programming

Same Picture Again

monotonic optimization problems

many
NLP
problems

Inside-Outside Alg. PCFG parsing |
(Inside semiring) non-prob. with CNF cyclic

Liang Huang (Penn)

(discriminative) grammars
parsing

Dynamic Programming

Same Picture Again

monotonic optimization problems

many
NLP
problems

Inside-Outside Alg. PCFG parsing

(Inside semiring) _M°N-Prob. with CNF cyclic .
(discriminative) grammars generalized

parsing generalized
Bellman-Ford

(open)

Liang Huang (Penn) Dynamic Programming

Take Home Message

® Dynamic Programming is cool, easy, and universal!
® two frameworks and two types of algorithms
® monotonicity; acyclicity and/or superiority
® topological (Viterbi) vs. best-first style (Dijkstra/Knuth/A%)
when to choose which: A* can finish early if lucky
® graph (lattice) vs. hypergraph (forest)
incremental, finite-state vs. branching, context-free
® covered many typical NLP applications

® a better understanding of theory helps in practice

Liang Huang (Penn) 65 Dynamic Programming

Thanks!

Questions!?
Comments!

final slides will be available on my website.

W0 W] Whn-|

R4
& Icnn
‘ UNIVERSITY of PENNSYLVANIA

