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Search-Aware Tuning - Liu & Huang (CUNY)

Parameter Tuning for MT

• most tuning methods view MT decoder as a black box

• “search-agnostic” tuning (MERT, MIRA, PRO, ...)

• but actually search error is a main reason of bad quality

• potentially good sub-translations pruned early in search

• final k-best list also lacks diversity
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Search-Aware Tuning - Liu & Huang (CUNY)

Search Error in MT
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Parameter Tuning for MT

• most tuning methods view MT decoder as a black box

• “search-agnostic” tuning (MERT, MIRA, PRO, ...)

• but actually search error is a main reason of bad quality

• potentially good sub-translations pruned early in search

• Q: how to promote these promising sub-derivations?

• A: tune the ranking of non-final bins as well as final bin

• “search-aware tuning” (SA-MERT, SA-MIRA, SA-PRO, ...)

• Q: how to evaluate the “potential” of a sub-derivation?
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Search-Aware Tuning - Liu & Huang (CUNY)

Outline

• Motivations

• Evaluating Partial Derivations

• challenges

• method 1: naive partial BLEU

• method 2: novel potential BLEU

• Search-Aware MERT, MIRA, and PRO

• Experiments

• consistent +1 BLEU improvement with dense features
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Search-Aware Tuning - Liu & Huang (CUNY)

Challenges in Partial Evaluation

• challenge 1: there is no “partial” references

• challenge 2: in phrase-based MT, partial translations in 
the same bin may cover different source words
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Search-Aware Tuning - Liu & Huang (CUNY)

Method 1: Naive Partial BLEU
• naive solution: just evaluate against the full reference

• but using a prorated reference length

• proportional to number of source words translated so far

• inspired by oracle extraction (Li & Khudanpur 10; Chiang 12)

• problem: favoring those translating “easier” words first
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Search-Aware Tuning - Liu & Huang (CUNY)

Evaluating the “Potential”
• better not evaluate partial translation as is, but its potential

• do we want the oracle (best) or average potential?

• oracle is too hard to compute, and maybe not that useful

• want the “most likely” potential given the current model 
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Search-Aware Tuning - Liu & Huang (CUNY)

Method 2: Potential BLEU
• the “most likely potential” BLEU of a derivation

• extend partial derivation to cover uncovered words

• using best monotonic translation for uncovered portions

• inspired by “future cost” in phrase-based decoding

• (inadmissible) A* heuristic computed by DP (Koehn, 2004)
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Search-Aware Tuning - Liu & Huang (CUNY)

Towards Search-Aware Tuning
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Search-Aware Tuning - Liu & Huang (CUNY)

Experiments: Ch-to-En
• on phrase-based decoder (Huang & Chiang 07; Yu et al 13)

• partial BLEU not helpful, but potential BLEU very helpful

• all experiments use only dense features 
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Search-Aware Tuning - Liu & Huang (CUNY)

Beam Size
• helps more in smaller beam sizes
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Search-Aware Tuning - Liu & Huang (CUNY)

Oracle Improvement
• search-aware tuning improves k-best oracle in final bin

• quality of k-best list improves more than 1-best

• more improvement on test than tuning

13
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Search-Aware Tuning - Liu & Huang (CUNY)

More Diversity in the Final Bin

• search-aware tuning does promote diversity

• even though we do not include diversity in the objectives

• adapt n-gram diversity metric (Gimpel et al 2013) with modifications
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Search-Aware Tuning - Liu & Huang (CUNY)

Drawback: Slow Optimization
• search-aware tuning does slow down optimization

• but decoding is the bottle-neck in tuning

• though parallelizable

• overall slowdown is not significant for MIRA/PRO

15
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Search-Aware Tuning - Liu & Huang (CUNY)

Conclusions

• search error is a major reason for bad translation

• search-agnostic tuning does not address this problem

• our search-aware tuning promotes promising translations

• potential BLEU is a good evaluator for sub-translations

• also works for TER and other metrics

• very simple framework; applies to MERT/MIRA/PRO...

• first consistent ~1 BLEU point improvement with dense features

• only drawback: slower optimization
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