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Parameter Tuning for MT
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® most tuning methods view MT decoder as a black box
® “search-agnostic”’ tuning (MERT, MIRA, PRO,...)

® but actually search error is a main reason of bad quality
® potentially good sub-translations pruned early in search

e final k-best list also lacks diversity

Search-Aware Tuning - Liu & Huang (CUNY)
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® most tuning methods view MT decoder as a black box
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Search Error in MT
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® most tuning methods view MT decoder as a black box

® “search-agnostic” tuning (MERT, MIRA, PRO, ...)

® but actually search error is a main reason of bad quality

® potentially good sub-translations pruned early in search
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® most tuning methods view MT decoder as a black box
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® potentially good sub-translations pruned early in search

Search-Aware Tuning - Liu & Huang (CUNY)



Parameter Tuning for MT
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® most tuning methods view MT decoder as a black box
® “search-agnostic” tuning (MERT, MIRA, PRO, ...)

® but actually search error is a main reason of bad quality
® potentially good sub-translations pruned early in search

® Q:how to promote these promising sub-derivations!?

® A:tune the ranking of non-final bins as well as final bin

® “search-aware tuning” (SA-MERT, SA-MIRA, SA-PRO, ...)

® Q:how to evaluate the “potential” of a sub-derivation!?
Search-Aware Tuning - Liu & Huang (CUNY)



Outline

® Evaluating Partial Derivations
® challenges

® method I: naive partial BLEU

® method 2: novel potential BLEU
® Search-Aware MERT, MIRA, and PRO

® Experiments

® consistent +|1 BLEU improvement with dense features

Search-Aware Tuning - Liu & Huang (CUNY)



Challenges in Partial Evaluation
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® challenge |:there is no “partial” references
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® challenge 2:in phrase-based MT, partial translations in
the same bin may cover different source words

Search-Aware Tuning - Liu & Huang (CUNY)
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® challenge 2:in phrase-based MT, partial translations in
the same bin may cover different source words

source: & M BB ¥k F| bR

Search-Aware Tuning - Liu & Huang (CUNY)
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® challenge 2:in phrase-based MT, partial translations in
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g|OSSZ | from Shanghai fly to Beijing

reference: | flew from Shanghai to Beijing

partial I: | from
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Method |: Naive Partial BLEU

® naive solution: just evaluate against the full reference
® but using a prorated reference length
proportional to number of source words translated so far

® inspired by oracle extraction (Li & Khudanpur 10; Chiang 12)

® problem: favoring those translating “easier” words first

source: &% M BE ¢ F kR

g|OSSZ | from Shanghai fly to Beijing

reference: | flew from Shanghai to Beijing

partial I: 1 from unigram=2

Search-Aware Tuning - Liu & Huang (CUNY)
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Evaluating the “Potential”

® better not evaluate partial translation as is, but its potential
® do we want the oracle (best) or average potential?
® oracle is too hard to compute, and maybe not that useful

® want the “most likely” potential given the current model

oracle
art current
Stai state
state

worst

Search-Aware Tuning - Liu & Huang (CUNY)
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Method 2: Potential BLEU

® the “most likely potential” BLEU of a derivation

® extend partial derivation to cover uncovered words
® using best monotonic translation for uncovered portions

® inspired by “future cost” in phrase-based decoding

(inadmissible) A* heuristic computed by DP (Koehn, 2004)
source: I M BB ¢ | JER r=eee __ee _ __

. . reordering monotonic ;’I
g|OSS. | from Shanghai fly to Beijing X /\ /

reference: | flew from Shanghai to Beijing €x(d) = e(d) |o| future(d, )

partial I: 1 from
partial 2: | fly

Search-Aware Tuning - Liu & Huang (CUNY) 9
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Method 2: Potential BLEU

® the “most likely potential” BLEU of a derivation

® extend partial derivation to cover uncovered words
® using best monotonic translation for uncovered portions

® inspired by “future cost” in phrase-based decoding

(inadmissible) A* heuristic computed by DP (Koehn, 2004)
source: I M BB ¢ | JER r=eee __ee _ __

. . reordering monotonic ;’I
g|OSS. | from Shanghai fly to Beijing X /\ /

reference: | flew from Shanghai to Beijing €x(d) = e(d) |o| future(d, )

partial I: | from |Shanghai fly to Beijing| ~ unigram=>, bi=2

partial 2: | fly from Shanghai to Beijing| unigram=5, bi=3, tri=2, 4gram=1
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Towards Search-Aware Tuning

Traditional tuning

MERT/MIRA/PRO
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Towards Search-Aware Tuning

Traditional tuning

: Search-aware tuning _

Search-Aware Tuning - Liu & Huang (CUNY)



Experiments: Ch-to-En

® on phrase-based decoder (Huang & Chiang 07;Yu et al |3)
e partial BLEU not helpful, but potential BLEU very helpful

® all experiments use only dense features

Methods nist03  nist0O4 nistOS nist06 nistO8  avg

MERT 33.6 35.1 334 31.6 27.9 -
SA-MERTP4" -0.2 +0.0 +0.1 -0.1 -0.1 —
SA-MERT"* | +0.8 +1.1 +09 +1.7 +1.5 +1.2

MIRA 33.5 35.2 33.5 31.6 27.6 —
SA-MIRAX?" | +0.3 +0.3 +0.4 +0.4 +0.6 —
SA-MIRA? | +1.3 +1.6 +14 +22 +2.6 +1.8

PRO 33.3 35.1 33.3 31.1 27.5 —
*SA-PROPY" -2.0 -2.77 -2.2 -1.0 -1.7 —
*SA-PrRO”t | +0.8 +0.5 +1.0 +1.6 +1.6 +1.1

Search-Aware Tuning - Liu & Huang (CUNY)




Beam Size

® helps more in smaller beam sizes
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Oracle Improvement

® search-aware tuning improves k-best oracle in final bin
® quality of k-best list improves more than |-best

® more improvement on test than tuning

tuning test
methods nist02 | nistO5
(s MERT 35:5 33.4
SA-MERT -0.1 +0.9
et MERT 44.3 41.1
SA-MERT | +0.5 +1.6
] Jorad) Joese

Search-Aware Tuning - Liu & Huang (CUNY)



More Diversity in the Flnal Bin
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® search-aware tuning does promote diversity

® even though we do not include diversity in the objectives

® adapt n-gram diversity metric (Gimpel et al 2013) with modifications

yl—aly'[—q
d(y,y) y‘ y‘ [Wisitq = Vjijql Diversity | nist02 | nist0S
i=1 j=1 MERT 0.216 | 0.204
2 x d(y,y') SA-MERT | 0.227 | 0.213

dl / - 1 s
v:y) d(y,y) +d',y)

Search-Aware Tuning - Liu & Huang (CUNY)



Drawback: Slow Optimization

® search-aware tuning does slow down optimization
® but decoding is the bottle-neck in tuning
® though parallelizable

® overall slowdown is not significant for MIRA/PRO

Optimization time | MERT MIRA PRO

baseline 3 2 2
search-aware 50 q 6

decoding time: 20 min. on single CPU

Search-Aware Tuning - Liu & Huang (CUNY)
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® search-agnostic tuning does not address this problem
® our search-aware tuning promotes promising translations
e potential BLEU is a good evaluator for sub-translations
® also works for TER and other metrics
® very simple framework; applies to MERT/MIRA/PRO...
® first consistent ~| BLEU point improvement with dense features

® only drawback: slower optimization

Search-Aware Tuning - Liu & Huang (CUNY)



