Search Aware Tuning for Machine Translation

Lemao Liu Liang Huang

City University of New York

Search Aware Tuning for Machine Translation

Lemao Liu Liang Huang

City University of New York

- most tuning methods view MT decoder as a black box
 - "search-agnostic" tuning (MERT, MIRA, PRO, ...)
- but actually search error is a main reason of bad quality
 - potentially good sub-translations pruned early in search
 - final k-best list also lacks diversity

- most tuning methods view MT decoder as a black box
 - "search-agnostic" tuning (MERT, MIRA, PRO, ...)
- but actually search error is a main reason of bad quality
 - potentially good sub-translations pruned early in search

- most tuning methods view MT decoder as a black box
 - "search-agnostic" tuning (MERT, MIRA, PRO, ...)
- but actually search error is a main reason of bad quality
 - potentially good sub-translations pruned early in search

Search Error in MT

- most tuning methods view MT decoder as a black box
 - "search-agnostic" tuning (MERT, MIRA, PRO, ...)
- but actually search error is a main reason of bad quality
 - potentially good sub-translations pruned early in search

- most tuning methods view MT decoder as a black box
 - "search-agnostic" tuning (MERT, MIRA, PRO, ...)
- but actually search error is a main reason of bad quality
 - potentially good sub-translations pruned early in search

- most tuning methods view MT decoder as a black box
 - "search-agnostic" tuning (MERT, MIRA, PRO, ...)
- but actually search error is a main reason of bad quality
 - potentially good sub-translations pruned early in search
- Q: how to promote these promising sub-derivations?
- A: tune the ranking of non-final bins as well as final bin
 - "search-aware tuning" (SA-MERT, SA-MIRA, SA-PRO, ...)
 - Q: how to evaluate the "potential" of a sub-derivation?

Outline

- Motivations
- Evaluating Partial Derivations
 - challenges
 - method I: naive partial BLEU
 - method 2: novel potential BLEU
- Search-Aware MERT, MIRA, and PRO
- Experiments
 - consistent +1 BLEU improvement with dense features

- challenge I: there is no "partial" references
- challenge 2: in phrase-based MT, partial translations in the same bin may cover different source words

- challenge I: there is no "partial" references
- challenge 2: in phrase-based MT, partial translations in the same bin may cover different source words

source: 我从上海飞到北京

- challenge I: there is no "partial" references
- challenge 2: in phrase-based MT, partial translations in the same bin may cover different source words

source: 我从上海飞到北京

gloss: I from Shanghai fly to Beijing

- challenge I: there is no "partial" references
- challenge 2: in phrase-based MT, partial translations in the same bin may cover different source words

source: 我 从 上海 飞 到 北京

gloss: I from Shanghai fly to Beijing

reference: I flew from Shanghai to Beijing

- challenge I: there is no "partial" references
- challenge 2: in phrase-based MT, partial translations in the same bin may cover different source words

source: 我从上海飞到北京

gloss: I from Shanghai fly to Beijing

reference: I flew from Shanghai to Beijing

partial I: I from

- challenge I: there is no "partial" references
- challenge 2: in phrase-based MT, partial translations in the same bin may cover different source words

source: 我从上海飞到北京

gloss: I from Shanghai fly to Beijing

reference: I flew from Shanghai to Beijing

partial I: I from

partial 2: I fly

Method I: Naive Partial BLEU

- naive solution: just evaluate against the full reference
 - but using a prorated reference length
 - proportional to number of source words translated so far
 - inspired by oracle extraction (Li & Khudanpur 10; Chiang 12)
- problem: favoring those translating "easier" words first

```
source: 我从上海飞到北京
```

```
gloss: I from Shanghai fly to Beijing
```

reference: I flew from Shanghai to Beijing

```
partial I: I from unigram=2
```

partial 2: I fly unigram=I

Method I: Naive Partial BLEU

- naive solution: just evaluate against the full reference
 - but using a prorated reference length
 - proportional to number of source words translated so far
 - inspired by oracle extraction (Li & Khudanpur 10; Chiang 12)
- problem: favoring those translating "easier" words first

```
source: 我从上海飞到北京
```

```
gloss: I from Shanghai fly to Beijing
```

reference: I flew from Shanghai to Beijing

partial I: I from ur

partial 2: I fly

unigram=1

Evaluating the "Potential"

- better not evaluate partial translation as is, but its potential
- do we want the oracle (best) or average potential?
 - oracle is too hard to compute, and maybe not that useful
 - want the "most likely" potential given the current model

Evaluating the "Potential"

- better not evaluate partial translation as is, but its potential
- do we want the oracle (best) or average potential?
 - oracle is too hard to compute, and maybe not that useful
 - want the "most likely" potential given the current model

- the "most likely potential" BLEU of a derivation
- extend partial derivation to cover uncovered words
 - using best monotonic translation for uncovered portions
 - inspired by "future cost" in phrase-based decoding
 - (inadmissible) A* heuristic computed by DP (Koehn, 2004)

source: 我 从 上海 飞 到 北京 x= \bullet \bullet \bullet \bullet \bullet \bullet gloss: I from Shanghai fly to Beijing reference: I flew from Shanghai to Beijing $\bar{e}_x(d)=$ e(d) \circ future(d,x)

partial I: I from

partial 2: I fly

- the "most likely potential" BLEU of a derivation
- extend partial derivation to cover uncovered words
 - using best monotonic translation for uncovered portions
 - inspired by "future cost" in phrase-based decoding
 - (inadmissible) A* heuristic computed by DP (Koehn, 2004)

source: 我 从 上海 飞 到 北京 x= \bullet \bullet \bullet \bullet \bullet \bullet \bullet gloss: I from Shanghai fly to Beijing reference: I flew from Shanghai to Beijing

partial I: I from Shanghai fly to Beijing

partial 2: I fly

- the "most likely potential" BLEU of a derivation
- extend partial derivation to cover uncovered words
 - using best monotonic translation for uncovered portions
 - inspired by "future cost" in phrase-based decoding
 - (inadmissible) A* heuristic computed by DP (Koehn, 2004)

partial I: I from Shanghai fly to Beijing from Shanghai to Beijing

- the "most likely potential" BLEU of a derivation
- extend partial derivation to cover uncovered words
 - using best monotonic translation for uncovered portions
 - inspired by "future cost" in phrase-based decoding
 - (inadmissible) A* heuristic computed by DP (Koehn, 2004)

source: 我 从 上海 飞 到 北京

gloss: I from Shanghai fly to Beijing

reference: I flew from Shanghai to Beijing

 $x = \boxed{\bullet} \boxed{\bullet} \boxed{-} \boxed{\bullet} \boxed{-} \boxed{-}$ reordering monotonic monotonic future (d,x)

partial I: I from

partial 2: I fly

Shanghai fly to Beijing

from Shanghai to Beijing

unigram=5, bi=2

- the "most likely potential" BLEU of a derivation
- extend partial derivation to cover uncovered words
 - using best monotonic translation for uncovered portions
 - inspired by "future cost" in phrase-based decoding
 - (inadmissible) A* heuristic computed by DP (Koehn, 2004)

source: 我 从 上海 飞 到 北京

gloss: I from Shanghai fly to Beijing

reference: I flew from Shanghai to Beijing

 $x = \boxed{\bullet} \boxed{-} \boxed{\bullet} \boxed{-}$ reordering monotonic $\bar{e}_x(d) = \boxed{e(d)} \circ \boxed{future(d,x)}$

partial I: I from

partial 2: I fly

Shanghai fly to Beijing

from Shanghai to Beijing

unigram=5, bi=2

unigram=5, bi=3, tri=2, 4gram=1

- the "most likely potential" BLEU of a derivation
- extend partial derivation to cover uncovered words
 - using best monotonic translation for uncovered portions
 - inspired by "future cost" in phrase-based decoding
 - (inadmissible) A* heuristic computed by DP (Koehn, 2004)

source: 我从上海飞到北京

gloss: I from Shanghai fly to Beijing

reference: I flew from Shanghai to Beijing

partial I: I from

partial 2: I fly

Shanghai fly to Beijing

from Shanghai to Beijing

unigram=5, bi=2

unigram=5, bi=3, tri=2, 4gram=1

Towards Search-Aware Tuning

Towards Search-Aware Tuning

Towards Search-Aware Tuning

Traditional tuning MERT/MIRA/PRO

Search-aware tuning

Experiments: Ch-to-En

- on phrase-based decoder (Huang & Chiang 07; Yu et al 13)
 - partial BLEU not helpful, but potential BLEU very helpful
 - all experiments use only dense features

Methods	nist03	nist04	nist05	nist06	nist08	avg
MERT	33.6	35.1	33.4	31.6	27.9	_
$SA ext{-}MERT^{par}$	-0.2	+0.0	+0.1	-0.1	-0.1	_
$SA ext{-}MERT^{pot}$	+0.8	+1.1	+0.9	+1.7	+1.5	+1.2
MIRA	33.5	35.2	33.5	31.6	27.6	_
$SA ext{-}Mir A^{par}$	+0.3	+0.3	+0.4	+0.4	+0.6	_
$SA ext{-}Mir A^{pot}$	+1.3	+1.6	+1.4	+2.2	+2.6	+1.8
Pro	33.3	35.1	33.3	31.1	27.5	_
$*SA-Pro^{par}$	-2.0	-2.7	-2.2	-1.0	-1.7	_
*SA-Pro ^{pot}	+0.8	+0.5	+1.0	+1.6	+1.6	+1.1

Beam Size

helps more in smaller beam sizes

Oracle Improvement

- search-aware tuning improves k-best oracle in final bin
 - quality of k-best list improves more than 1-best
 - more improvement on test than tuning

		tuning	test
	methods	nist02	nist05
1-best	MERT	35.5	33.4
	SA-MERT	-0.1	+0.9
Oracle	MERT	44.3	41.1
	SA-MERT	+0.5	+1.6

More Diversity in the Final Bin

- search-aware tuning does promote diversity
 - even though we do not include diversity in the objectives
 - adapt n-gram diversity metric (Gimpel et al 2013) with modifications

$$d(y, y') = -\sum_{i=1}^{|y|-q} \sum_{j=1}^{|y'|-q} [y_{i:i+q} = y'_{j:j+q}]$$
$$d'(y, y') = 1 - \frac{2 \times d(y, y')}{d(y, y) + d(y', y')}$$

Diversity	nist02	nist05
MERT	0.216	0.204
SA-MERT	0.227	0.213

Drawback: Slow Optimization

- search-aware tuning does slow down optimization
- but decoding is the bottle-neck in tuning
 - though parallelizable
- overall slowdown is not significant for MIRA/PRO

Optimization time	MERT	MIRA	Pro
baseline	3	2	2
search-aware	50	7	6

decoding time: 20 min. on single CPU

Conclusions

- search error is a major reason for bad translation
 - search-agnostic tuning does not address this problem
- our search-aware tuning promotes promising translations
- potential BLEU is a good evaluator for sub-translations
 - also works for TER and other metrics
- very simple framework; applies to MERT/MIRA/PRO...
 - first consistent ~I BLEU point improvement with dense features
 - only drawback: slower optimization