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Consecutive vs. Simultaneous Interpretation
consecutive interpretation 
multiplicative latency (x2)

simultaneous interpretation 
additive latency (+3 secs)
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Consecutive vs. Simultaneous Interpretation
consecutive interpretation 
multiplicative latency (x2)

simultaneous interpretation 
additive latency (+3 secs)

simultaneous interpretation is 
extremely difficult 

only ~3,000 qualified simultaneous 
interpreters world-wide (AIIC) 

each interpreter can only sustain for  
at most 15-20 minutes 

the best interpreters can only cover  
～60% of the source material

https://www.youtube.com/watch?v=2vfpRO2mw9k


Simultaneous Interpreters: Strategies & Limitations
• anticipation, summarization, generalization, etc…

• and they inevitably make (quite a bit of) mistakes

• “human-level” quality: much lower than normal translation

• “human-level” latency: very short: 2~4 secs    (actually higher latency hurts quality…)

from United Nations Proceedings Speech Corpus (LDC2014S08, Chay et al, 2014)
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Our Breakthrough in 2018

 6

our 
work

Baidu World Conference, Nov. 2017 
full-sentence translation (latency: 10+ secs)

Baidu World Conference, Nov. 2018 
low-latency simultaneous translation (latency: ~3 secs)

request

Ken Church

I really need low-latency 
simultaneous translation!

Zhongjun He Hao XiongHaifeng Wang Mingbo Ma Kaibo Liu Renjie Zheng



Main Challenge: Word Order Difference
• e.g. translate from Subj-Obj-Verb (Japanese, German) to Subj-Verb-Obj (English)

• German is underlyingly SOV, and Chinese is a mix of SVO and SOV

• human simultaneous interpreters routinely “anticipate” (e.g., predicting German verb)

Grissom et al, 2014
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Main Challenge: Word Order Difference
• e.g. translate from Subj-Obj-Verb (Japanese, German) to Subj-Verb-Obj (English)

• German is underlyingly SOV, and Chinese is a mix of SVO and SOV

• human simultaneous interpreters routinely “anticipate” (e.g., predicting German verb)

Grissom et al, 2014

non-anticipative:   President Bush     (…… waiting ……)                            meets with Russian …

President  Bush  meets   with    Russian    President    Putin   in   Moscow

anticipative:   President Bush  meets  with  Russian   President   Putin   in   Moscow



Previous Solutions

• industrial systems

• almost all “real-time” translation systems use full-sentence translation

• some systems “repeatedly retranslate”, but constantly changing translations is 
annoying to the users and can’t be used for speech-to-speech translation

• academic papers (just to sample a few)

• explicit prediction of German verbs (Grissom et al, 2014)

• reinforcement learning (Gu et al, 2017) to decide READ or WRITE

• segment-based (Bangalore et al, 2012; Fujita et al, 2013; Oda et al, 2014)

• these efforts (a) use full-sentence translation model; (b) can’t ensure a given latency
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Our Idea: Prefix-to-Prefix, not Seq-to-Seq
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• decoding this way => controllable latency
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1 2
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target:

41 2 3 5
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41 2 3

…wait k words

1 2

source:

target:

5

prefix-to-prefix  
(wait-k)

• standard seq-to-seq is only suitable for  
conventional full-sentence MT

• we propose prefix-to-prefix framework  
tailed to tasks with simultaneity

• special case: wait-k policy: translation is  
always k words behind source sentence

• decoding this way => controllable latency

• training this way => implicit anticipation on the target-side

President Bush meets with Russian President
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More General Prefix-to-Prefix
• prefix-to-prefix (given source prefix)  

 p(yt | x1 … xg(t) , y1… yt-1)  
 g(⋅) is a monotonic non-decreasing function 
 g(t):  num. of source words used to predict yt

• seq-to-seq (given full source sent)  
 p(yt | x1 … xn , y1… yt-1)

Pres. in Moscow with Putin meet

布什什 总统 在 莫斯科 与 普京 会晤

President

Bush

meets

with

Putin

in

Moscow

Bush

t=3 g(3) = 4

this general framework can  
be used for other tasks  
such as incremental parsing 
and incremental text-to-speech
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Latency-Accuracy Tradeoff
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Deployment Demo

 13This is live recording from the Baidu World Conference on Nov 1, 2018.
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 13This is live recording from the Baidu World Conference on Nov 1, 2018.



German=>English Anticipation Example

 14

German source:
doch während man sich im kongress nicht auf ein vorgehen einigen kann , warten mehrere bundesstaaten nicht länger . 
but     while       they  self  in   congress   not    on  one  action      agree     can      wait      several    states                not     longer

English translation (simultaneous, wait 3):
                                but , while congress does not agree on a course of action , several states no longer wait . 

English translation (full-sentence baseline):
but , while congressional action can not be agreed , several states are no longer waiting . 



New Latency Metric:  Average Lagging
• previous metrics: CW (consecutive wait) and AP (average proportion)

• they do not directly measure the level of “lagging behind” (Gu et al ’17; Cho & Esipova ’16)

• our metric, Average Lagging (AL), measures on average how many source words 
the translation lags behind the source speech;         ideally,  AL (wait-k) ≈ k

• closely related to “ear-voice span” (EVS) in the interpretation literature

 15

latency latency

latency of “Bolivia” (+)

latency of “position” (-)

布什什 总统 在 莫斯科 与 普京 会晤

Pres.

Bush

meets

with

Putin

in

Moscow

read

w
rite



RL

Experiments (de⇔en & zh⇔en)

 16

RL: our adaptation of Gu et al (2017) 

on the same Transformer codebase, 
trained with CW=2, 5, 8.



Summary of Innovations in 2018
• prefix-to-prefix framework tailed to simultaneity (incremental on both sides)

• first genuinely simultaneous translation model (rather than full-sentence model)

• decoding like this => controllable latency

• training like this => implicit anticipation on the target side

• very easy to train and scalable — minor changes to most neural MT codebase

• prefix-to-prefix is very general; can be used in other tasks with simultaneity

• a new latency metric (AL) that resembles “ear-voice span” in interpretation

 17



Part 1I: Towards Adaptive Translation Policies



Part 1I: Towards Adaptive Translation Policies

fixed-latency policies adaptive policies

full-sentence MT model Dalvi et al. (2018);

test-time wait-k (Ma et al. 2018)

Grissom et al. (2014);

Cho & Esipova (2016); Satija & Pineau (2016);  

Gu et al. (2017); Alinejad et al (2018); …

simultaneous MT model 
(our invention) wait-k (Ma et al. 2018) Arivazhagan et al. (ACL 2019)


Zheng et al. (ACL 2019)



Limitations of Fixed-Latency (wait-k) Policy
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Previous Work on Adaptive Policy

• READ and WRITE actions
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Previous Work on Adaptive Policy

• READ and WRITE actions

• sequential decision making      reinforcement learning (Gu et al. 2017)

• unstable training (randomness in exploration)

• complicated (two models trained in two stages)

• worse performance (than wait-k model)
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Previous Work on Adaptive Policy

• READ and WRITE actions

• sequential decision making      reinforcement learning (Gu et al. 2017)

• unstable training (randomness in exploration)

• complicated (two models trained in two stages)

• worse performance (than wait-k model)

• can we learn a better model with adaptive policy via simpler methods ? 
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Our Idea: Single Model, with READ as a Word
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Our Idea: Single Model, with READ as a Word
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Learn a Single Model via Imitation Learning

• imitation learning

• learn to imitate a given expert policy
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Learn a Single Model via Imitation Learning

• basic ideas

• merge two models into one

• add read action into target 
vocabulary

• end-to-end training 

• design an expert policy to use 
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Learn a Single Model via Imitation Learning

• basic ideas
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for more details 
come to my short talk tomorrow 



Another Much Simpler Idea
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• on-the-fly decide 
READ or WRITE 

• depending on  
p(yi| … )

• if not confident 
enough, READ

• switch to wait-(k+1)  
(more conservative)

• otherwise WRITE

• switch to wait-(k-1) 
(more aggressive)



Part III: Remaining Challenges
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Part III: Remaining Challenges
• Speech Recognition-related

• coping with ASR noise, esp. homophones

• code switching

• sentence breaking

• prosody lost in translation

• directly speech-to-speech without text-to-text?
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Part III: Remaining Challenges
• Speech Recognition-related

• coping with ASR noise, esp. homophones

• code switching

• sentence breaking

• prosody lost in translation

• directly speech-to-speech without text-to-text?

• Incremental Text-to-Speech Synthesis (TTS)

• Better Dataset for Training

• Detecting and Fixing Mistakes (esp. anticipation errors)

 24
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Coping with ASR noise

• neural MT is fragile, and automatic speech recognition (ASR) output is noisy

• our work (Liu et al, ACL 2019): robust neural MT using phonetic information
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有 
yǒu

have

⼜又 
yòu

again



Baidu ASR’s Code-Switching Capabilities

• Baidu ASR is awesome at code-switching (English terms in Chinese speech)  26

Baidu AI Create, July 2019
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Better Dataset for Training Simultaneous Translation

• standard parallel text is not made for simultaneous translation

• involves too many “unnecessary long-distance reorderings”

• simultaneous interpretation corpora is not ideal training data either

• contains too many mistakes, speech repairs, and compressions

• again, our goal is short latency (like human simultaneous interpretation)  
                   and good quality  (like human written translation)
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Better Dataset for Training Simultaneous Translation

• idea: rephrase target side of parallel text to remove unnecessary reorderings

 28

关于 克林林顿主义 ， 没有  准确   的  定义

guānyú  k è l í n d ù n z h ǔ y ì   mé iyǒu  zhǔnquè   d e d ì n g y ì

about   Clintonism             no      accurate         def.


“There is no accurate definition of Clintonism.”

习近平 于 2012 年年 在 北北京  当选 

x í j ì n p í n g  y ú  nián  z à i  bě i j īn g  dāngxuǎn

Xi Jiping  in   2012   yr    in  Beijing  elected


“Xi Jinping was elected in Beijing in 2012”

        About Clintonism, there is no accurate definition.

VPPP

PP VP
VPNP

S

SPP

S

mandatory reordering optional reordering
(Chinese) PP VP => (English) VP PP (Chinese) PP S => (English) PP S or S PP

reference 
translation

ideal =>

see also He et al (2015)



Detecting and Fixing Mistakes

• idea: use a slower policy to verify the current policy’s output along the way
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The point of this talk is to “抛砖引⽟玉”, i.e.,  

to stimulate interests in this long-standing problem.





⾮非常 感谢 您     来  听  我    的 演讲

                Thank you very much for listening to my speech
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Code (will be) available at https://nlp.baidu.com/paddlenlp 
using https://github.com/PaddlePaddle framework  
(it supports both static & dynamic graphs) 
(the code for robust decoding with ASR noise is already available)


Two Posters after the coffee break (10:30), Session 4A (#4 & #6)

Short Talk tomorrow, Session 8D (17:13, CAVANIGLIA)


