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consecutive interpretation 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simultaneous interpretation is 
extremely difficult 

only ~3,000 qualified simultaneous 
interpreters world-wide 

each interpreter can only sustain for  
at most 10-30 minutes 

the best interpreters can only cover  
～60% of the source material



Tradeoff between Latency and Quality
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Industrial Work in Simultaneous Translation

• almost all existing “real-time” translation systems use conventional full-
sentence translation techniques, causing at least one-sentence delay

• some systems repeatedly retranslate, but constantly changing translations is 
annoying to the user and can’t be used for speech-to-speech translation
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Academic Work in Simultaneous Translation

• prediction of German verb (Grissom et al, 2014)

• reinforcement learning (Grissom et al, 2014; Gu et al, 2017)

• learning Read/Write sequences on top of a pretained NMT model

• “encourages” latency requirements, but can’t force them in testing

• complicated, and slow to train  
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Grissom et al, 2014



Challenge: Word Order Difference
• e.g. translate from SOV language (Japanese, German) to SVO (English)

• German is underlyingly SOV, and Chinese is a mix of SVO and SOV

• human simultaneous interpreters routinely “anticipate” (e.g., predicting German verb)
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always k words behind source sentence
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More General Prefix-to-Prefix
• prefix-to-prefix (given source prefix)  

 p(yt | x1 … xg(t) , y1… yt-1)  
 g(⋅) is a monotonic non-decreasing function 
 g(t):  num. of source words used to predict yt

• seq-to-seq (given full source sent)  
 p(yt | x1 … xn , y1… yt-1)

Pres.

at

Moscow

with

Putin

meet

President Bush meets with Putin in Moscow

布什什

总统

在

莫斯科

与

普京

会晤

Bush

t=3

g(
3)

 =
 4
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Demo 1 (Research)

 10This is just our research demo. Our production system is better (shorter ASR latency).

江 泽⺠民 对 法国 总统    的            来华   访问           表示  感谢    。 
jiāng  zé mín d u ì fǎ guó zǒng tǒng d e l á i huá fǎng wèn biǎo shì gǎn xiè

jiang zemin  to    French  President ’s                     to-China  visit                      express  gratitude 

                    jiang  zemin   expressed his       appreciation  for      the      visit by french president . 



Demo 2 (Latency-Accuracy Tradeoff)
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Demo 3 (Deployment)

 12This is live recording from the Baidu World Conference on Nov 1, 2018.
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German => English Example
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German source:
doch während man sich im kongress nicht auf ein vorgehen einigen kann , warten mehrere bundesstaaten nicht länger . 

English translation (simultaneous wait 3 — training not converged yet):
                                but , while congress does not agree on a course of action , several states no longer wait . 

English translation (full-sentence beam search):
but , while congressional action can not be agreed , several states are no longer waiting . 



Refinements: Wait-k with Catchup 
• English translation length is often ~1.25x of the Chinese input length

• in a more or less “synchronized” policy like wait-k, the English translation will be 
lagging behind more and more severely

• catchup: decode two English words in 1 out of 4 steps
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New Latency Metric: Average Lagging
• previous latency metrics: CW (consecutive wait) and AP (average proportion)

• they’re good metrics but do not directly measure the level of “lagging behind”

• our metric, Average Lagging (AL), measures on average how many (source) 
words is the translation lagging behind;    ideally,  AL (wait-k with catchup) ≈ k
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Experiments: German<=>English
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Experiments: Chinese<=>English
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• trained on 2M sentence pairs; evaluated on NIST 06 / 08; 1-ref and 4-ref BLEU



Chinese=>English Examples From Recent News
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Media Reports
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Media Reports
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This is another new development that 
has made foreign technology media 
so excited since the release of Baidu 
Deep Speech 2 in 2016. 

— QbitAI (量量⼦子位)



Conclusions
• first simultaneous translation system with seamlessly integrated anticipation

• human simultaneous interpreters also anticipate all the time

• some previous works predict source language verbs

• we don’t have a separate “anticipation” step, and only predict target side words

• first simultaneous translation system with arbitrary controllable latency

• some previous works use reinforcement learning with latency as part of the 
reward, but can’t impose a hard constraint on latency at test time

• very easy to train and scalable — minor changes to any neural MT codebase
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⾮非常 感谢 您     来  听  我    的 演讲

                Thank you very much for listening to my speech



Side Project: Translation with Noisy Input from ASR

• neural MT is fragile, and automatic speech recognition output is noisy

• Hairong Liu’s work (on arXiv): Robust Neural MT using phonetic information
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有 
yǒu

have

⼜又 
yòu

again


