# Group Sparse CNNs for Question Classification with Answer Sets

Mingbo Ma and Liang Huang (Oregon State Univ.)

Bowen Zhou and Bing Xiang (IBM T. J. Watson)

### Typical Sentence Classification

- ✓ Sentimental Classification: (movie review)
  - i) Review: "I don't like this movie at all! ..." (Negative)
  - ii) Two categories (Positive or Negative)
  - iii) No overlaps between categories and single label
- Question Type Classification: (TREC datasets)
  - iv) Q: "What is Oregon's state flower?" (Entity)
  - v) Six categories (Entity, Location, Number ....)
  - vi) Still no overlaps between categories and single label

However, there are overlapping categories in questions classification ...

#### Question Classification

Hey, Siri, what would be the best thing to do in New York City?

Attraction Ans. 1: Go to a museum?

Sports Ans. 2: Watch a Yankees game?

Dining Ans. 3: Exploring various restaurant?

•••

There are multiple answers which come from different categories!

### Examples: NY-DMV FAQs

#### ✓ New York State DMV FAQs:

- i) 8 Top level categories and 47 sub-categories
- ii) 537 questions (only 388 unique sentences)

#### ✓ FAQs Examples:

iii) Driver License/Permit/Non-Driver ID

a. Apply for original (49 questions)
 b. Renew or replace (24 questions)
 c. Where is my photo document? (15 questions)

•••

#### iv) Vehicle Registrations and Insurance

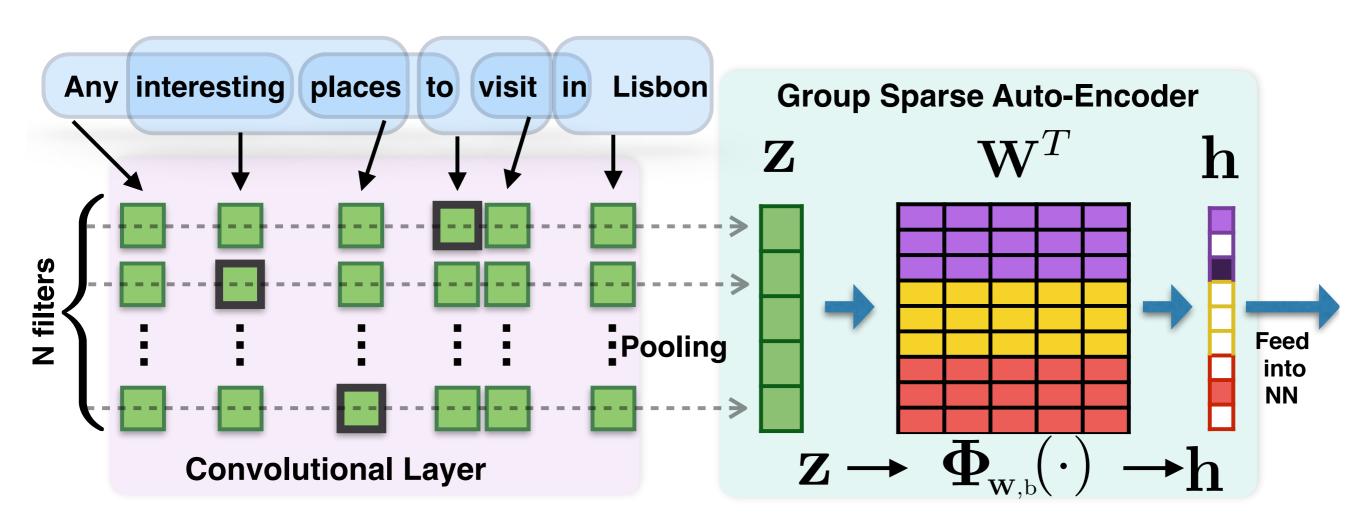
a. Buy, sell, or transfer a vehicle
 b. Reg. and title requirements
 (22 questions)
 (42 questions)

•••

v) Driving Record / Tickets / Points

### Motivations

- Question classification different from general sentence modeling:
  - i) Question categories have hierarchical and overlapping structures
    - Each question often belongs to multiple categories (multi-labeled)
    - Question categories often have hierarchical structures
    - Question categories often have overlaps


### Motivations

- Question classification different from general sentence modeling:
  - i) Questions or question categories have wellprepared answer sets
    - These answer sets generally cover a larger vocabulary (than the questions themselves) and provide richer information for each class
    - We believe there is a great potential to enhance question representation with extra information from corresponding answer sets

## Group Sparse CNNs

- ✓ Why do we need group sparse?
  - i) Explore the shared information
    - within categories (sparse constraint)
    - between categories (group sparse constraint)
  - ii) uses information from answers as dictionary to build more informative sentence representation

### Group Sparse CNNs



- ✓ W is the projection matrix (functions as a dictionary)
- ✓ Darker colors in h mean larger values and white means zero
- ✓ h is the sparse representation of z, we apply different inter- and intra- sparse constraints on h.

### Group Sparse CNNs

#### Our proposed Group Sparse Constrains:

$$J_{\text{groupsparse}}(\rho, \eta) = J + \alpha \sum_{j=1}^{s} KL(\rho || \hat{\rho}_j) + \beta \sum_{p=1}^{G} KL(\eta || \hat{\eta}_p)$$

Sparse

Group Sparse

#### where

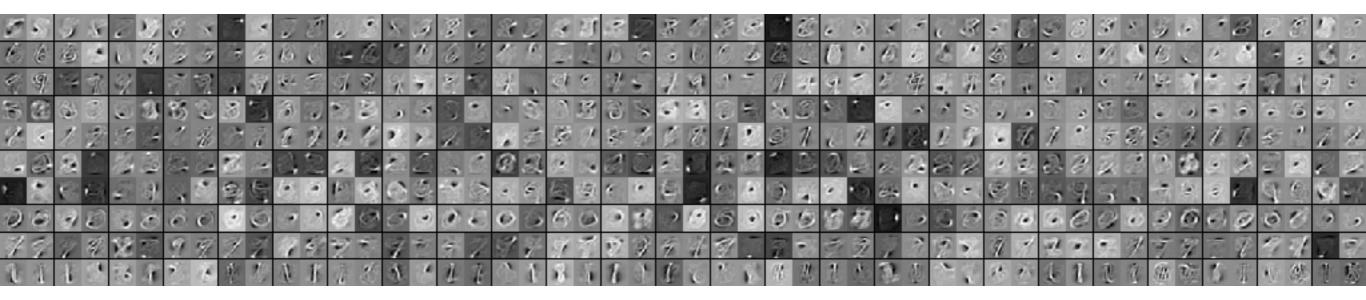
Group 
$$KL(\eta \| \hat{\eta}_p) = \eta \log \frac{\eta}{\hat{\eta}_p} + (1 - \eta) \log \frac{1 - \eta}{1 - \hat{\eta}_p}$$
 where  $\hat{\eta}_p = \frac{1}{mg} \sum_{i=1}^m \sum_{l=1}^g \|h_{p,l}^i\|_2$  Sparse

### Datasets

### ✓ Digits visualization

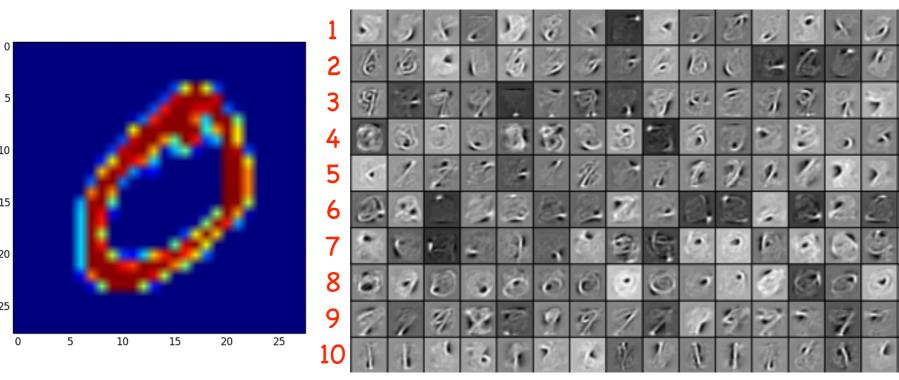
i) only used for visualize the group sparse AE's performance. to show the idea of group works.

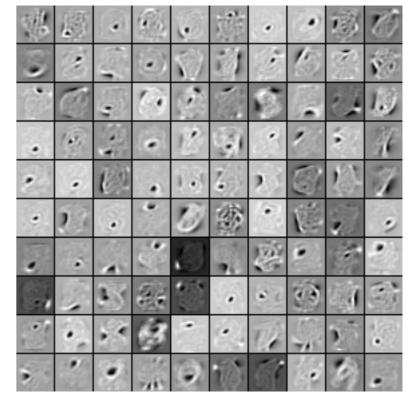
#### ✓ TREC dataset


- i) single label, small data and w/o answer set
- ii) this is well-know data, just give the reviewers the idea of our performance compared state of art performance.

### Datasets

- ✓ NY-DMV dataset (self collected)
  - i) multi-label, small data and w/ answer data
  - ii) more realistic, public accessible dataset
- Yahoo dataset
  - i) Single-label, big data and w/ answer set
  - ii) The only problem is this is not multi-label problem
- ✓ Insurance dataset (private, IBM customer)
  - i) Multi-label, small data and w/ answer set
  - ii) this is ideal data set but data is too small


### Sparsity Visualization

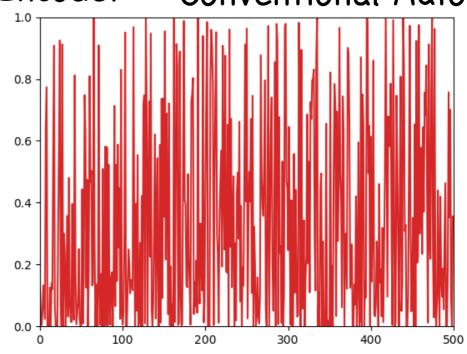

- Group sparse on MINIST dataset (handwritten digits) in order to get meaningful visualization.
- ✓ There are 10 groups, for each group there are 50 centroids
- ✓ The following are the visualization for the dictionary
  - √ 10 groups (row direction)
  - √ 50 centroids (column direction)
  - ✓ This dictionary was initialize by clustering the dataset and trained by group sparse AE.



### Sparsity Constraint: group sparsity

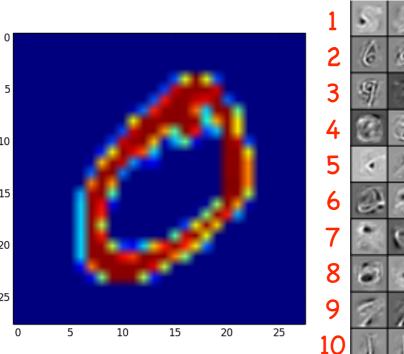
This is the visualization of W for hand written digit "O"



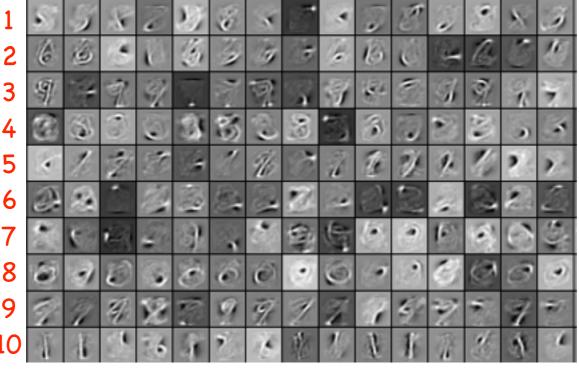



input image

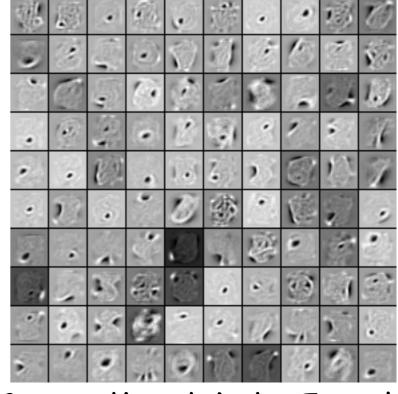
Group Sparse Auto-Encoder


Conventional Auto-Encoder

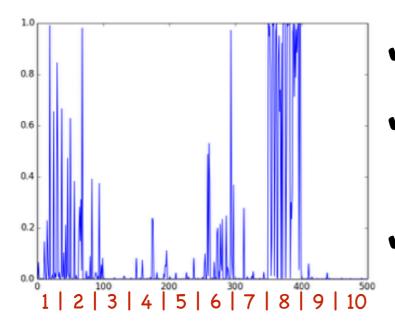





### Sparsity Constraint: group sparsity


This is the visualization of W for hand written digit "0"




input image



Group Sparse Auto-Encoder



Conventional Auto-Encoder



- most of the responses are in group 1,2,6,8
- the results are reasonable: the groups which are similar to "0" get higher responses
- we can tell the patterns from each row (group)

# Experiments

|                        | TREC | INSUR | DMV | YAHOO dataset |      |        |
|------------------------|------|-------|-----|---------------|------|--------|
|                        |      |       |     | sub           | top  | unseen |
| CNN                    | 93.6 | 51.2  | 60  | 20.8          | 53.9 | 47     |
| +sparsity              | 93.2 | 51.4  | 62  | 20.2          | 54.2 | 46     |
| Random init.<br>Weight | 93.8 | 53.5  | 62  | 21.8          | 54.5 | 48     |
| Question init. Weight  | 94.2 | 53.8  | 64  | 22.1          | 54.1 | 48     |
| Ans. Init.<br>Weight   | _    | 55.4  | 66  | 22.2          | 55.8 | 53     |

### Conclusions

- ✓ We have good improvement on Insurance and DMV dataset
- ✓ A little improvement for TREC and YAHOO dataset.
  - i) the question sentences are very short for these two datasets
- Our model perform well on unseen subcategories