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Search in NLP

• is not trivial!
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Parsing/NLP is HARD!
• exponential explosion of the search space

• solution: locally factored space => packed forest

• efficient algorithms based on dynamic programming

• non-local dependencies

• solution: ???
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Key Problem
• How to efficiently incorporate non-local information?

• Solution 1: pipelined reranking / rescoring

• postpone disambiguation by propagating k-best lists

• examples: tagging => parsing => semantics

• need very efficient algorithms for k-best search

• Solution 2: joint approximate search

• integrate non-local information in the search

• intractable; so only approximately

• largely open
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Outline

• Packed Forests and Hypergraph Framework

• Exact k-best Search in the Forest (for Solution 1)

• Approximate Joint Search (Solution 2)
with Non-Local Features

• Forest Reranking

• Machine Translation

• Decoding w/ Language Models

• Forest Rescoring

• Future Directions
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Packed Forests and 
Hypergraph Framework



Packed Forests
• a compact representation of many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

9
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Lattices vs. Forests
• forest generalizes “lattice” from finite-state world

• both are compact encodings of exponentially many 
derivations (paths or trees)

• graph => hypergraph;   regular grammar => CFG
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Weight Functions

• Each hyperedge e has a weight function fe

• monotonic in each argument

• e.g. in CKY,   fe(a, b) = a x b x Pr (rule)

• optimal subproblem property in dynamic programming

• optimal solutions include optimal sub-solutions
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C:   c
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d(v) = d(v) ⊕ fe(d(u))
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Generalized  Viterbi  Algorithm
1. topological sort (assumes acyclicity)

2. visit each node v in sorted order and do updates

• for each incoming hyperedge e = ((u1, .., u|e|), v, fe)

• use d(ui)’s to update d(v)

• key observation: d(ui)’s are fixed to optimal at this time

• time complexity: O(V+E) = O(E)          for CKY: O(n3)
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1-best => k-best
• we need k-best for pipelined reranking / rescoring

• since 1-best is not guaranteed to be correct

• rerank k-best list with non-local features

• we need fast algorithms for very big values of k
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k-best  Viterbi  Algorithm 0

• straightforward k-best extension

• a vector of k (sorted) values for each node

• now what’s the result of    fe (a, b) ?

• k x k = k2 possibilities! => then choose top k

• time complexity: O(k2 E)
14
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k-best  Viterbi  Algorithm 1
• key insight: do not need to enumerate all k2

• since vectors a and b are sorted

• and the weight function fe is monotonic

• (a1, b1) must be the best

• either (a2, b1) or (a1, b2) is the 2nd-best

• use a priority queue for the frontier

• extract best

• push two successors

• time complexity: O(k log k E)
15
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k-best  Viterbi Algorithm 2
• Algorithm 1 works on each hyperedge sequentially

• O(k log k E) is still too slow for big k

• Algorithm 2 processes all hyperedges in parallel

• dramatic speed-up: O(E + V k log k)

19
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k-best  Viterbi  Algorithm 3

• Algorithm 2 computes k-best for each node

• but we are only interested in k-best of the root node

• Algorithm 3 computes as many as really needed

• forward-phase

• same as 1-best Viterbi, but stores the forest 
(keeping alternative hyperedges)

• backward-phase

• recursively asking “what’s your 2nd-best”  top-down

• asks for more when need more

20



k-best  Viterbi  Algorithm 3

• only 1-best is known after the forward phase

• recursive backward phase
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k-best  Viterbi  Algorithm 3

• only 1-best is known after the forward phase

• recursive backward phase
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Summary of Algorithms

• Algorithms 1 => 2 => 3

• lazier and lazier (computation on demand)

• larger and larger locality

• Algorithm 3 is very fast, but requires storing forest

22

locality time space

Algorithm 1 hyperedge O( E k log k ) O(k V)
Algorithm 2 node O( E + V k log k ) O(k V)

Algorithm 3 global O( E + D k log k ) O(E + k D)

E - hyperedges: O(n3);   V - nodes: O(n2);  D - derivation: O(n)



Experiments - Efficiency

• on state-of-the-art Collins/Bikel parser (Bikel, 2004)

• average parsing time per sentence using Algs. 0, 1, 3

23
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Reranking and Oracles
• oracle - the candidate closest to the correct parse

among the k-best candidates

• measures the potential of real reranking
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Outline

• Packed Forests and Hypergraph Framework

• Exact k-best Search in the Forest (Solution 1)

• Approximate Joint Search (Solution 2)
with Non-Local Features

• Forest Reranking

• Machine Translation

• Decoding w/ Language Models

• Forest Rescoring

• Future Directions
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Why n-best reranking is bad?

• too few variations (limited scope)

• 41% correct parses are not in ~30-best  (Collins, 2000)

• worse for longer sentences

• too many redundancies

• 50-best usually encodes 5-6 binary decisions (25<50<26)
26
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Reranking on a Forest?

• with only local features

• dynamic programming, tractable (Taskar et al. 2004; McDonald 
et al., 2005)

• with non-local features

• on-the-fly reranking at internal nodes

• top k derivations at each node

• use as many non-local features 
as possible at each node

• chart parsing + discriminative reranking

• we use perceptron for simplicity

27



Generic Reranking by Perceptron
• for each sentence si, we have a set of candidates cand(si)

• and an oracle tree yi
+, among the candidates

• a feature mapping from tree y to vector f(y)

28

“decoder”
feature 

representation

(Collins, 2002)



Features

• a feature f is a function from tree y to a real number

• f1(y)=log Pr(y) is the log Prob from generative parser

• every other feature counts the number of times a 
particular configuration occurs in y
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Local vs. Non-Local Features

• a feature is local iff. it can be factored among local 
productions of a tree (i.e., hyperedges in a forest)

• local features can be pre-computed on each hyperedge 
in the forest;  non-locals can not
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WordEdges (C&J 05)

• a WordEdges feature classifies a node by its label, 
(binned) span length, and surrounding words

• a POSEdges feature uses surrounding POS tags
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WordEdges (C&J 05)

• a WordEdges feature classifies a node by its label, 
(binned) span length, and surrounding words

• a POSEdges feature uses surrounding POS tags
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Factorizing non-local features
• going bottom-up, at each node

• compute (partial values of) feature instances that 
become computable at this level

• postpone those uncomputable to ancestors

32
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NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees
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Forest Reranking

NGramTree (C&J 05)

• an NGramTree captures the smallest tree fragment 
that contains a bigram (two consecutive words)

• unit instances are boundary words between subtrees
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Heads (C&J 05, Collins 00)

• head-to-head lexical dependencies

• we percolate heads bottom-up

• unit instances are between the head word of the 
head child and the head words of non-head children
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• head-to-head lexical dependencies

• we percolate heads bottom-up

• unit instances are between the head word of the 
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Approximate Decoding

• bottom-up, keeps top k derivations at each node

• non-monotonic grid due to non-local features
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Approximate Decoding

• bottom-up, keeps top k derivations at each node

• non-monotonic grid due to non-local features
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Approximate Decoding

• bottom-up, keeps top k derivations at each node

• non-monotonic grid due to non-local features

• priority queue for next-best

• each iteration pops the best and pushes successors

• extract unit non-local features on-the-fly

38

Ai,k

Bi,j

wi . . . wj−1

Cj,k

wj . . . wk−1

1.0 3.0 8.0
1.0 2.5 9.0 9.5

1.1 2.4 9.5 9.4

3.5 5.1 17.0 12.1



Algorithm 2 => Cube Pruning

39

VP

PP1, 3 VP3, 6 PP1, 4 VP4, 6 PP3, 6VP2, 3

hyperedge

NP1, 2

bottom-neck: the time for on-the-fly 
non-local feature extraction

• process all hyperedges simultaneously!
significant savings of computation 



Forest vs. n-best Oracles
• on top of Charniak parser (modified to dump forest)

• forests enjoy higher oracle scores than n-best lists

• with much smaller sizes

40

97.8

96.8

98.6

97.2



Main Results

41

baseline: 1-best Charniak parser 89.72

features n or k pre-comp. training F1%

local 50 1.4G / 25h 1 x 0.3h 91.01

all 50 2.4G / 34h 5 x 0.5h 91.43

all 100 5.3G / 77h 5 x 1.3h 91.47

local -
1.2G / 5.1h

3 x 1.4h 91.25

all k=15 4 x 11h 91.69

• pre-comp. is for feature-extraction (can be parallelized)

• # of training iterations is determined on the dev set

• forest reranking outperforms both 50- and 100-best



Comparison with Others

42

type system F1%

D

 Collins (2000) 89.7
 Henderson (2004) 90.1
 Charniak and Johnson (2005) 91.0

                     updated (2006) 91.4

 Petrov and Klein (2008) 88.3
 this work 91.7

G
 Bod (2000) 90.7
 Petrov and Klein (2007) 90.1

S  McClosky et al. (2006) 92.1

best accuracy to date on the Penn Treebank



Outline

• Packed Forests and Hypergraph Framework

• Exact k-best Search in the Forest

• Approximate Joint Search
with Non-Local Features

• Forest Reranking

• Machine Translation

• Decoding w/ Language Models

• Forest Rescoring

• Future Directions
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Statistical Machine Translation

44(Knight and Koehn, 2003)

translation model (TM)
competency

language model (LM)
fluency

Spanish
Broken
English

English

Spanish/English
Bilingual Text

English
Text

Statistical Analysis Statistical Analysis

Que hambre tengo yo

What hunger have I

Hungry I am so

Have I that hunger

I am so hungry

How hunger have I

...

I am so hungry



Statistical Machine Translation

44(Knight and Koehn, 2003)

translation model (TM)
competency

language model (LM)
fluency

Spanish
Broken
English

English

Spanish/English
Bilingual Text

English
Text

Statistical Analysis Statistical Analysis

Que hambre tengo yo

What hunger have I

Hungry I am so

Have I that hunger

I am so hungry

How hunger have I

...

I am so hungry

k-best rescoring (Algorithm 3)



Statistical Machine Translation

45

translation model (TM)
competency

language model (LM)
fluency

Spanish
Broken
English

English

Spanish/English
Bilingual Text

English
Text

Statistical Analysis Statistical Analysis

 phrase-based
TM

 syntax-based
n-gram LM

computationally challenging! ☹ 

Que hambre tengo yo I am so hungry
decoder

(LM-integrated)integrated decoder



Forest Rescoring
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translation model (TM)
competency

language model (LM)
fluency

Spanish
Broken
English

English

Spanish/English
Bilingual Text

English
Text

Statistical Analysis Statistical Analysis

 phrase-based
TM

 syntax-based
n-gram LM

Que hambre tengo yo I am so hungry
decoder

(LM-integrated)integrated decoder

packed forest

forest rescorer

as non-local info



Syntax-based Translation

47

• synchronous context-free grammars (SCFGs)

• context-free grammar in two dimensions

• generating pairs of strings/trees simultaneously

• co-indexed nonterminal further rewritten as a unit

VP

PP

yu Shalong

VP

juxing le huitan

VP

VP

held a meeting

PP

with Sharon

VP → PP(1) VP(2)
, VP(2) PP(1)

VP → juxing le huitan, held a meeting
PP → yu Shalong, with Sharon



Translation as Parsing

48

• translation with SCFGs => monolingual parsing

• parse the source input with the source projection

• build the corresponding target sub-strings in parallel

PP1, 3 VP3, 6

VP1, 6

yu  Shalong juxing  le  huitan

VP → PP(1) VP(2)
, VP(2) PP(1)

VP → juxing le huitan, held a meeting
PP → yu Shalong, with Sharon



Translation as Parsing

48

• translation with SCFGs => monolingual parsing

• parse the source input with the source projection

• build the corresponding target sub-strings in parallel

PP1, 3 VP3, 6

VP1, 6

yu  Shalong juxing  le  huitan

with Sharon held a talk

held a talk  with Sharon

VP → PP(1) VP(2)
, VP(2) PP(1)

VP → juxing le huitan, held a meeting
PP → yu Shalong, with Sharon



Adding a Bigram Model

49

+LM items
held   ...   talk

VP3, 6

with ...   Sharon

PP1, 3

bigram

held                 ...              Sharon

S1, 6

• exact dynamic programming

• nodes now split into +LM items

• with English boundary words

• search space too big for exact search

• beam search: keep at most k +LM items each node

• but can we do better?



Non-Monotonic Grid
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Non-Monotonic Grid

50
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1.0 2.0 + 0.5 4.0 + 5.0 9.0 + 0.5

1.1 2.1 + 0.3 4.1 + 5.4 9.1 + 0.3

3.5 4.5 + 0.6 6.5 +10.5 11.5 + 0.6

bigram (meeting, with)

PP1, 3VP3, 6

VP1, 6



Algorithm 2 -Cube Pruning
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Algorithm 2 => Cube Pruning

52

VP

process all hyperedges simultaneously!
significant savings of computation 

PP1, 3 VP3, 6 PP1, 4 VP4, 6 NP1, 4 VP4, 6

k-best Algorithm 2, 
with search errors

hyperedge



Phrase-based: Translation Accuracy

53

speed ++
quality+

+

~100 times faster

Algorithm 2:



Syntax-based: Translation Accuracy

54

speed ++
quality+

+

Algorithm 3:

Algorithm 2:



Conclusion so far
• General framework of DP on hypergraphs

• monotonicity => exact 1-best algorithm

• Exact k-best algorithms

•  Approximate search with non-local information

• Forest Reranking for discriminative parsing

• Forest Rescoring for MT decoding

• Empirical Results

• orders of magnitudes faster than previous methods

• best Treebank parsing accuracy to date
55



Impact

• These algorithms have been widely implemented in

• state-of-the-art parsers

• Charniak parser

• McDonald’s dependency parser 

• MIT parser (Collins/Koo), Berkeley and Stanford parsers

• DOP parsers (Bod, 2006/7)

• major statistical MT systems

• Syntax-based systems from ISI, CMU, BBN, ...

• Phrase-based system: Moses [underway]

56



Future Directions



Further work on Forest Reranking
• Better Decoding Algorithms

• pre-compute most non-local features

• use Algorithm 3 cube growing

• intra-sentence level parallelized decoding

• Combination with Semi-supervised Learning

• easy to apply to self-training (McClosky et al., 2006)

• Deeper and deeper Decoding (e.g., semantic roles)

• Other Machine Learning Algorithms

• Theoretical and Empirical Analysis of Search Errors
58



Machine Translation / Generation

• Discriminative training using non-local features

• local-features showed modest improvement 
on phrase-base systems (Liang et al., 2006)

• plan for syntax-based (tree-to-string) systems

• fast, linear-time decoding

• Using packed parse forest for

• tree-to-string decoding (Mi, Huang, Liu, 2008)

• rule extraction (tree-to-tree)

• Generation / Summarization: non-local constraints

59



THE END - Thanks!Thanks!

60

Questions? 

Comments?



Huang and Chiang Forest Rescoring

Speed vs. Search Quality

61

speed ++

qu
al

ity
 +

+

tested on our faithful clone of Pharaoh
( 

- 
lo

g 
Pr

ob
 )
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Speed vs. Search Quality
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Huang and Chiang Forest Rescoring

Speed vs. Search Quality

61

speed ++
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32 times faster
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Syntax-based: Search Quality
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Tree-to-String System

• syntax-directed, English to Chinese (Huang, Knight, Joshi, 2006)

• first parse input, and then recursively transfer

63

synchronous tree-
substitution grammars (STSG)

(Galley et al., 2004; Eisner, 2003)
VP

VBD

was

VP-C

VP

VBN

shot

PP

TO

to

NP-C

NN

death

PP

IN

by

NP-C

DT

the

NN

police

extended to translate 
a packed-forest 
instead of a tree

(Mi, Huang, Liu, 2008)



Tree-to-String System

• syntax-directed, English to Chinese (Huang, Knight, Joshi, 2006)

• first parse input, and then recursively transfer

63

synchronous tree-
substitution grammars (STSG)

(Galley et al., 2004; Eisner, 2003)
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extended to translate 
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instead of a tree

(Mi, Huang, Liu, 2008)



Features

• extract features on the 50-best parses of train set

• cut off low-freq. features with count < 5

• counts are “relative” -- change on at least 5 sentences

• feature templates

• 4 local from (Charniak and Johnson, 2005)

• 4 local from (Collins, 2000)

• 7 non-local from (Charniak and Johnson, 2005)

• 800, 582 feature instances (30% non-local)

• cf. C & J: 1.3 M feature instances (60% non-local)
64



Forest Oracle

the candidate tree that is closest to gold-standard



Optimal Parseval F-score

• Parseval F1-score is the harmonic mean between 
labeled precision and labeled recall

• can not optimize F-scores on sub-forests separately

• we instead use dynamic programming

• optimizes the number of matched brackets per given 
number of test brackets

• “when the test (sub-) parse has 5 brackets, what is 
the max. number of matched brackets?”
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Combining Oracle Functions
• combining two oracle functions along a hyperedge 

e = <(v,u), w> needs a convolution operator ⊗

67

t f(t)
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Combining Oracle Functions
• combining two oracle functions along a hyperedge 

e = <(v,u), w> needs a convolution operator ⊗

67

t f(t)

2 1

3 2
⊗

t g(t)

4 4

5 4
=

t (f⊗g)(t)

6 5

7 6

8 6
final answer:

this node matched?
t (f⊗g)⇑(1,0) (t)
7 5

8 6

9 6

N

t (f⊗g)⇑(1,1) (t)
7 6

8 7

9 7

Y

ora[w]

uv

w



Forest Pruning

a variant of Inside-Outside Algorithm



Pruning (J. Graehl, unpublished)

• prune by marginal probability (Charniak and Johnson, 2005)

• but we prune hyperedges as well as nodes

• compute Viterbi inside cost β(v) and outside cost α(v)

• compute merit αβ(e) = α(head(e)) + sumu∈tails(e) β(u)

• cost of the best derivation that traverses e

• prune away hyperedges that have αβ(e) - β(TOP) > p

• difference: a node can “partially” survive the beam

• can prune on average 15% more hyperedges than C&J
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