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Parsing/NLP is HARD!

® exponential explosion of the search space
® solution: locally factored space => packed forest
o efficient algorithms based on dynamic programming

® non-local dependencies
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® How to efficiently incorporate non-local information?
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Key Problem

® How to efficiently incorporate non-local information?
® Solution |: pipelined reranking / rescoring
® postpone disambiguation by propagating k-best lists
® examples: tagging => parsing => semantics

® need very efficient algorithms for k-best search
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Key Problem

® How to efficiently incorporate non-local information?
® Solution |: pipelined reranking / rescoring
® postpone disambiguation by propagating k-best lists
® examples: tagging => parsing => semantics
® need very efficient algorithms for k-best search
® Solution 2: joint approximate search
® integrate non-local information in the search
® intractable; so only approximately

® |argely open
#&Penn 6



Outline

® Packed Forests and Hypergraph Framework
® Exact k-best Search in the Forest (for Solution )

® Approximate Joint Search (Solution 2) TOP

with Non-Local Features !

® Forest Reranking NI

PRP VBD NP (21 E =
® Machine Translation U e Db Np
| | | —

. the boy with DT NN
® Decoding w/ Language Models : C

a telescope

. bigram
® Forest Rescoring
held Sharon
® Future Directions VP3, 6 PPi.3
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Packed Forests and
Hypergraph Framework



Packed Forests

® a compact representation of many parses
® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set
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Packed Forests

® a compact representation of many parses
® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set
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Lattices vs. Forests

® forest generalizes “lattice” from finite-state world

® both are compact encodings of exponentially many
derivations (paths or trees)

® graph => hypergraph; regular grammar => CFG
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Weight Functions

® Each hyperedge e has a weight function f.

® monotonic in each argument

e e.g.in CKY, fe(a,b) =a x b x Pr (rule)

® optimal subproblem property in dynamic programming

® optimal solutions include optimal sub-solutions

O —0

update along a hyperedge
d(v) = d(v) © fe(d(u))

R4
& I'CINN I
‘ UNIVERSITY of PENNSYLVANIA



Generalized Viterbi Algorithm

|. topological sort (assumes acyclicity)
2. visit each node v in sorted order and do updates
® for each incoming hyperedge e = ((ui, .., uj|), v, fe)

® use d(ui)’s to update d(v)

® key observation: d(ui)’s are fixed to optimal at this time
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® time complexity: O(V+E) = O(E) for CKY: O(n3)
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| -best => k-best

® we need k-best for pipelined reranking / rescoring
® since |-best is not guaranteed to be correct
® rerank k-best list with non-local features

® we need fast algorithms for very big values of k
| eat sushi with tuna.
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k-best Viterbi Algorithm O

® straightforward k-best extension
® a vector of k (sorted) values for each node

® now what’s the result of fe (a,b) !

k x k = k? possibilities! => then choose top k

a a
L U T
Ll i;

o

® time complexity: O(k? E)
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k-best Viterbi Algorithm |

® key insight: do not need to enumerate all k?

® since vectors a and b are sorted

® and the weight function f. is monotonic

® (aj,b1) must be the best

® either (a2, by) or (ai, b2) is the 2nd-best

® use a priority queue for the frontier
® extract best
® push two successors

® time complexity: O(k log k E)

P
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k-best Viterbi Algorithm |

® key insight: do not need to enumerate all k?
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® (aj,b1) must be the best
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® use a priority queue for the frontier
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k-best Viterbi Algorithm 2

® Algorithm | works on each hyperedge sequentially
® O(k log k E) is still too slow for big k
® Algorithm 2 processes all hyperedges in parallel

® dramatic speed-up: O(E +V k log k)
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k-best Viterbi Algorithm 2

® Algorithm | works on each hyperedge sequentially
® O(k log k E) is still too slow for big k
® Algorithm 2 processes all hyperedges in parallel

® dramatic speed-up: O(E +V k log k)

locally Dijkstra
globally Viterbi
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k-best Viterbi Algorithm 3

® Algorithm 2 computes k-best for each node
® but we are only interested in k-best of the root node
® Algorithm 3 computes as many as really needed

® forward-phase

same as |-bestViterbi, but stores the forest
(keeping alternative hyperedges)

® backward-phase

recursively asking “what’s your 2"4-best” top-down

asks for more when need more
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k-best Viterbi Algorithm 3

® only |-best is known after the forward phase

® recursive backward phase
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k-best Viterbi Algorithm 3

® only |-best is known after the forward phase

. :
recursive backward phase what's your 2nd-best?
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k-best Viterbi Algorithm 3

® only |-best is known after the forward phase

. :
recursive backward phase what's your 2nd-best?
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k-best Viterbi Algorithm 3

® only |-best is known after the forward phase

. :
recursive backward phase what's your 2nd-best?
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Summary of Algorithms

® Algorithms | =>2 =>3
® lazier and lazier (computation on demand)

® |arger and larger locality

® Algorithm 3 is very fast, but requires storing forest

locality

Algorithm || lD7 g O(E k log k')
Algorithm 2 node O(E +V klog k) O(k V)
Algorithm 3 global O(E+Dklogk) | OE + k D)

E - hyperedges: O(n3); V - nodes: O(n?); D - derivation: O(n)
& Penn 22
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Experiments - Efficiency

® on state-of-the-art Collins/Bikel parser (Bikel, 2004)

® average parsing time per sentence using Algs. 0, I, 3
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Reranking and Oracles

® oracle - the candidate closest to the correct parse
among the k-best candidates

® measures the potential of real reranking
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Outline

® Packed Forests and Hypergraph Framework
® Exact k-best Search in the Forest (Solution |)

® Approximate Joint Search (Solution 2)
with Non-Local Features ,

® Forest Reranking NI

. ] PRP VBD NP PR: .
® Machine Translation I e v 1o e
I I I —

the boy with DT NN

® Decoding w/ Language Models C

. a telescope
. bigram '
® Forest Rescoring

held ..{ talk [ with).. Sharon

® Future Directions VP3,6 PP1,3
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Why n-best reranking is bad!?

® too few variations (limited scope)
® 4|% correct parses are not in ~30-best (Collins, 2000)
® worse for longer sentences

® too many redundancies

® 50-best usually encodes 5-6 binary decisions (2°<50<26)
#&Penn 26



Reranking on a Forest!

® with only local features

® dynamic programming, tractable (Taskar et al. 2004; McDonald
et al., 2005)

® with non-local features
® on-the-fly reranking at internal nodes
® top k derivations at each node

® use as many non-local features
as possible at each node

® chart parsing + discriminative reranking

® we use perceptron for simplicity

L7 ¥} 1
& Penn 27



Generic Reranking by Perceptron

® for each sentence s;, we have a set of candidates cand(sj)

® and an oracle tree y;", among the candidates

® a feature mapping from tree y to vector f(y)

1: Imput: Training examples {@and(s@@rj o
2: w20 > 1nitial weights
3: fort — 1...7T do ‘« . > 1" 1terations
o decod
4. fori—1...Ndo o
S: @} — arglna’xye cand(sijw | f(y)
6: if § # y.” then
7: w e w £yt — £()
8. return w
& Penn (Collins, 2002) 28



Features

® a feature fis a function from tree y to a real number
® fi(y)=log Pr(y) is the log Prob from generative parser

® every other feature counts the number of times a
particular configuration occurs in y

TOF our features are from
é (Charniak & Johnson, 2005)
- (Collins, 2000)
NP VP ;
| — = | instances of Rule feature
PRP VBD NP PP .
I saw | DT NN, IN NP froo(y) =f s-newe.(y) = |

tflle b(l)y Wilth DT/\NN fZOO (y) = f.NP—> DT NN (y) =2
| I

a telescope
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|l ocal vs. Non-Local Features

® a feature is local iff. it can be factored among local
productions of a tree (i.e., hyperedges in a forest)

® |ocal features can be pre-computed on each hyperedge
in the forest; non-locals can not

TOP
|
ParentRule is non-local
N
NP VP .
| - |
PRP VBD NP PP . ,
| | o~ — Rule is local
I saw DT NN | IN NP

| | | — ~—
the boy with [|DT NN
| |

. a telescope
#&Penn 30



WordEdges

® a\VWordEdges feature classifies a node by its label,
(binned) span length, and surrounding words

® a POSEdges feature uses surrounding POS tags

TOP
I

f 400 (y) = f NP2sawwith (Y) = |

NP VP :
I - I
PRP VBD NP PP

I I S — —
I saw DT NN IN NP

I I I —
the boy | with DT NN

| 2 words | |
a telescope
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WordEdges

® a\VWordEdges feature classifies a node by its label,
(binned) span length, and surrounding words

® a POSEdges feature uses surrounding POS tags

T(I)P WordEdges is local

f 400 (y) = f NP2sawwith (Y) = |

NP VP :
I - I
PRP VBD NP PP

I I O — —
I saw = DT NN IN NP
| | | —
the boy | with DT NN

| 2 words | |
a telescope

RSN
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WordEdges

® a\VWordEdges feature classifies a node by its label,
(binned) span length, and surrounding words

® a POSEdges feature uses surrounding POS tags
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WordEdges

® a\VWordEdges feature classifies a node by its label,
(binned) span length, and surrounding words

® a POSEdges feature uses surrounding POS tags

T(I)P WordEdges is local

f 400 (y) = f NP2sawwith (Y) = |

N
NP VP :
| —— | POSEdges is non-local
PRP VBD NP PP

I saw DT NN | IN NP f 800 (y) = fe2veoin (y)

| | | —
the boy with DT NN

| 2 words | |
a telescope
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WordEdges

® a\VWordEdges feature classifies a node by its label,
(binned) span length, and surrounding words

® a POSEdges feature uses surrounding POS tags

1oP WordEdges is local
|
S\ f400 (Y) - fNPZsaw with (Y) = |
NP VP :
| — | POSEdges is non-local
PRP VBD NP PP .
| | O~ — 800 (¥) = f NP2vBD IN = |
I saw DT NN IN NP f (y) f (y)
| | | —
the boy with DT NN | ¥ ,
| | ocal features comprise
| 2 words

a telescope ~70% of all instances!
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

TOP

I
S

S

unit instance of ParentRule
feature at the TOP node

PRP VBD NP PP .
| | O — —
I saw DT NN IN NP
| | | —

the boy with DT NN

a telescope
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

TOP
Q unit instance of ParentRule
feature at the TOP node

NP VP :
| - |
PRP 'VBD NP PP .
| | ~— — —
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I I
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Factorizing non-local features

® going bottom-up, at each node

® compute (partial values of) feature instances that
become computable at this level

® postpone those uncomputable to ancestors

TOP
unit instance of ParentRule

< feature at the TOP node
NP VP

I — I
PRP VBD NP PP

I saw DT NN IN NP

I I I —
the boy with DT NN

I I
a telescope
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

e
TOP /\
|
> B, ; Cix
A ' /\ /\
PRP VBD NP PPs Wi... Wj—1 Wj...Wk_1
! saw DI gt i NP unit instance of node A
| | | T

the boy with DT NN

I I
a telescope
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NGramTree

® an NGramTree captures the smallest tree fragment
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® unit instances are boundary words between subtrees
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees
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NGramTree

® an NGramTree captures the smallest tree fragment
that contains a bigram (two consecutive words)

® unit instances are boundary words between subtrees

NP

I
PRP 'VBD
I I

I saw SDT NN IN

Forest Reranking

NP R .
By S o
NP
I I I —
the boy with, DT NN
I I
a telescope

e

Wi... Wj—1 W5...WE—-1

unit instance of node A



Heads

® head-to-head lexical dependencies

® we percolate heads bottom-up

® unit instances are

between the head word of the

head child and the head words of non-head children

TOP/SaW
|
S/S&W
N
NP/ VP /saw /.
| — |
PRP/; VBD/saw  NP/i. PP/ ith
| | — — —
I saw DT/} NN/boy IN/with NP /a
the boy with DT/, NN/telescope
| I
PGI]II a telescope 35
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Heads

® head-to-head lexical dependencies

® we percolate heac

® unit instances are

s bottom-up

between the head word of the

head child and the head words of non-head children

TOP/S&W . .
| unit instances at VP node

S/ saw saw = the; saw - with
N]5’/ I /.

— |
PRP/I VBD saw NP PPYith

saw  DT/ipe NN/boy IN/with NP/a
the boy with DT/, NN/telescope
| I
PGI]D a telescope 35



Approximate Decoding

® bottom-up, keeps top k derivations at each node

® non-monotonic grid due to non-local features
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Approximate Decoding

® bottom-up, keeps top k derivations at each node

® non-monotonic grid due to non-local features
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Approximate Decoding

® bottom-up, keeps top k derivations at each node
® non-monotonic grid due to non-local features
® priority queue for next-best
® each iteration pops the best and pushes successors

® extract unit non-local features on-the-fly

38



Algorithm 2 => Cube Pruning

® process all hyperedges simultaneously!
significant savings of computation

hyperedge ?
/ \
[ ]

bottom-neck: the time for on-the-fly
non-local feature extraction
& Penn 39



Forest vs. n-best Oracles

® on top of Charniak parser (modified to dump forest)

® forests enjoy higher oracle scores than n-best lists

e with much smaller sizes

Parseval F-score

1
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Main Results

® pre-comp.is for feature-extraction (can be parallelized)
® # of training iterations is determined on the dev set

® forest reranking outperforms both 50- and 100-best

baseline: |-best Charniak parser 89.72
features nork  pre-comp. training

local 50 1.4G / 25h | x 0.3h 91.01
all 50 24G/ 34h | 5x0.5h 91.43

all 100 53G/77h | 5x [.3h 91.47
local - 3 x |.4h 921.25

1.2G / 5.1h
all k=15 4 x |1h 21.69

%P
Ry ' CIIN
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Comparison with Others

type system F1%
Collins (2000) 89.7
Henderson (2004) 90.1
Charniak and Johnson (2005) 91.0

updated (2006) 921.4

Petrov and Klein (2008) 88.3
this work 91.7
Bod (2000) 90.7
Petrov and Klein (2007) 90.1
McClosky et al. (2006) 92.1

UNIVERSITY of PENNSYLVANIA



Outline

® Packed Forests and Hypergraph Framework

® Exact k-best Search in the Forest TOP
|
® Approximate Joint Search S
with Non-Local Features N |
PRP VBD NP BRs .
. I I e e LT
® Forest Reranking I saw DT NN IN NP

| | | —
the boy with DT NN

® Machine Translation | |

a telescope

® Decoding w/ Language Models

. bigram
® Forest Rescoring
held Sharon
® Future Directions VP3, 6 PPi.3

R4
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Statistical Machine Translation

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

v

. translation model (TM) Broken language model (LM) .
Spanish _)‘ competency > English _)‘ fluency > English

What hunger have |
Hungry | am so
Have | that hunger
| am so hungry
How hunger have |

Que hambre tengo yo > | am so hungry

& Penn (Knight and Koehn, 2003) 44



Statistical Machine Translation

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

v

. translation model (TM) Broken language model (LM) .
Spanish ——)‘ competency > English ——)‘ fluency —>» English

k-best rescoring (Algorithm 3)

What hunger have |
Hungry | am so
Have | that hunger
| am so hungry
How hunger have |

Que hambre tengo yo > | am so hungry

& Penn (Knight and Koehn, 2003) 44



Statistical Machine Translation

Spanish/English
Bilingual Text

Statistical Analysis Statistical Analysis

NWWORN. phrase-based English

n-gram LM
syntax-based

Que hambre tengo yo )I integrated decoder I—) | am so hungry

computationally challenging! ®

& Penn 45

UNIVERSITY of PENNSYLVANIA




Forest Rescoring

Spanish/English
Bilingual Text

Statistica! Analysis Statistical Analysis
= — . |

\

Bl Broken

Spanish g8l English

> English

J

packed forest * as non-local info

forest rescorer | am so hungry

Que hambre tengo yo

R4
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Syntax-based Translation

® synchronous context-free grammars (SCFGs)
® context-free grammar in two dimensions
® generating pairs of strings/trees simultaneously

® co-indexed nonterminal further rewritten as a unit

VP — PPWO vVP@) vP2 ppl)
VP —  juxing le huitan, held a meeting

PP — yu Shalong, with Sharon
VP VP
/\ /\
PP VP VP PP

yu Shalong juring le huitan  held a meeting with Sharon

g
.
&
UNIVERSITY of PENNSYLVANIA
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Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

vP — PPO vP®
VP —  juxing le huitan,
PP —  yu Shalong,

yu Shalong  juxing le huitan

R4
& Penn 48
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Translation as Parsing

® translation with SCFGs => monolingual parsing
® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

VP — PPO VPO, vP® ppl)
VP —  juxing le huitan, held a meeting _
PP —  yu Shalong, with Sharon held a talk with Sharon

with Sharon held a talk

yu Shalong  juxing le huitan

R4
& Penn 48
‘ UNIVERSITY of PENNSYLVANIA



Adding a Bigram Model

® exact dynamic programming

® nodes now split into +LM items

® with English boundary words
® search space too big for exact search

® beam search: keep at most k +LM items each node

® but can we do better? held Sharon
S1,6
bigram

held ..[ talk [ with .. Sharon

+LM items VP3,6 PPi,3

UNIVERSITY of PENNSYLVANIA
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Non-Monotonic Grid

VP3,¢ PP1,3

non-monotonicity
due to LM combo costs

(VP held * meeting)
3,6

(VP held % talk)
3,6

UNIVERSITY of PENNSYLVANIA



Non-Monotonic Grid
AN

/‘\ bigram (meeting, with) X x

> - & ¥ &
VP36 | PPi,3 ‘ fo\i‘p &0
& &

non-monotonicity
due to LM combo costs

(V held *(meetlng))

Penn 50
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Algorithm 2 -Cube Pruning

VP3,¢ PP1,3

(VP held * meeting)
3,6

(VP held % talk)
3,6

UNIVERSITY of PENNSYLVANIA



Algorithm 2 => Cube Pruning

k-best Algorithm 2,
with search errors

[ ]

\ \

process all hyperedges simultaneously!
significant savings of computation



Phrase-based: Translation Accuracy
{: speed ++

0.245 F—r——r———————
0.240 |- %, |~100 times faster| -
F ‘-l'. Py

0.235 | : o

© 0.230 |

8 o*

o 0225 F o

D 0220 f

m 0215 | & |
| ’ Pharaoh
0-210 - full-integration <+« |
0.205 1 Algorithm 2: cube pruning ====e:==
0.200 AP IS T R

10° 10° 10% 10° 10°

average number of hypotheses per sentence
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Syntax-based: Translation Accuracy

BLEU score

R4
& CINN
‘ UNIVERSITY of PENNSYLVANIA

0.262

0.260

0.258

0.256

0.254

_ full-integration
= ¢ Algorithm 2: cube pruning -« - -

; Algorithm 3: cube growing
Il 1L 1 I - | I 1

10°

10*

10°
average number of +LM items explored per sentence

a
c
=
=

~

+
-+
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Concl

usion so far

® General framework of DP on hypergraphs

® monotonicity => exact |-best algorithm

® Exact k-best algorit

® Approximate searc

NIMS

h with non-local information

® Forest Reranking for discriminative parsing

® Forest Rescoring for MT decoding

® Empirical Results

® orders of magnitudes faster than previous methods

® best Treebank parsing accuracy to date

23 UNIVERSITY Of PENNSYLVANIA
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Impact

® These algorithms have been widely implemented in

® state-of-the-art parsers
Charniak parser
McDonald’s dependency parser
MIT parser (Collins/Koo), Berkeley and Stanford parsers
DOP parsers (Bod, 2006/7)

® major statistical MT systems
Syntax-based systems from [ISI, CMU, BBN, ...

Phrase-based system: Moses [underway]

& Penn 56



Future Directions



Further work on Forest Reranking

® Better Decoding Algorithms
® pre-compute most non-local features

® use Algorithm 3 cube growing

® intra-sentence level parallelized decoding

® Combination with Semi-supervised Learning

® easy to apply to self-training (McClosky et al., 2006)

® Deeper and deeper Decoding (e.g., semantic roles)

® Other Machine Learning Algorithms

® Theoretical and Empirical Analysis of Search Errors
#&Penn 58



Machine Translation / Generation

® Discriminative training using non-local features

® |ocal-features showed modest improvement
on phrase-base systems (Liang et al., 2006)

® plan for syntax-based (tree-to-string) systems

fast, linear-time decoding
® Using packed parse forest for
® tree-to-string decoding (Mi, Huang, Liu, 2008)
® rule extraction (tree-to-tree)

® Generation / Summarization: non-local constraints

P
@ UNIVERSITY Of PENNSYLVANIA
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Thanks!

Questions!

Comments!

60



Speed vs. Search Quality

tested on our faithful clone of Pharaoh

‘:: speed ++

92 B full-integration }
- B cube pruning s+«
o O 88 % 1
O E "
a3 2
80 E 84 I "'1. 7 c:o?-
v % 80 B '."*-"-‘-l )

..__‘”
?6 e gl R .....‘.I gl AN R
10° 10° 10 10° 10°

average number of hypotheses per sentence
Huang and Chiang Forest Rescoring 61



( - log Prob )

Speed vs. Search Quality

tested on our faithful clone of Pharaoh

‘:: speed ++

92 B full-integration }
3 cube pruning s+«
o 88 | _
D
o .
G -i-
E g4 L : i
o 32 times faster
m -'l"
® .
> 80 |-

o,
76 , N Y BT B
10° 10° 10 10°

Huang and Chiang

+
+
>N
B
c
-
-

1”05
average number of hypotheses per sentence

Forest Rescoring 6l



( - log Prob )

Speed vs. Search Quality

tested on our faithful clone of Pharaoh

‘:: speed ++

92 B full-integration }
3 R cube pruning s+«
o 88 |- * /7’@'0 -
— - Q/‘
@ 'l- Q
o . /776
G 'F- (G/‘
E g4 | ., ) -
o ., 32 times faster
m -'l"
® “.
> 80 |-

.,__‘”
76 , ol e
10° 10° 10 10°

Huang and Chiang

+
+
>N
B
c
-
-

1”05
average number of hypotheses per sentence

Forest Rescoring 6l



Syntax-based: Search Quality
< speed ++

21 9_0 . 'I'I L Li I T LI L II T L L L
. full-integration
» : cube pruning s s
~ & 2188 | Praning _
o © x cube growing =erreees
O 5 : :
o © . g
oo E 2186 =~ 1 2
O % "".. cé_
_ © : 10 times faster
S 2184 F =, i J;L
® .,
‘-l-
i.‘“ '*-;”“”
218.2 bl s T e
10° 10° 10°

average number of +LM items explored per sentence
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Tree-to-String System

® syntax-directed, English to Chinese (Huang, Knight, Joshi, 2006)

® first parse input, and then recursively transfer

synchronous tree-

VP substitution grammars (STSG)
— (Galley et al., 2004; Eisner, 2003)
VBD VP-C
| —
was VP PP extended to translate
VBN/\PP Im-c a packed-forest
| PN BN instead of a tree
shot TO NP-C by DT NN (Mi, Huang, Liu, 2008)
| | | |
to NN the police
|
death

L7 ¥} 1
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Tree-to-String System

® syntax-directed, Englis

® first parse input, and

n to Chinese (Huang, Knight, Joshi, 2006)

then recursively transfer

# NP-O -. synchronous tree-

VP bei substitution grammars (STSG)
— — (Galley et al., 2004; Eisner, 2003)
VBD VP-C
I
was (VP ) PP extended to translate
VBN PP N PO a packed-forest
| P | instead of a tree
shot TO NP-C | by | DT NN (Mi, Huang, Liu, 2008)
I | | |
to NN the police
|
death

P
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Features

® extract features on the 50-best parses of train set

e cut off low-freq. features with count <5

® counts are “relative” -- change on at least 5 sentences

® feature templates

® 4 |loca

® 4 loca

from (Charniak and Johnson, 2005)

from (Collins, 2000)

® 7/ non-local from (Charniak and Johnson, 2005)

® 800, 582 feature instances (30% non-local)

o cf.C & J: 1.3 M feature instances (60% non-local)

P
\@ UNIVERSITY Of PENNSYLVANIA
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Forest Oracle

the candidate tree that is closest to gold-standard



Optimal Parseval F-score

% . 2PR 21y N y*
vb 2 argmax Fuyl)  Fly.yf) _ 20|
yEcand(s;) P+ R ‘U‘ + ‘UK‘

® Parseval F|-score is the harmonic mean between
labeled precision and labeled recall

® can not optimize F-scores on sub-forests separately
® we instead use dynamic programming

® optimizes the number of matched brackets per given
number of test brackets

® “when the test (sub-) parse has 5 brackets, what is
the max. number of matched brackets?”

oralv] : N +— N oralv](t) £ max |y, Ny
PGI]II Yo \yv ‘:t 3



Combining Oracle Functions

® combining two oracle functions along a hyperedge
e = <(v,u), w> needs a convolution operator ®

(f@g)(t) & max f(t1)+ g(t2)

£ P.F

R4
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Combining Oracle Functions

® combining two oracle functions along a hyperedge
e = <(v,u), w> needs a convolution operator ®

(feg)(t) = max x f(t1) + g(t2)

£a B

ora[w]

this node matched?




Combining Oracle Functions

® combining two oracle functions along a hyperedge
e = <(v,u), w> needs a convolution operator ®

W (f®g)t) = max f(t1)+g(ts)

t1+to=t
final answer:

-

ora[w]

K 2-o0ra[TOP](t
Fy*,y") = max, =

this node matched?




Forest Pruning

a variant of Inside-Outside Algorithm



Pruni Ng (J. Graehl, unpublished)

® prune by marginal probability (Charniak and Johnson, 2005)

® but we prune hyperedges as well as nodes
® compute Viterbi inside cost [(v) and outside cost (V)
® compute merit &f3(e) = &(head(e)) + sumycrails(e) P(u)
® cost of the best derivation that traverses €

® prune away hyperedges that have (3(e) - B(TOP) > p
e difference:a node can “partially” survive the beam

® can prune on average |5% more hyperedges than C§&J

L7 ¥} 1
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