Programming Languages
Fall 2014

Lecture | |: Subtyping

Prof. Liang Huang

huang@gc.cs.cuny.edu

mailto:liang.huang.sh@gmail.com
mailto:liang.huang.sh@gmail.com

Big Picture

® Part |: Fundamentals

® Functional Programming and Basic Haskell

® Proof by Induction and Structural Induction

® Part ll: Simply-Typed Lambda-Calculus

class A extends Object { A() { super(); } }
o Unt)lped Lambda CaICUIUS class B extends Object { B() { super(); } }
class Pair extends Object {
. Object fst;
® Simply Typed Lambda Calculus Object snd;
// Constructor:
Pair (Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd;}
// Method definition:
® References and Memory Allocation 2% Seerst(08ject newser) o

return new Pair(newfst, this.snd); }}

® Extensions: Units, Records,Variants

® Part lll: Object-Oriented Programming
® Basic Subtyping

® (Case Study: Featherweight Java

Subtyping

Motivation

With our usual typing rule for applications

[Ft1 : T11—T1o [Ft> : Tqq
[Ft1 to : T1o

(T-App)

the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

Motivation

With our usual typing rule for applications

[Ft1 : T11—T1o [Ft> : Tqq
[Ft1 to : T1o

(T-App)

the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

Is not well typed.

But this is silly: all we're doing is passing the function a better
argument than it needs.

Polymorphism

A polymorphic function may be applied to many different types of
data.

Varieties of polymorphism:
» Parametric polymorphism (ML-style) C++ templates
» Subtype polymorphism (OO-style) C++ subclass

» Ad-hoc polymorphism (overloading) C++ operator overloading

Our topic for the next few lectures is subtype polymorphism, which
is based on the idea of subsumption.

Subsumption

More generally: some types are better than others, in the sense
that a value of one can always safely be used where a value of the

other Is expected.
We can formalize t

1. a subtyping re

nis intuition by introducing

ation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

[t : S S<: T
[t : T

(T-SuB)

Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,
= {x=0,y=1} : {x:Nat}

and hence
(Ar:{x:Nat}. r.x) {x=0,y=1}

is well typed.

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

{1;:T; "k < {1;:T; <" (S-RCDWIDTH)

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.

The Subtype Relation: Records

Permutation of fields:

{k;:S;/<*"} is a permutation of {1;:T; '<*"}
{kJ:SJ jEl..n} <: {1I:TI iEl..n}

(S-RCDPERM)

By using S-RCDPERM together with S-RCDWIDTH and
S-TRANS allows us to drop arbitrary fields within records.

S<: U § 2
S T

(S-TRANS)

The Subtype Relation: Records

“Depth subtyping” within fields:

for each 1 S; < T;
{II:SI iEl..n} <: {1/ :Ti iGl..n}

(S-RCDDEPTH)

The types of individual fields may change.

Example

S-RcpDWIDTH S-RCcDWIDTH
{a:Nat,b:Nat} <: {a:Nat} {m:Nat} <: {}

S-RCcDDEPTH

{x:{a:Nat,b:Nat},y:{m:Nat}} < {x:{a:Nat},y:{}}

S-RCDWIDTH S-REFL
{a:Nat,b:Nat} < {a:Nat} {m:Nat} < {m:Nat}

S-RCDDEPTH

{x:{a:Nat,b:Nat},y:{m:Nat}} <! {x:{a:Nat},y:{m:Nat}}

S-RCDWIDTH
{a:Nat,b:Nat}
<: {a:Nat}
S-RCDWIDTH S-RCDDEPTH
{x:{a:Nat,b:Nat},y:{m:Nat}} {x:{a:Nat,b:Nat}}
<: {x:{a:Nat,b:Nat}} <: {x:{a:Nat}}
S-TRANS

{x:{a:Nat,b:Nat},y:{m:Nat}} <! {x:{a:Nat}}

Variations

Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java,

» A subclass may not change the argument or result types of a
method of its superclass (i.e., no depth subtyping)

» Each class has just one superclass (“single inheritance” of
classes)

—— each class member (field or method) can be
assigned a single index, adding new indices “on the
right” as more members are added in subclasses
(i.e., no permutation for classes)

> A class may implement multiple interfaces (“multiple
inheritance” of interfaces)

|.e., permutation is allowed for interfaces.

The Subtype Relation: Arrow types

T1 < Sq S> <: T»
S1—90 <: T1—T»

(S-ARROW)

Note the order of T{ and S; in the first premise. The subtype
relation is contravariant in the left-hand sides of arrows and
covariant in the right-hand sides.

Intuition: if we have a function f of type S;—S5, then we know
that £ accepts elements of type Sq; clearly, £ will also accept
elements of any subtype T; of S;. The type of f also tells us that
it returns elements of type So; we can also view these results
belonging to any supertype T»> of S». That is, any function f of
type S1—S» can also be viewed as having type T1—To.

Intuition of the S-Arrow rule:
“eats less, produces more” is always welcome. :)

————————————————— S-Arrow analogous to —-—————————

f: {x:Nat}—>{y:Bool} can be used as input to g:

g = \p:{x:Nat,z:Nat}—>{}. g (p {x=5,z=2})

(g f) typechecks because 1. f can be used in place of p:
f expects {x:Nat} so {x=5,z=2} is a good input to f.
(contra-variant on input).

2. on the other hand, (p {x=5,z=2}) returns type {} which is
the input type of (.

f {x=5,z=2} outputs type {y:Bool} which is a good input to q.

eating {x:Nat} and producing {y:Bool} is always welcome in a
context which expects you to eat {x:Nat,z:Nat} and produce {}.

Motivation now let’s typecheck this example

With our usual typing rule for applications

[Ft1 : T11—T1o [Ft> : Tqq
[Ft1 to : T1o

the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

I'-App)

The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.
We introduce a new type constant Top, plus a rule that makes Top
a maximum element of the subtype relation.

S <: Top (S-Top)

Cf. Object in Java.

The Subtype Relation: General rules

S <: S (S-REFL)

S<: U UL T
ST

(S-TRANS)

Subtype relation

S <: S (S-REFL)

S<: U UL T
ST

(S-TRANS)

{1;:T; <ty < {1;:T; """} (S-RCDWIDTH)

for each 1 S; < T;
{1I:Sl iEl..n} <: {11 :TI i€1..n}

(S-RCDDEPTH)

{k;:S;’€*""} is a permutation of {1;:T; "<}
{kj:Sj jEl..n} < {li:Ti iEl..n}

(S-RCDPERM)

T1 < 5S¢ So <: T

(S-ARROW)
S1—S0 <: T1—T»

S <: Top (S-Top)

- <: Top Based on A_. (9-1)
1
Syntax Subtyping S<: T
t = terms:
x variable SECES (S-REFL)
Ax:T.t abstraction
tt application S l; < _:‘_, Sl (S-TRANS)
vV ou= values:
<: To -
Ax:T.t abstraction value . P -10R)
1<t $ S, <i T
—— . S-ARROW
T : | types: 5125, < T1=To ()
Top maximum type
T-T type of functions | Typing FT-t:T
x:TeTl
[o= contexts: - (T-VAR)
%) empty context |
[,x:T term variable binding [LxXiTi 12 0 T2 (T-ABS)
[FAX:T1.t2 : T1—T>
Evaluation t—t -t : T11—=Ti2 't : Ty
tl — t’l r . T (T-APP)
: (E-APP1) Ftite s T
R -t:S S<T
=t <.
t, — t (T-Sus)
2 : (E-APP2) r-t:T

vy t2 — V) t’z
(Ax:Ty1.t12) vo — [x — vo]ty2 (E-APPABS)

Figure 15-1: Simply typed lambda-calculus with subtyping (A..)

Properties of Subtyping

Safety

Statements of progress and preservation theorems are unchanged
from A_..

Proofs become a bit more involved, because the typing relation is
no longer syntax directed.

Given a derivation, we don’t always know what rule was used in
the last step. The rule T-SUB could appear anywhere.

[-t : S S<: T
[t : T

(T-SuB)

Preservation

Theorem: f '+t : Tand t — t/, then [t/ : T.

Proof: By induction on typing derivations.

(Which cases are likely to be hard?)

Subsumption case

Case T-SUB: t : S

S <:

T

Subsumption case

Case T-SUB: t:S S<: T
By the induction hypothesis, [-+’ : S. By T-SuB, [- t": T.

Subsumption case

Case T-SUB: t:S S<: T
By the induction hypothesis, [-+’ : S. By T-SuB, [- t": T.

Not hard!

Application case

Case T-AppP:
t=1t; to [Ft1 : T11—T1o [Ft> : Tqq T =Tqo

By the inversion lemma for evaluation, there are three rules by
which t —— t’ can be derived: E-APP1, E-APP2, and
E-APPABS. Proceed by cases.

Application case

Case T-AppP:
t=1t; to [Ft1 : T11—T1o [Ft> : Tqq T =Tqo

By the inversion lemma for evaluation, there are three rules by
which t — t’ can be derived: E-ApPpP1, E-APP2, and
E-APPABS. Proceed by cases.

Subcase E-ApPPl: t; — t] t' =1t] to

The result follows from the induction hypothesis and T-APP.

[Ftq : T11—T1o [Ft> : Tqq
[Ft1 to : Tqo

(T-App)

Application case

Case T-APP:

t=1t1 to [Ft1 : T11—T1o

[Ft> : Tqq T =Tqo

By the inversion lemma for evaluation, there are three rules by

which t — t’ can be derived: |
E-APPABS. Proceed by cases.

Subcase E-Aprl: t; — t]

H-APP1, .

-APP2, and

t' =1t] to

The result follows from the induction hypothesis and T-APP.

to : Tqq

[t1 . T11—T1o [
[Ft1 to : Tqo
t] — t]

t1 to — t] to

(T-App)

(E-AppP1)

Case T-APP (CONTINUED):
t=1t; to [Ftq : T11—T1o [Ft> : Tqq T ="Tqo

Subcase E-APP2: t] = vy to — t t' =vy t,

Similar.

[t1 : T11—T1o [to : Tq11
[Ft1 to : T1o

(T-App)

ty — t!
. : (E-ApP2)

vy T — V3 t/2

Case T-APP (CONTINUED):
t=1t; to [Ftq : T11—T1o [Ft> : Tqq T ="Tqo

Subcase E-APPABS:
t1 = Ax:S11. t1o tr = Vv t/ = [X — Vg]tlz

By the inversion lemma for the typing relation...

Case T-APP (CONTINUED):
t=1t; to [Ftq : T11—T1o [Ft> : Tqq T ="Tqo

Subcase E-APPABS:
t1 = Ax:S11. t1o tr = Vv t/ = [X — Vg]tlz

By the inversion lemma for the typing relation... T{; <: S{; and
[, x:S11 F t12 : Tio.

Case T-APP (CONTINUED):
t=1t; to [Ftq : T11—T1o [Ft> : Tqq T ="Tqo

Subcase E-APPABS:
t1 = Ax:S11. t1o to = vy t/ = [X — V2]t12
By the inversion lemma for the typing relation... T1; <: S11 and
[, x:S11 F t12 : Tio.
By T-SuB, I -ty : Sq1.

Case T-APP (CONTINUED):
t=1t; to [Ftq : T11—T1o [Ft> : Tqq T ="Tqo

Subcase E-APPABS:
t1 = Ax:S11. t1o to = Vo t’ = [X — Vg]tlz

By the inversion lemma for the typing relation... T{; <: S{; and
[, x:S11 F t12 : Tio.

By T-SuB, I -ty : Sq1.

By the substitution lemma, I = t" : T2, and we are done.

[Ft1 : T11—T1o [- to : Tqq
[Ft1 to : T1o

(T-App)

(Ax:T11.t12) vo — [x+— vo]tin (E-APPABS)

Inversion old inversion lemma w/o subtyping

Lemma:
1. f ' = true : R, then R = Bool.
2. It = false : R, then R = Bool.

3. fI'+if t; then to else t3 : R, then [F t; : Bool and
[to,t3 : R.

4. It I Hx : R, then x:R el

5. fI'= A Ax:Ty.t» : R, then R = T;—R» for some R> with
. x:T1 Fty : Ro.

6. If ' =ty to : R, then there is some type Ti; such that
Fty : Tyy—Rand [F ty @ Tq1.

5. fI'Ax:Ty.t> : R, then R = T;{—R» for some R, with
Inversion Lemma for TI.x:Tikt2: Re.

Lemma: If [= A\x:S1.8> : Ty—T», then T; < S7 and
[, x:S1F sy : T».
Proof: Induction on typing derivations.

Inversion Lemma for Typing

Lemma: If [= A\x:S1.8> : Ty—T», then T; < S7 and
[, x:S1F sy : T».
Proof: Induction on typing derivations.

Case T-SUB: Ax:S1.80 : U U< T{—Ty

Inversion Lemma for Typing

Lemma: If [= A\x:S1.8> : Ty—T», then T; < S7 and
[, xX:S1F sy : To.

Proof: Induction on typing derivations.

Case T-SUB: Ax:S1.80 : U U< T{—Ty

We want to say “By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type).

Inversion Lemma for Typing

Lemma: If [= A\x:S1.8> : Ty—T», then T; < S7 and
[, xX:S1F sy : To.
Proof: Induction on typing derivations.

Case T-SUB: Ax:S1.80 : U U< T{—Ty

We want to say "By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U<: T;—T>, then U has the form U;— U>,

with T1 <: Uy and U, <: T». (Proof: by induction on

subtyping derivations.)

Inversion Lemma for Typing

Lemma: If [= A\x:S1.8> : Ty—T», then T; < S7 and
[, xX:S1F sy : To.

Proof: Induction on typing derivations.

Case T-SUB: Ax:S1.80 : U U< T{—Ty

We want to say "By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U<: T;—T>, then U has the form U;— U>,

with T1 <: Uy and U, <: T». (Proof: by induction on

subtyping derivations.)

By this lemma, we know U = U;—U,, with Ty <: U; and U <: T».

Inversion Lemma for Typing

Lemma: If [= A\x:S1.8> : Ty—T», then T; < S7 and
[, xX:S1F sy : To.
Proof: Induction on typing derivations.

Case T-SUB: Ax:S1.80 : U U< T{—Ty

We want to say "By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U<: T;—T>, then U has the form U;— U>,

with T1 <: Uy and U, <: T». (Proof: by induction on

subtyping derivations.)

By this lemma, we know U = U;—U,, with Ty <: U; and U <: T».
The IH now applies, yielding U; <: S; and [, x:S1 5o : Us.

Inversion Lemma for Typing

Lemma: If [= A\x:S1.8> : Ty—T», then T; < S7 and
[, xX:S1F sy : To.
Proof: Induction on typing derivations.

Case T-SUB: Ax:S1.80 : U U< T{—Ty

We want to say "By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U<: T;—T>, then U has the form U;— U>,

with T1 <: Uy and U, <: T». (Proof: by induction on

subtyping derivations.)

By this lemma, we know U = U;—U,, with Ty <: U; and U <: T».
The IH now applies, yielding U; <: S; and [, x:S1 5o : Us.
From U; <: S; and Ty <: Uy, rule S-TRANS gives T; <: Sj.

Inversion Lemma for Typing

Lemma: If [= A\x:S1.8> : Ty—T», then T; < S7 and
[, xX:S1F sy : To.
Proof: Induction on typing derivations.

Case T-SUB: Ax:S1.80 : U U< T{—Ty

We want to say "By the induction hypothesis...”, but the IH does
not apply (we do not know that U is an arrow type). Need another
lemma...

Lemma: If U<: T;—T>, then U has the form U;— U>,

with T1 <: Uy and U, <: T». (Proof: by induction on

subtyping derivations.)

By this lemma, we know U = U;—U,, with Ty <: U; and U <: T».
The IH now applies, yielding U; <: S; and [, x:S1 5o : Us.
-rom Uy <: Sy and Ty <: Uy, rule S-TRANS gives T; <: Sj.

-rom [, x:S1 Fs2 : Uy and Uy <¢ To, rule T-SUB gives

', x:51 F s2 : Ty, and we are done.

Subtyping with Other Features

Ascription and Casting

Ordinary ascription:

[Ft1 : T
[ty as T: T

(T-ASCRIBE)

vi as T — vy (E- ASCRIBE)

Ascription and Casting rrt:S sS<T

Rt - |
Ordinary ascription: (upcasting) F[-tasT:T

T-SUB

T-ASCRIBE

[Ftq : T
[ty as T: T

(T-ASCRIBE)

vi as T — vy (E- ASCRIBE)

Casting (cf. Java): (downcasting) T = A(x:Top) (x as {a:Nat}).a;

: : [Ftq : S
trust (at compile time) (T-CasT)
[t as T: T
but
vy o T B
verify (at run time) vi as T — vy (E-CAsT)

does progress theorem still hold?

Subtyping and Variants

<1;:T; '€-"> < <1;:T; '&-ntk> (S—VARIANTWIDTH)

for each 1 S; < T;
<1I : Sl i€1..n> <: <1I :TI i€1..n>

(S-VARIANTDEPTH)

<k;:S;/€'"> is a permutation of <1;:T; '<*">

<k_j:Sj jEl..n> < <lI:TI iEl..n>

(S-VARIANTPERM)

[Ft1 : Tq
[F<11=t1> : <11:T¢1>

(T-VARIANT)

Subtyping and Lists

S1 <i Tq
List S; <: List Tjy

(S-LisT)

l.e., List iIs a covariant type constructor.

Subtyping and References

S1 <: Ty T1 < 51
Ref S; <: Ref T;

(S-REF)

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?

Subtyping and References

S1 <: Ty T1 < 51
Ref S; <: Ref T;

(S-REF)

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?
» When a reference is read, the context expects a T, so if S1 <:
T¢1 then an Sq is ok.

Subtyping and References

S1 <: Ty T1 < 51
Ref S; <: Ref T;

(S-REF)

l.e., Ref is not a covariant (nor a contravariant) type constructor.
Why?
» When a reference is read, the context expects a T, so if S1 <:
T¢1 then an Sq is ok.

» When a reference is written, the context provides a T; and if
the actual type of the reference is Ref Si, someone else may
use the T; as an S;. So we need T; <: Sj.

Subtyping and Arrays

o array is mutable, list is immutable
Similarly...

S1 <: Ty T1 < 51

(S-ARRAY)
Array 57 <: Array T,

Subtyping and Arrays

o array is mutable, list is immutable
Similarly...

S1 <: Ty T1 < 51

(S-ARRAY)
Array 57 <: Array T,

S;1<: T
1 1 (S-ARRAYJAVA)

Array 57 <: Array T,

his is regarded (even by the Java designers) as a mistake in the
design.

in Java syntax, S1[] <: T1]]

References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.

References again

Observation: a value of type Ref T can be used in two different
ways: as a source for values of type T and as a sink for values of
type T.

ldea: Split Ref T into three parts:

» Source T: reference cell with “read cabability”
» Sink T: reference cell with “write cabability”
» Ref T: cell with both capabilities

Modified Typing Rules

[| X F t1 : Source Tij

(T-DEREF)
[‘ > F 'ty Ty

F\ZI—t1:SinkT11 F|Z|—t2:T11
[| X Ft1:=ty : Unit

(T-ASSIGN)

Subtyping rules

S1 <: Ty

Source S1 <: Source Tjy

Tl <: Sl
Sink S7 <: Sink T4

Ref T <: Source T;

Ref Tq < Sink T4

(S-SOURCE)

(S-SINK)

(S-REFSOURCE)

(S-REFSINK)

Algorithmic Subtyping

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule
can be “read from bottom to top” in a straightforward way.

[t1 . T11—T1o [to : Tq11
[Ft1 to : T1o

(T-App)

If we are given some [and some t of the form t; t,, we can try
to find a type for t by

1. finding (recursively) a type for t;

2. checking that it has the form T{{—T1>
3. finding (recursively) a type for t»

4. checking that it i1s the same as Tq;

Technically, the reason this works is that We can divide the
“positions” of the typing relation into input positions (I and t)
and output positions (T).

» For the input positions, all metavariables appearing in the

premises also appear in the conclusion (so we can calculate
inputs to the “subgoals’ from the subexpressions of inputs to

the main goal)

» For the output positions, all metavariables appearing in the
conclusions also appear in the premises (so we can calculate
outputs from the main goal from the outputs of the subgoals)

[Ft1 : T11—T1o [ty : Tq3

(T-App)
[Ft1 to : T1o

Syntax-directed sets of rules

The second important point about the simply typed
lambda-calculus is that the set of typing rules is syntax-directed, in
the sense that, for every “input” I and t, there one rule that can
be used to derive typing statements involving t.

E.g., if © is an application, then we must proceed by trying to use
T-AppP. If we succeed, then we have found a type (indeed, the
unique type) for t. If it fails, then we know that t is not typable.

—— no backtracking!

Non-

When

syntax-directedness of typing

we extend the system with subtyping, both aspects of

syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be
used to give a type to terms of a given shape (the old one
plus T-SUB)

[t : S S<: T
[t : T

(T-SuB)

2. Worse yet, the new rule T-SUB itself is not syntax directed:

t
t

(

ne inputs to the left-hand subgoal are exactly the same as
ne inputs to the main goall!

Hence, if we translated the typing rules naively into a

typechecking function, the case corresponding to T-SUB
would cause divergence.)

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.

2. The transitivity rule

S<: U UL T

(S-TRANS)
S< T

Is badly non-syntax-directed: the premises contain a
metavariable (in an “input position”) that does not appear at

all in the conclusion.
To implement this rule naively, we'd have to guess a value for

Ul

What to do?

What to do?

1. Observation: We don't need 1000 ways to prove a given
typing or subtyping statement — one is enough.
—— Think more carefully about the typing and subtyping
systems to see where we can get rid of excess flexibility

2. Use the resulting intuitions to formulate new “algorithmic”
(i.e., syntax-directed) typing and subtyping relations

3. Prove that the algorithmic relations are “the same as’ the
original ones in an appropriate sense.

Developing an algorithmic
subtyping relation

Subtype relation

S <: S (S-REFL)
S<:U UL T
(S-TRANS)
S<: T
{1,:T; "€k} < {1;:T; '€} (S-RCcDWIDTH)

foreach 1 S; < T;
{1I:Sl i€1..n} <: {11.'1"’ iEl..n}

(S-RCDDEPTH)

{k;:S;’€*""} is a permutation of {1;:T; "<}
{kj:Sj jel..n} < {li:Ti iEl..n}

(S-RCcDPERM)

T < 5S¢ So <: T

(S-ARROW)
S1—90 <: T1—T»

S <: Top (S-Top)

Issues

For a given subtyping statement, there are multiple rules that
could be used last in a derivation.

1. The conclusions of S-RcpWipTH, S-RCDDEPTH, and
S-RCDPERM overlap with each other.

2. S-REFL and S-TRANS overlap with every other rule.

Step 1: simplify record subtyping

ldea: combine all three record subtyping rules into one “macro
rule” that captures all of their effects

1; 'l C {k; J&-m k; = 1; implies S; <: T;
J J J
{k_]:Sj jEl..m} < {11:'1"’ iEl..n}

(S-RcD)

Simpler subtype relation

S <: S (S-REFL)
S<:U U< T
. (S-TRANS)
{1i iEl..n} C {kj jel..m} ki = 1; implies Sj <: T; (S RCD)
{k_j:sj jEl..m} < {ll :Ti i€1..n}
T{1 <: S S, <: T
1 : : : (S-ARROW)

S1—9y <. T1—T»

S <: Top (S-Top)

Step 2: Get rid of reflexivity

Observation: S-REFL is unnecessary.

Lemma: S <: S can be derived for every type S without using
S-REFL.

Even simpler subtype relation

S <:U U<t T

(S-TRANS)
S<: T
{1,‘ iel""} C {kj jel“m} ki=1; implies Sj <t T
. S-RcD
{kj . Sj fEl..m} < {1/ :TI l€1..n} ()
T{ <¢ S S> <: T
1 : . : (S-ARROW)

S1—90 <: T1—T»

S <: Top (S-Top)

Step 3: Get rid of transitivity

Observation: S-TRANS is unnecessary.

Lemma: If S <: T can be derived, then it can be derived without
using S-TRANS.

“"Algorithmic” subtype relation

b S <: Top (SA-Top)

» Tq <! S3 » Sy <: T»
B S1—S5 <: T{—T»

(SA-ARROW)

{l,’ iel""} C {kj jel“m} for each ki =1;, > Sj <t T
|_’ {kj:S_j jEl..m} < {II:TI iEl..n}

(SA-RcD)

Soundness and completeness

Theorem: S <: Tiff » S <: T.

Proof: (Homework)

Terminology:

» The algorithmic presentation of subtyping is sound with
respect to the original if » S <: T implies S <: T.
(Everything validated by the algorithm is actually true.)

» The algorithmic presentation of subtyping is complete with
respect to the original if S <: T implies » S <: T.
(Everything true is validated by the algorithm.)

Subtyping Algorithm (pseudo-code)

The algorithmic rules can be translated directly into code:

subtype(S,T) =

if T = Top, then true
elseif S=S81—S>and T =T1—T»

then subtype(T1,S1) A subtype(Sy, T»)
else iIf S = {kj:Sj sel-mt and T = {1;:T; '+ "%}

then {1i i€1..n} C {kj jEl..m}

A for all / € 1..n there is some j € 1..m with k; = 1;
and subtype(S;, T;)

else false.

Decision Procedures

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true iff v € R.

Decision Procedures

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true iff v € R.

Is our subtype function a decision procedure?

Decision Procedures

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true iff v € R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S,T) = true, then » S < T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S,T) = false, then not » S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Decision Procedures

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true iff v € R.

Is our subtype function a decision procedure?
Since subtype is just an implementation of the algorithmic

subtyping rules, we have

1. if subtype(S,T) = true, then » S < T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S,T) = false, then not » S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What's missing?

Decision Procedures

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true iff v € R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S,T) = true, then » S < T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S,T) = false, then not » S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What's missing?

A: How do we know that subtype is a total function?

Decision Procedures

Recall: A decision procedure for a relation R € U is a total
function p from U to {true, false} such that p(u) = true iff v € R.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic
subtyping rules, we have

1. if subtype(S,T) = true, then » S < T
(hence, by soundness of the algorithmic rules, S <: T)

2. if subtype(S,T) = false, then not » S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What's missing?
A: How do we know that subtype is a total function?

Prove it!

Metatheory of Typing

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

[t : S S<: T
[t : T

(T-SuB)

Where is this rule really needed?

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

[t : S S<: T
[t : T

(T-SuB)
Where is this rule really needed?
For applications. E.g., the term

(Ar:{x:Nat}. r.x) {x=0,y=1}

Is not typable without using subsumption.

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

[t : S S<: T
[t : T

(T-SuB)

Where is this rule really needed?

For applications. E.g., the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

Is not typable without using subsumption.

Where else??

Issue

For the typing relation, we have just one problematic rule to deal
with: subsumption.

[t : S S<: T
[t : T

(T-SuB)

Where is this rule really needed?

For applications. E.g., the term
(Ar:{x:Nat}. r.x) {x=0,y=1}

Is not typable without using subsumption.
Where else??

Nowhere else! Uses of subsumption to help typecheck applications
are the only interesting ones.

Example (T-ABs)

r,thl |—SQ : S) S, <: Ty

(T-SuB)
F, X 91 - Sy . T

(T-ABS)
[)\X:S]_.SQ : 91—

Example (T-ABs)

r,thll—SQ . So S, <: T»
(T-SuB)

F, X 91 - Sy . T

(T-ABS)
I_I_)\X:S]_.SQ : 91—
becomes
(S-REFL)
F,X:Sll—32 . So S1 <! Sy S, <: T»
(T-ABS) (S-ARROW)
[)\XiSl .So 1 S1—99 S1—S, <! S1—T>»

(T-SuB)
[)\X:S]_.SQ : 91—

Example (T-APP on the left)

T11 <¢ S11 S12 <! Tyo

(S-ARROW)
[Fs1 ¢ S11—S10 S11—S812 <t T11—T1o

(T-SuB)
[s1 - T11—T1o [S> « Tq1

(T-App)
[S1 So» : Tqpo

Example (T-APP on the left)

T11 <¢ S11 S12 <! Tyo

(S-ARROW)
[Fs1 1 811—81 S11—S12 < T11— Ty
(T-SuB)
[s1 - T11—T1o [S> « Tq1
(T-App)
[S1 So» : Tqpo
becomes
[S> . Tq1 T11 <! Sq11
(T-SuB)
[S1 . S911—912 [S> © 911
(T-App)
[Fs1 85 ¢ S1o S1o <! T1o
(T-SuB)

r|_Sl s> . T1o

Example (T-APP on the right)

F|—32 . To Ty <: Tyq1

(T-SuB)
[s1 - T11—T1»o [So + Tq1

(T-App)
[S1 S» : Tqo

Example (T-APP on the right)

F|—32 . To Ty <: Tyq1

(T-SuB)
[s1 - T11—T1»o [So + Tq1
(T-App)
[S1 S» : Tqo
becomes
(S-REFL)
Tr <! T1a T1o <: T12
(S-ARROW)
[s1 - T11—T1o T11—Tq1o <! To—Tq»
(T-SuB)
|_|—Sl . To—Tqo F|—52 . Th

(T-App)
[S1 Sy : T1o

Example (T-SuB)

[Fs : S S<: U

(T-SuB)
[Fs: U U<: T

(T-SuB)

[Fs: T

Example (T-SuB)

[Vs : S S<L: U
(T-SuB)
[Fs : U U<: T
(T-SuB)
[s : T
becomes
S<:U U<: T
(S-TRANS)
[Vs : S S<: T

(T-SuB)

[Fs: T

