Lecture 4: Lambda-Calculus I

Prof. Liang Huang
huang@qc.cs.cuny.edu
The Lambda Calculus

Alonzo Church

Haskell Curry

Stephen Kleene

Alan Turing
The lambda-calculus

- If our previous language of arithmetic expressions was the simplest nontrivial programming language, then the lambda-calculus is the simplest interesting programming language...
 - Turing complete
 - higher order (functions as data)
 - main new feature: variable binding and lexical scope
- The e. coli of programming language research
- The foundation of many real-world programming language designs (including ML, Haskell, Scheme, Lisp, ...)
Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

$$\text{plus3 } x = \text{succ (succ (succ } x\text{))}$$

That is, “\text{plus3 } x \text{ is succ (succ (succ } x\text{)).}”
Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

\[
\text{plus3 } x = \text{ succ (succ (succ x))}
\]

That is, “\text{plus3} x \text{ is succ (succ (succ x))}.”

Q: What is \text{plus3} itself?
Intuitions

Suppose we want to describe a function that adds three to any number we pass it. We might write

\[
\text{plus3 } x = \text{ succ } (\text{ succ } (\text{ succ } x))
\]

That is, “\text{plus3 } x \text{ is succ } (\text{ succ } (\text{ succ } x))”.

Q: What is \text{plus3} itself?

A: \text{plus3} is the function that, given \(x \), yields \(\text{ succ } (\text{ succ } (\text{ succ } x)) \).
Suppose we want to describe a function that adds three to any number we pass it. We might write

\[
\text{plus3 } x = \text{succ (succ (succ x))}
\]

That is, “\text{plus3 } x \text{ is succ (succ (succ x))}.”

Q: What is \text{plus3} itself?

A: \text{plus3} is the function that, given \text{x}, yields \text{succ (succ (succ x))}.

\[
\text{plus3 } = \lambda x. \text{succ (succ (succ x))}
\]

This function exists independent of the name \text{plus3}.
Suppose we want to describe a function that adds three to any number we pass it. We might write

\[
\text{plus3 } x = \text{succ (succ (succ x))}
\]

That is, “\text{plus3 } x \text{ is succ (succ (succ x))}.”

Q: What is \text{plus3} itself?

A: \text{plus3} is the function that, given \(x\), yields \text{succ (succ (succ x))}.

\[
\text{plus3} = \lambda x. \text{succ (succ (succ x))}
\]

This function exists independent of the name \text{plus3}.

On this view, \text{plus3 (succ 0)} is just a convenient shorthand for “the function that, given \(x\), yields \text{succ (succ (succ x))}, applied to \text{succ 0}.”

\[
\text{plus3 (succ 0)} = (\lambda x. \text{succ (succ (succ x))}) (\text{succ 0})
\]
We have introduced two primitive syntactic forms:

- **abstraction** of a term \(t \) on some subterm \(x \):
 \[
 \lambda x. \, t
 \]
 “The function that, when applied to a value \(v \), yields \(t \) with \(v \) in place of \(x \).”

- **application** of a function to an argument:
 \[
 t_1 \, t_2
 \]
 “the function \(t_1 \) applied to the argument \(t_2 \)”

Recall that we wrote anonymous functions “\texttt{fun } x \rightarrow t” in OCaml.
Abstractions over Functions

Consider the λ-abstraction

$$g = \lambda f. f \ (f \ (\text{succ} \ 0))$$

Note that the parameter variable f is used in the function position in the body of g. Terms like g are called higher-order functions.

If we apply g to an argument like \texttt{plus3}, the “substitution rule” yields a nontrivial computation:

$$g \ \texttt{plus3} = (\lambda f. f \ (f \ (\text{succ} \ 0))) \ (\lambda x. \text{succ} \ (\text{succ} \ (\text{succ} \ x)))$$

i.e. \((\lambda x. \text{succ} \ (\text{succ} \ (\text{succ} \ x))) \)

\hspace{.5cm} \((\lambda x. \text{succ} \ (\text{succ} \ (\text{succ} \ x))) \ (\text{succ} \ 0))\)

i.e. \((\lambda x. \text{succ} \ (\text{succ} \ (\text{succ} \ x))) \)

\hspace{.5cm} \((\text{succ} \ (\text{succ} \ (\text{succ} \ (\text{succ} \ 0))))\)

i.e. \(\text{succ} \ (\text{succ} \ (\text{succ} \ (\text{succ} \ (\text{succ} \ (\text{succ} \ 0))))))\)
Abstractions Returning Functions

Consider the following variant of g:

$$\text{double} \; = \; \lambda f. \, \lambda y. \; f \; (f \; y)$$

I.e., double is the function that, when applied to a function f, yields a function that, when applied to an argument y, yields $f \; (f \; y)$.

Prelude> let g = \f -> \y -> f (f y)
Prelude> g (+ 2) 3
7
Example

double plus3 0

= (λf. λy. f (f y))
 (λx. succ (succ (succ x)))
 0
i.e. (λy. (λx. succ (succ (succ x)))
 ((λx. succ (succ (succ x))) y))
 0
i.e. (λx. succ (succ (succ x)))
 ((λx. succ (succ (succ x))) 0)
i.e. (λx. succ (succ (succ x)))
 (succ (succ (succ 0)))
i.e. succ (succ (succ (succ (succ (succ 0))))))
The Pure Lambda-Calculus

As the preceding examples suggest, once we have λ-abstraction and application, we can throw away all the other language primitives and still have left a rich and powerful programming language.

In this language — the “pure lambda-calculus”— everything is a function.

- Variables always denote functions
- Functions always take other functions as parameters
- The result of a function is always a function
Formalities
Syntax

\[
t ::= \text{terms}
\]
\[
x \quad \text{variable}
\]
\[
\lambda x.t \quad \text{abstraction}
\]
\[
t t \quad \text{application}
\]

Terminology:

- terms in the pure \(\lambda\)-calculus are often called \(\lambda\)-terms
- terms of the form \(\lambda x. \ t\) are called \(\lambda\)-abstractions or just abstractions
Scope

The λ-abstraction term $\lambda x. t$ binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction binding x are said to be free.

$$\lambda x. \lambda y. x y z$$
Scope

The λ-abstraction term $\lambda x. t$ binds the variable x.

The scope of this binding is the body t.

Occurrences of x inside t are said to be bound by the abstraction.

Occurrences of x that are not within the scope of an abstraction binding x are said to be free.

$$\lambda x. \lambda y. x y z$$

$$\lambda x. (\lambda y. z y) y$$
Values

\[v ::= \]
\[\lambda x.t \]
\[t ::= \]
\[x \]
\[\lambda x.t \]
\[t t \]
Operational Semantics

Computation rule:

\[(\lambda x. t_{12}) v_2 \longrightarrow [x \mapsto v_2] t_{12}\]

(E-APPABS)

Notation: \([x \mapsto v_2] t_{12}\) is "the term that results from substituting free occurrences of \(x\) in \(t_{12}\) with \(v_{12}\)."
Operational Semantics

Computation rule:

\[(\lambda x. t_{12}) \ v_2 \rightarrow [x \mapsto v_2]t_{12}\]
(E-APPABS)

Notation: \([x \mapsto v_2]t_{12}\) is “the term that results from substituting free occurrences of \(x\) in \(t_{12}\) with \(v_{12}\).”

Congruence rules: call-by-value:

\[
\begin{align*}
 t_1 &\rightarrow t_1' \\
 t_1 \ t_2 &\rightarrow t_1' \ t_2 \\
\end{align*}
\]
(E-APP1)

\[
\begin{align*}
 t_2 &\rightarrow t_2' \\
 v_1 \ t_2 &\rightarrow v_1 \ t_2' \\
\end{align*}
\]
(E-APP2)
Operational Semantics

Computation rule:

\[
(\lambda x. t_{12}) v_2 \longrightarrow [x \mapsto v_2] t_{12}
\]
(E-APPABS)

Notation: \([x \mapsto v_2] t_{12}\) is “the term that results from substituting free occurrences of \(x\) in \(t_{12}\) with \(v_{12}\).”

Congruence rules: call-by-name:

\[
\frac{t_1 \rightarrow t_1'}{t_1 \ t_2 \rightarrow t_1' \ t_2}
\]
(E-APP1)

\[
(\lambda x. t_{12}) \ t_2 \rightarrow [x \mapsto t_2] t_{12}
\]
(E-APP2)

big-step semantics

\[
\begin{align*}
\lambda x. t & \Downarrow \lambda x. t \\
 t_1 & \Downarrow \lambda x. t_{12} \quad t_2 & \Downarrow v_2 \quad [x \mapsto v_2] t_{12} & \Downarrow t' \\
 t_1 \ t_2 & \Downarrow t'
\end{align*}
\]
A term of the form $(\lambda x.t) v$ — that is, a λ-abstraction applied to a value — is called a redex (short for “reducible expression”).
Alternative evaluation strategies

Strictly speaking, the language we have defined is called the pure, call-by-value lambda-calculus.

The evaluation strategy we have chosen — call by value — reflects standard conventions found in most mainstream languages.

Some other common ones:

- Call by name (cf. Haskell)
- Normal order (leftmost/outermost)
- Full (non-deterministic) beta-reduction
Programming in the Lambda-Calculus
Multiple arguments

Above, we wrote a function `double` that returns a function as an argument.

\[
\text{double} = \lambda f. \lambda y. f (f y)
\]

This idiom — a \(\lambda \)-abstraction that does nothing but immediately yield another abstraction — is very common in the \(\lambda \)-calculus.

In general, \(\lambda x. \lambda y. t \) is a function that, given a value \(v \) for \(x \), yields a function that, given a value \(u \) for \(y \), yields \(t \) with \(v \) in place of \(x \) and \(u \) in place of \(y \).

That is, \(\lambda x. \lambda y. t \) is a two-argument function.

(Recall the discussion of currying in OCaml.)
Syntactic conventions

Since λ-calculus provides only one-argument functions, all multi-argument functions must be written in curried style.

The following conventions make the linear forms of terms easier to read and write:

- Application associates to the left

 E.g., $t \ u \ v$ means $(t \ u) \ v$, not $t \ (u \ v)$

- Bodies of λ-abstractions extend as far to the right as possible

 E.g., $\lambda x. \lambda y. \ x \ y$ means $\lambda x. \ (\lambda y. \ x \ y)$, not $\lambda x. \ (\lambda y. \ x) \ y$
The “Church Booleans”

\[\text{tru} = \lambda t. \lambda f. t \]
\[\text{fls} = \lambda t. \lambda f. f \]

\[\text{tru} \ v \ w \]
\[= \underbrace{(\lambda t. \lambda f. t)} \ v \ w \quad \text{by definition} \]
\[\rightarrow (\lambda f. \ v) \ w \quad \text{reducing the underlined redex} \]
\[\rightarrow v \quad \text{reducing the underlined redex} \]

\[\text{fls} \ v \ w \]
\[= \underbrace{(\lambda t. \lambda f. f)} \ v \ w \quad \text{by definition} \]
\[\rightarrow (\lambda f. \ f) \ w \quad \text{reducing the underlined redex} \]
\[\rightarrow w \quad \text{reducing the underlined redex} \]
Functions on Booleans

\[
\text{not} = \lambda b. b \text{ fls tru}
\]

That is, \text{not} is a function that, given a boolean value \(v \), returns \textbf{fls} if \(v \) is \textbf{tru} and \textbf{tru} if \(v \) is \textbf{fls}.
Functions on Booleans

\[\text{and } = \lambda b. \lambda c. b \; c \; \text{fls}\]

That is, \text{and} is a function that, given two boolean values \(v\) and \(w\), returns \(w\) if \(v\) is \text{tru} and \text{fls} if \(v\) is \text{fls} \quad \text{(short-circuit ?)}

Thus \text{and} \(v\) \(w\) yields \text{tru} if both \(v\) and \(w\) are \text{tru} and \text{fls} if either \(v\) or \(w\) is \text{fls}.

what about \text{or}?
Pairs

\[\text{pair} = \lambda f. \lambda s. \lambda b. \ f \ s \]
\[\text{fst} = \lambda p. \ p \ \text{tru} \]
\[\text{snd} = \lambda p. \ p \ \text{f ls} \]

That is, \text{pair} \ v \ w \text{ is a function that, when applied to a boolean value } b, \text{ applies } b \text{ to } v \text{ and } w. \text{

By the definition of booleans, this application yields } v \text{ if } b \text{ is } \text{tru} \text{ and } w \text{ if } b \text{ is } \text{f ls}, \text{ so the first and second projection functions } \text{fst} \text{ and } \text{snd} \text{ can be implemented simply by supplying the appropriate boolean.}

\[
\begin{align*}
\text{fst (pair v w)} \\
= & \text{fst (} (\lambda f. \lambda s. \lambda b. f s) \ v w) \\
\to & \text{fst (} (\lambda s. \lambda b. b v s) \ w) \\
\to & \text{fst (} \lambda b. b v w) \\
= & (\lambda p. p \text{tru}) (\lambda b. b v w) \\
\to & (\lambda b. b v w) \text{tru} \\
\to & \text{tru v w} \\
\to^* & v
\end{align*}
\]

by definition
reducing the underlined redex
reducing the underlined redex
by definition
reducing the underlined redex
reducing the underlined redex
as before.
Example

\[
\begin{align*}
\text{fst} \ (\text{pair} \ v \ w) \\
= \ & \text{fst} \ ((\lambda f. \ \lambda s. \ \lambda b. \ b \ f \ s) \ v \ w) \quad \text{by definition} \\
\rightarrow \ & \text{fst} \ ((\lambda s. \ \lambda b. \ b \ v \ s) \ w) \quad \text{reducing the underlined redex} \\
\rightarrow \ & \text{fst} \ (\lambda b. \ b \ v \ w) \quad \text{reducing the underlined redex} \\
= \ & (\lambda p. \ p \ \text{tru}) \ (\lambda b. \ b \ v \ w) \quad \text{by definition} \\
\rightarrow \ & (\lambda b. \ b \ v \ w) \ \text{tru} \quad \text{reducing the underlined redex} \\
\rightarrow \ & \text{tru} \ v \ w \quad \text{reducing the underlined redex} \\
\rightarrow^* \ & v \quad \text{as before.}
\end{align*}
\]
Church numerals

Idea: represent the number n by a function that “repeats some action n times.”

$$
\begin{align*}
c_0 &= \lambda s. \lambda z. z \\
c_1 &= \lambda s. \lambda z. s \; z \\
c_2 &= \lambda s. \lambda z. s \; (s \; z) \\
c_3 &= \lambda s. \lambda z. s \; (s \; (s \; z))
\end{align*}
$$

what about “fis”? maybe C is right...

That is, each number n is represented by a term c_n that takes two arguments, s and z (for “successor” and “zero”), and applies s, n times, to z.
Functions on Church Numerals

Successor:
Functions on Church Numerals

Successor:

\[\text{succ} = \lambda n. \lambda s. \lambda z. s (n s z) \]

another solution?

\[\text{succ2} = \lambda n. \lambda s. \lambda z. n s (s z); \]

\[c_0 = \lambda s. \lambda z. z \]
\[c_1 = \lambda s. \lambda z. s z \]
\[c_2 = \lambda s. \lambda z. s (s z) \]
\[c_3 = \lambda s. \lambda z. s (s (s z)) \]
Functions on Church Numerals

Successor:

\[scc = \lambda n. \lambda s. \lambda z. s \ (n \ s \ z) \]
\[scc2 = \lambda n. \lambda s. \lambda z. n \ s \ (s \ z); \]

Addition:

\[c_0 = \lambda s. \lambda z. \ z \]
\[c_1 = \lambda s. \lambda z. \ s \ z \]
\[c_2 = \lambda s. \lambda z. \ s \ (s \ z) \]
\[c_3 = \lambda s. \lambda z. \ s \ (s \ (s \ z)) \]
Functions on Church Numerals

Successor:

\[\text{succ} = \lambda n. \lambda s. \lambda z. s \ (n \ s \ z) \]
\[\text{succ2} = \lambda n. \lambda s. \lambda z. n \ s \ (s \ z) \]

Addition:

\[\text{plus} = \lambda m. \lambda n. \lambda s. \lambda z. m \ s \ (n \ s \ z) \]
\[\text{c}_0 = \lambda s. \lambda z. z \]
\[\text{c}_1 = \lambda s. \lambda z. s \ z \]
\[\text{c}_2 = \lambda s. \lambda z. s \ (s \ z) \]
\[\text{c}_3 = \lambda s. \lambda z. s \ (s \ (s \ z)) \]
Functions on Church Numerals

Successor:
\[
 \text{sc}c = \lambda n. \lambda s. \lambda z. n s (n s z)
\]
\[
 \text{sc}c2 = \lambda n. \lambda s. \lambda z. n s (s z);
\]

Addition:
\[
 \text{plus} = \lambda m. \lambda n. \lambda s. \lambda z. m s (n s z)
\]
\[
 c_0 = \lambda s. \lambda z. z
\]
\[
 c_1 = \lambda s. \lambda z. s z
\]
\[
 c_2 = \lambda s. \lambda z. s (s z)
\]
\[
 c_3 = \lambda s. \lambda z. s (s (s z))
\]

Multiplication:
Functions on Church Numerals

Successor:
\[scc = \lambda n. \lambda s. \lambda z. s (n s z) \]
\[scc2 = \lambda n. \lambda s. \lambda z. n s (s z); \]

Addition:
\[\text{plus} = \lambda m. \lambda n. \lambda s. \lambda z. m s (n s z) \]

Multiplication:
\[\text{times} = \lambda m. \lambda n. m (\text{plus} n) \, c_0 \]

\[c_0 = \lambda s. \lambda z. z \]
\[c_1 = \lambda s. \lambda z. s z \]
\[c_2 = \lambda s. \lambda z. s (s z) \]
\[c_3 = \lambda s. \lambda z. s (s (s z)) \]
Functions on Church Numerals

Successor:
\[\text{scc} = \lambda n. \lambda s. \lambda z. \text{s} (n \text{s} z) \]
\[\text{scc2} = \lambda n. \lambda s. \lambda z. \text{n s} (s \text{ z}); \]

Addition:
\[\text{plus} = \lambda m. \lambda n. \lambda s. \lambda z. \text{m s} (n \text{s} z) \]

Multiplication:
\[\text{times} = \lambda m. \lambda n. \text{m (plus n) c}_0 \]

Zero test:
Functions on Church Numerals

Successor:
\[
\text{successor} = \lambda n. \lambda s. \lambda z. s (n \ s \ z) \\
\text{successor}2 = \lambda n. \lambda s. \lambda z. n \ s \ (s \ z);
\]

Addition:
\[
\text{add} = \lambda m. \lambda n. \lambda s. \lambda z. m \ s \ (n \ s \ z)
\]

Multiplication:
\[
\text{multiply} = \lambda m. \lambda n. m \ (\text{add} \ n) \ c_0
\]

Zero test:
\[
\text{iszero} = \lambda m. m \ (\lambda x. \text{false}) \text{true}
\]

\[
c_0 = \lambda s. \lambda z. z \\
c_1 = \lambda s. \lambda z. s \ z \\
c_2 = \lambda s. \lambda z. s \ (s \ z) \\
c_3 = \lambda s. \lambda z. s \ (s \ (s \ z))
\]
Functions on Church Numerals

Successor:
\[
\text{succ} = \lambda n. \lambda s. \lambda z. s (n s z)
\]
\[
\text{succ2} = \lambda n. \lambda s. \lambda z. n s (s z);
\]

Addition:
\[
\text{plus} = \lambda m. \lambda n. \lambda s. \lambda z. m s (n s z)
\]

Multiplication:
\[
\text{times} = \lambda m. \lambda n. m (\text{plus} n) \; c_0
\]

Zero test:
\[
\text{iszro} = \lambda m. m (\lambda x. \text{fls}) \; \text{tru}
\]

\[
c_0 = \lambda s. \lambda z. z
\]
\[
c_1 = \lambda s. \lambda z. s z
\]
\[
c_2 = \lambda s. \lambda z. s (s z)
\]
\[
c_3 = \lambda s. \lambda z. s (s (s z))
\]
\[
\text{times2} = \lambda m. \lambda n. \lambda s. \lambda z. m (n s) z;
\]

Or, more compactly:
\[
\text{times3} = \lambda m. \lambda n. \lambda s. m (n s);
\]

\[
\text{power1} = \lambda m. \lambda n. m (\text{times} n) \; c_1;
\]
\[
\text{power2} = \lambda m. \lambda n. m \; n;
\]

What about predecessor?
Predecessor

\[zz = \text{pair } c_0 \; c_0 \]

\[ss = \lambda p. \text{pair } (\text{snd } p) \; (\text{scc } (\text{snd } p)) \]
Predecessor

\[zz = \text{pair } c_0 \ c_0 \]

\[ss = \lambda p. \text{pair } (\text{snd } p) \ (\text{scc } (\text{snd } p)) \]

\[\text{prd} = \lambda m. \text{fst } (m \ ss \ zz) \]

Questions:
1. what’s the complexity of prd?
2. how to define equal?
3. how to define subtract?
Normal forms

Recall:

- A **normal form** is a term that cannot take an evaluation step.
- A **stuck** term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?

Prove it.
Normal forms

Recall:

- A **normal form** is a term that cannot take an evaluation step.
- A **stuck** term is a normal form that is not a value.

Are there any stuck terms in the pure λ-calculus?
Prove it.

Does every term evaluate to a normal form?
Prove it.
Divergence

\[\text{omega} = (\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \]

Note that \text{omega} evaluates in one step to itself!

So evaluation of \text{omega} never reaches a normal form: it diverges.
Divergence

\[\text{omega} = (\lambda x. x x) (\lambda x. x x) \]

Note that \text{omega} evaluates in one step to itself!

So evaluation of \text{omega} never reaches a normal form: it \textit{diverges}.

Being able to write a divergent computation does not seem very useful in itself. However, there are variants of \text{omega} that are very useful...
Iterated Application

Suppose f is some λ-abstraction, and consider the following term:

$$Y_f = (\lambda x. f (x x)) (\lambda x. f (x x))$$
Suppose f is some λ-abstraction, and consider the following term:

$$Y_f = (\lambda x. f (x \; x)) \; (\lambda x. f (x \; x))$$

Now the “pattern of divergence” becomes more interesting:

$$Y_f = (\lambda x. f (x \; x)) \; (\lambda x. f (x \; x)) \rightarrow f \; ((\lambda x. f (x \; x)) \; (\lambda x. f (x \; x))) \rightarrow f \; (f \; ((\lambda x. f (x \; x)) \; (\lambda x. f (x \; x)))) \rightarrow f \; (f \; (f \; ((\lambda x. f (x \; x)) \; (\lambda x. f (x \; x))))) \rightarrow \ldots$$
Y_f is still not very useful, since (like ω), all it does is diverge.

Is there any way we could “slow it down”?
Delaying Divergence

\[\text{poisonpill} = \lambda y. \omega\]

Note that `poisonpill` is a value — it will only diverge when we actually apply it to an argument. This means that we can safely pass it as an argument to other functions, return it as a result from functions, etc.

\[(\lambda p. \text{fst} (\text{pair } p \text{ fls}) \text{ tru}) \text{ poisonpill}\]
\[\rightarrow\]
\[\text{fst} (\text{pair } \text{poisonpill} \text{ fls}) \text{ tru}\]
\[\rightarrow^{*}\]
\[\text{poisonpill tru}\]
\[\rightarrow\]
\[\omega\]
\[\rightarrow\]
\[\ldots\]

Cf. `thunks in OCaml`.