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CS 321 Fall 2014 HW2 - DFAs

1. How do you know if a DFA M: 

(a) accepts the empty string 

Solution: .

(b) recognizes the empty language 

Solution: , .

(c) accepts some (i.e., at least one) string 

Solution:  s.t. .

2. We defined in class  by decomposing  into  where . 

However, as shown in class, we can also define  by  instead. 

(a) write that definition. 

Solution: 

 if  

 if .

(b) prove (by induction) that these two definitions are equivalent, i.e.: 

, , prove that . 

Solution: 

Base case: If , . 

If  where , . 

Inductive case: Assume the  for . (IH) 

When , let , 

 (by def. ) 

 (by IH) 

 (by def. ) 

 (by IH) 

 (by def. ) 

 (by IH) 

 (by def. )



10/7/2015 CS 321 Fall 2014 HW2 - DFAs

file:///Users/kzhao/writing/cs321/hw2/solutions.html 2/6

(c) is there another way of decomposing ? how about  where .

write your full definition, and make sure it is correct! (test boundary cases) 

Solution: 

 if  

 if  

 if 

(d) prove (by induction) that your new definition is equivalent to . 

Solution: 

Base case: If , . 

If , , . 

Inductive case: Assume  for . (IH1) 

For , let , further induction on the length of  to prove 

: 

Base case: If ,  

Inductive case: Assume  for  and .

(IH2) 

When , let , 

 (by def. ) 

 (by IH1) 

 (by def. ) 

 (by def. ) 

 (by (b) and IH1) 

 (by IH2)

3. Read only the first 7 pages of DFA Equivalence and Minimization: 

https://www.cse.iitb.ac.in/~trivedi/courses/cs208-spring14/lec05.pdf

Now read our slides 40–41 which showed two examples of testing whether two

DFAs are equivalent 

using a variant of the above algorithm (table-filling of state-pairs (p,q) where p is

from DFA1 

and q from DFA2).

(a) Now prove that the 4-state and 3-state solutions of “binary number divisible by

4” are equivalent. 

Solution: 

Both s in the two DFAs are start state.
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pair final on 0 on 1

(y, y)

(n, n)

(n, n)

(n, n)

(b) Show a simple example where you draw two DFAs which are not equivalent

according to the algorithm, 

and show a string that is accepted by one DFA and rejected by the other. 

Solution: 

DFA1: start= , only one transition -0-> ,  

DFA2: start= , 

pair final on 0

(y, y)

string: 0

4. What if  is a partial function (omitting trap state)? 

How would you extend a partial  to ? 

Write the full definition, and make sure it’s correct. 

Solution: 

definition of partial : 

 if  

 if  is defined and  is defined 

 is undefined if  is undefined or  is undefined 

where  and  in which  .

definition of correctness: 

 is correct if.f.  

, and 

 is undefined. 

where  stands for trap state.
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proof of correctness ( ,  is correct) : 

Base Case: if , . 

Inductive Case: assume  is correct for . 

let , denote  in which , , and  for trap

state. 

(1) if  is undefined, 

. (by IH on the second to last ) 

 is undefined (by definition) 

correctness holds. 

(2) if  is defined but  is undefined. 

. (by IH on the second to last ) 

 is undefined (by definiton) 

correctness holds. 

(3) Both  and  are defined. 

 (by IH on last ) 

 (by definition of  on last ) 

correctness holds.

5. Prove  by induction on . 

Solution: 

Base case: If , . 

Inductive case: Assume the statement holds for . 

For , , 

 (by IH) 

 (by IH) 

.



10/7/2015 CS 321 Fall 2014 HW2 - DFAs

file:///Users/kzhao/writing/cs321/hw2/solutions.html 5/6

6. Prove  by induction (on what?). 

 is the reverse language of . First define reverse inductively. 

Solution: 

Definition of : 

 if  

 if  where  

Proof: 

Base case: If , apparently the statement holds. 

Inductive case: Assume the statement holds for . For , let 

. 

 

 (by def. ) 

 (by IH) 

 (by def. ).

7. What’s wrong with this proof?

Theorem(?!): All horses are the same color.

Proof: Let  be the predicate “in all non-empty collections of n horses, all the

horses are the same color.” 

We show that  holds for all n by induction on n (using 1 as the base case).

Base case: Clearly,  holds.

Induction case: Given , we must show .

Consider an arbitrary collection of  horses. Remove one horse temporarily.

Now we have  horses and hence, by the induction hypothesis, these  horses are

all the same color. Now call the exiled horse back and send a different horse away.

Again, we have a collection of  horses, which, by the induction hypothesis, are all

the same color. Moreover, these  horses are the same color as the first collection.

Thus, the horse we brought back was the same color as the second horse we sent

away, and all the  horses are the same color. 

Solution: For , i.e., , the claim that second collection of 1 horse is

of the same color as the first collection of 1 horse does not hold.

8. How about this one?
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Theorem(?!):  is odd for every .

Proof: By induction on  (again starting from 1). For the base case, observe that 1
is odd by definition. For the induction step, assume that  is odd; we then
show that  is odd as follows. 

. But 
 is odd by the induction hypothesis, and  is clearly even. Thus, 

 is the sum of an odd number and an even number, hence
odd. 
Solution: Base case where  does not hold.


