
CS 321 - TOC

Binary Number Divisible by 4
• 4-state solution (trivial)

• 3-state solution (merge q1 w/ q3)

• in general, how do you:

• reduce a DFA to a smaller but equivalent DFA?

• see Linz 2.4 or Sipser problem 7.42 (p. 327)

• will discuss later after NFA

• test if two DFAs are equivalent?

• follow pairs of states, check if all visited state-pairs
agree on finality (both accept or both reject)

• O(n2 Σ) time and space

40

 https://www.cse.iitb.ac.in/~trivedi/courses/cs208-spring14/lec05.pdf

CS 321 - TOC

Test if two DFAs are equivalent
• traverse all state-pairs and make sure each pair agrees

on “finality” (both accept or both reject)

41

pair final? on 0 on 1

(A, A) (y, y) (B, B) (A, C)

(B, B) (n, n) (A, C) (B, B)

(A, C) (y, y) (B, B) (A, A)

no new pairs foundno new pairs foundno new pairs foundno new pairs found

CS 321 - TOC

Proof by Induction (Linz 1.1-1.2, Sipser 0.4)

• Theorem to prove: |uv| = |u| + |v|

• first define string length rigorously and inductively:

• |a| = 1, |ε| = 0, |wa| = |w| + 1

• now prove the Theorem by induction on |v|

• base case: |v| = 0, then v = ε, so |uv|=|u|=|u|+0=|u|+|v|

• inductive case: assume Theorem holds for any |v| of length 0..n (IH)
Now take any v of length n+1. Let v = wa, then |v| = |w|+1 (by def.)

• then |uv| = |uwa| = |uw|+1 (by definition)

• by induction hypothesis (applicable to any w of length n)

• |uw| = |u|+|w|, so that |uv| = |u|+|w|+1 = |u|+|v|

42
HW: prove by induction on |u|

CS 321 - TOC

What’s wrong with this proof?

43

CS 321 - TOC

Quiz 1 scores and Projected Final Grade

44

543210
AA-B+BB-C+

4.53.52.51.50.5
F

• mean: 2.0, median: 2

projected
final grade C/C-

CS 321 - TOC
Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%13%of%79%

!

Regular Language

45

CS 321 - TOC

Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%15%of%79%

Regular Operations

46

• other operations:

• intersection

• complement

• difference

• regular languages
are closed under all
these operations

CS 321 - TOC

Harry%H.%Porter%%III% Theory%of%Computation5Chapter%1a% Page%16%of%79%
!

Union

• the union of regular
languages is still regular

47

CS 321 - TOC

Operations on Finite Automata

Let M1 = (Q1,Σ,q1,A1,δ1) and M2 = (Q2,Σ,q2,A2,δ2) be two FA’s.

Union:

We know that L(M1) ∪ L(M2) is regular.
Construct an FA M such that L(M) = L(M1) ∪ L(M2).

[Section 3.5]Union by Cross-Product Construction

48see Sipser 1.1, Linz

CS 321 - TOC

Operations on Finite Automata

Let M1 = (Q1,Σ,q1,A1,δ1) and M2 = (Q2,Σ,q2,A2,δ2) be two FA’s.

Intersection:

Is L(M1) Å L(M2) is regular ?
Construct an FA M such that L(M) = L(M1) Å L(M2).

[Section 3.5]Intersection by Cross-Product Construct.

49

CS 321 - TOC

Operations on Finite Automata

Let M1 = (Q1,Σ,q1,A1,δ1) be an FA.

Complement:

Is L(M1)’ regular ?
Construct an FA M such that L(M) = L(M1)’.

[Section 3.5]Complement and Difference

50

CS 321 - TOC

Summary: Union, Intersection, Difference
• “cross-product” construction (also used in table-filling algorithm)

51

HW: prove equivalence

LaTeX source:

M_1 & = (Q_1, \Sigma, \delta_1, q_{01}, F_1)\\
M_2 & = (Q_2, \Sigma, \delta_2, q_{02}, F_2)\\
M & = (Q_1 \times Q_2, \Sigma, \delta, (q_{01}, q_{02}), F)\\
\delta & : (Q_1 \times Q_2) \times \Sigma \mapsto Q_1 \times Q_2, \\
& \delta ((p,q), a) = (\delta_1(p,a), \delta_2(q,a))\\
F_\cap & = F_1 \times F_2 \\
F_\cup & = F_1 \times Q_2 \cup Q_1 \times F_2 \\
F_- & = F_1 \times \bar{F_2} \\
\\
\delta^* & : (Q_1 \times Q_2) \times \Sigma^* \mapsto Q_1 \times Q_2, \\
\delta^* & ((p,q), w) = \begin{cases}
 (p,q) & w = \epsilon \\
 \delta(\delta^*((p,q), x), a) & w = xa
 \end{cases}\\
&\text{alternatively, }\\
\delta^* & ((p,q), w) = (\delta_1^*(p, w), \delta_2^*(q, w))

M1 = (Q1,⌃, �1, q01, F1)

M2 = (Q2,⌃, �2, q02, F2)

M = (Q1 ⇥Q2,⌃, �, (q01, q02), F)

� : (Q1 ⇥Q2)⇥ ⌃ 7! Q1 ⇥Q2,

�((p, q), a) = (�1(p, a), �2(q, a))

F\ = F1 ⇥ F2

F[= F1 ⇥Q2 [Q1 ⇥ F2

F� = F1 ⇥ F̄2

�

⇤ : (Q1 ⇥Q2)⇥ ⌃⇤ 7! Q1 ⇥Q2,

�

⇤((p, q), w) =

(
(p, q) w = ✏

�(�⇤((p, q), x), a) w = xa

alternatively,

�

⇤((p, q), w) = (�⇤1(p, w), �
⇤
2(q, w))

