
2.3-4

In order to insert an element to a (n − 1) sorted array, we need to identify the
place to insert and then move the element there. T (n) = T (n − 1) + (n − 1)
T (n) = Θ(n2)
2.3-5

refer to http : //en.wikipedia.org/wiki/Binary search algorithm
2.3-6

We can use binary search to improve the time of identifying the place to insert,
but it will still take O(n) to move the elements to that place. Therefore, us-
ing binay search cannot improve the worst-case running time of insert sort to
Θ(nlgn)
7.2-1

Assume T (n) = Θ(n2), do induction as follows:
For base case, it is obviously true;
Suppose it is true for all m < n, we have
T (n − 1) ≤ c(n − 1)2, so
T (n) ≤ c(n − 1)2 + c1n = cn2 + (c1 − 2c)n + c ≤ cn2, when c1 − 2c < 0.
7.2-2

The case yields the worst-case partitioning, and recursion is
T (n) = T (n − 1) + T (0) + Θ(n)
so we get T (n) = Θ(n2)
7.2-5

In the partition step, one part, say A, is reduced to α of the original size, and
the other part, say B, is reduced to α of the original size, until the size reaches
1. Take A for example, suppose its depth is k, then we have αkn = 1, which
yields k = logα1/n = −lgn/lgα
Similar for B, we have (1 − α)kn = 1, which yields k = −lgn/lg(1 − α)

1


