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Roadmap

® so far: (large-margin) supervised learning

® binary, multiclass, and structured classifications

® online learning: avg perceptron/MIRA, convergence proof

® kernels and kernelized perceptron in dual

® SVMs: formulation, KKT, dual, convex o

® structured perceptron, HMM, and Viter

i algorithm

® what we left out: many classical algorithms
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® nearest neighbors (instance-based), decision trees, logistic regression...

® next up: unsupervised learning

® clustering: k-means, EM, mixture models, hierarchical

® dimensionality reduction: linear (PCA/ICA, MDS), nonlinear (isomap) ,




Sup=>Unsup: Nearest Neighbor=> k-means

® |let’s look at a supervised learning method: nearest neighbor
® SVM, perceptron (in dual) and NN are all instance-based learning

® instance-based learning: store a subset of examples for classification

® compression rate: SVM: very high, perceptron: medium high, NN: O




k-Nearest Neighbor

® one way to prevent overfitting => more stable results
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Figure 2.28 Plot of 200 data points from the oil data set showing values of z¢ plotted against z;, where the
red, green, and blue points correspond to the ‘laminar’, ‘annular’, and ‘homogeneous’ classes, respectively. Also
shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values

of K.



NN Voronoi in 2D and 3D




Voronoi for Euclidian and Manhattan




Unsupervised Learning

® cost of supervised learning 2t (@)
® |abeled data: expensive to annotate!

® but there exists huge data w/o labels

® unsupervised learning Ll

® can only hallucinate the labels

® infer some “internal structures” of data
still the “compression” view of learning
too much data => reduce it!
clustering: reduce # of examples

dimensionality reduction: reduce # of dimensions



Challenges in Unsupervised Learning

2t (é)

® how to evaluate the results?
® there is no gold standard data! ol
® internal metric?
® how to interpret the results? ~ 2 (.) 2

® how to “name” the clusters!?
® how to initialize the model/guess?
® a bad initial guess can lead to very bad results
® unsup is very sensitive to initialization (unlike supervised)

® how to do optimization => in general no longer convex!



k-means

® (randomly) pick k points to be initial centroids
® repeat the two steps until convergence
® assignment to centroids: voronoi, like NN

® recomputation of centroids based on the new assignment

2t (é)
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k-means

® (randomly) pick k points to be initial centroids
® repeat the two steps until convergence
® assighment to centroids: voronoi, like NN

® recomputation of centroids based on the new assignment

® how to define convergence! of
® after a fixed number of iterations, or

® assignments do not change, or

2t

® centroids do not change (equivalent?) or

® change in objective function falls below threshold
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k-means objective function

® residual sum of squares (RSS)

® sum of distances from points to their centroids

® gsuaranteed to decrease monotonically

® convergence proof: decrease + finite # of clusterings
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k-means for image segmentation

Original image

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation show-
ing the initial images together with their K-means segmentations obtained using various values of K. This
also illustrates of the use of vector quantization for data compression, in which smaller values of K give higher
compression at the expense of poorer image quality.
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Problems with k-means

® problem: sensitive to initialization

® the objective function is non-convex: many local minima

RSSp = ) |¥— fi(wi)l’
® why? fg')k K
® k-means works well if .
. RSS = Y RSS;
® clusters are spherical k=1

® clusters are well separated

® clusters of similar volumes .

® clusters have similar # of examples T
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Problems with k-means

® problem: sensitive to initialization

® the objective function is non-convex: many Iocal minima

o why? RSS; = ). [¥—fi(wy)l® = ernknxn o1
XEWy n=1 k=1
. _J1 ifk = argmin; [|x, — p,||?
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® random restarts -- definitely helps

Better (“soft”) k-means!

® soft clusters => EM with Gaussian Mixture Model
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® randomize k initial centroids

® repeat the two steps until convergence

® E-step: assighment each example to centroids (Voronoi)

k-means

® M-step: recomputation of centroids (based on the new assignment)

2 I

(a)

X

23



EM for Gaussian Mixtures

® randomize k means, covariances, mixing coefficients
® repeat the two steps until convergence
® E-step: evaluate the responsibilities using current parameters

® M-step: reestimate parameters using current responsibilities

2 X




EM for Gaussian Mixtures

® randomize k means, covariances, mixing coefficients
® repeat the two steps until convergence
® E-step: evaluate the responsibilities using current parameters

® M-step: reestimate parameters using current responsibilities

“fractional
o assighments”
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=2t
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EM for Gaussian Mixtures
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EM for Gaussian Mixtures

® randomize k means, covariances, mixing coefficients
® repeat the two steps until convergence
® E-step: evaluate the responsibilities using current parameters

® M-step: reestimate parameters using current responsibilities

Waiting time vs Eruption time
Old Faithful geyser
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EM for Gaussian Mixtures
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Convergence

® EM converges much slower than k-means
® can’t use “assignment doesn’t change” for convergence
® use log likelihood of the data
® stop if increase in log likelihood smaller than threshold
® or a maximum # of iterations has reached

L = log P(data)

32



EM: pros and cons (vs. k-means)

® EM: pros
® doesn’t need the data to be spherical
® doesn’t need the data to be well-separated

® doesn’t need the clusters to be in similar sizes/volumes

® EM: cons

® converges much slower than k-means

® per-iteration computation also slower

® (to speedup EM): use k-means to burn-in

® (same as k-means) local minimum!

33



k-means is a special case of EM

® k-means is “hard” EM
® covariance matrix is diagonal -- i.e., spherical

® diagonal variances are approaching 0
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Why EM increases p(data) iteratively?

D = log p(z; 6) logZpa:zG

CS 562 - EM 35



Why EM increases p(data) iteratively?

£ s p(z|z; 6;)
D = log p(z; 6) logZpa:zG S

CS 562 - EM 35



Why EM increases p(data) iteratively?

5 p(z|z; 6;)
D = log p(z; 6) logZp:sz =

Note that > _p(z|z;6;) = 1 and p(z|:c, ;) > 0 for all z. Therefore D is the
logarithm of a weighted sum, so we can apply Jensen’s inequality, which says
log ) wjv; > ). wjlogv;, given ), w; = 1 and each w; > 0. Here, we let the
sum range over the values z of Z, with the weight w; being p(z|z; 6;). We get

L. 2:0)
p(z|z;0:)

D o= Zp 2| Ot)log
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Why EM increases p(data) iteratively?

5 p(z|z; 6;)
D = log p(z; 6) logZpa:zG =

Note that ), p(z|z;0;) = 1 and p(z|:c, 6;) > 0 for all z. Therefore D is the
logarithm of a weighted sum, so we can apply Jensen’s inequality, which says
log ) wjv; > ). wjlogv;, given ), w; = 1 and each w; > 0. Here, we let the
sum range over the values z of Z, with the weight w; being p(z|z; 6;). We get

B> Zp z|z; 6;) log ((x|:vzéi))

Separating the fraction inside the logarithm to obtain two sums gives

> (Zp(z|$’ gt) logp(:v, 2 9)) - (Zp(zkz:, Ht) logp(zlzz:; 9t) ) :

Since £ < D and we want to maximize [, consider maximizing F. The weights
p(z|z; 6;) do not depend on 6, so we only need to maximize the first sum, which

1S
> " p(2|z; 6;) log p(z, z; 6).
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Why EM increases p(data) iteratively?

How do we know that maximizing F actually leads to an improvement in the
likelihood? With 6 = 6,,
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How to maximize the auxiliary?
| " plzlz; 6,) log p(z, ;).

A

In general, the E-step of an EM algorithm is to compute p(z|x; 6;) for all z. The
M-step is then to find 6 to maximize ) |_p(z|z;6;)logp(z, z;0).
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Dimensionality Reduction

X3

CS 562 - EM
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Dimensionality Reduction

Isomap

2nd dimension

CS b6z - EIM

1st dimension
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Dimensionality Reduction

A .. from the Isomap paper (Tenebaum, de Silva, Langford, Science 2000)

Fingers extension

e
CS 562 - EM Wrist rotation 41



Algorithms

® |inear methods ® non-linear methods
® PCA - principle ... ® kernelized PCA
® |CA - independent ... ® isomap
® CCA - canonical ... ® LLE - locally linear embedding

® MDS - multidim. scaling ® SDE - semidefinite embedding
® LEM - laplacian eignen maps
® | DAI - linear discriminant analysis

® | DA2 - latent dirichlet allocation

all are spectral methods! -- i.e., using eigenvalues
CS 562 - EM 42



PCA

® greedily find d orthogonal axes onto which
the variance under projection is maximal

® the “max variance subspace” formulation

® |t PC:direction of greatest variability in data

e 2 PC: the next unrelated max-var direction

remove all variance in |5t PC, redo max-var

® another equivalent formulation:
“minimum reconstruction error”

® find orthogonal vectors onto which the
projection yields min MSE reconstruction

CS 562 - EM 43
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PCA optimization: max-var pro;j.
® first translate data to zero mean

® compute co-variance matrix

® find top d eigenvalues and eigenvectors of covar matrix

® project data onto those eigenvectors

mvax viXXTy st. viv=1

Wrap constraints into the
objective function

d/ov =0 (XXT — AI)v =0 = [(XXT)v = Av

Therefore, v is the eigenvector of sample correlation/
covariance matrix XXT

CS 562 - EM 44
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PCA for k-means and whitening

® rescaling to zero mean and unit variance as preprocessing

® we did that in perceptron HW1/2 also!

® but PCA can do more: whitening (spherication)

] . : — | . : - N .
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Figure 12.6 lllustration of the effects of linear pre-processing applied to the Old Faithful data set. The plot on

the left shows the original data. The centre plot shows the result of standardizing the individual variables to zero
mean and unit variance. Also shown are the principal axes of this normalized data set, plotted over the range

:}:)\3/ ?. The plot on the right shows the result of whitening of the data to give it zero mean and unit covariance.
CS___ _.. .



Eigendigits

A =34-10° A =28-10° A3 =2.4-10° A =1.6-10°
-
- - - -’ -"
| ) -
- - J 2
Figure 12.3 The mean vector x along with the first four PCA eigenvectors us, ..., us for the off-line

digits data set, together with the corresponding eigenvalues.

Original M=1 M =10 M =50 M = 250

Figure 12.5 An original example from the off-line digits data set together with its PCA reconstructions
obtained by retaining M principal components for various values of M. As M increases

the reconstruction becomes more accurate and would become perfect when M = D =
28 x 28 = 784.
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Eigenfaces
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Eigenfaces

L ] IJ 210

CS 562 - EM
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Eigenfaces

CS 562 - EM Figure 2. Seven of the eigenfaces calculated from U



LDA: Fisher’s linear discriminant analysis

® PCA finds a small representation of the data

® | DA performs dimensionality reduction while preserving
as much the given class discrimination info as possible

® it’s a linear classification method (like perceptron)

® find a scalar projection that maximizes separability

max separation b/w projected means A

X5

min variance within each projected class

Feature 2
N
N
MN

Feature 1
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Linear vs. non-Linear

LLE or isomap
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Linear vs. non-Linear
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Linear vs. non-Linear

PCA
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Linear vs. non-Linear
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Linear vs. non-Linear

PCA
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Linear vs. non-Linear

LLE
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PCA vs Kernel PCA

Kernel PCA

I I I

2nd dimension
1

A ] ] ] I ! 1 ] ] ] ] !

1st dimension 1st dimension
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Brain does non-linear dim. redux

CS 562 - EM
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