Structured Prediction

- **binary classification**: output is binary
- **multiclass classification**: output is a number (small # of classes)
- **structured classification**: output is a structure (seq., tree, graph)
 - part-of-speech tagging, parsing, summarization, translation
 - exponentially many classes: search (inference) efficiency is crucial!
Generic Perceptron

- online-learning: one example at a time
- learning by doing
 - find the best output under the current weights
 - update weights at mistakes
Perceptron: from binary to structured

Binary Classification

2 classes

Multiclass Classification

Constant # of classes

Structured Classification

Exponential # of classes

Hard
Brief History of Perceptron

1959
Rosenblatt invention

1962
Novikoff proof

1969*
Minsky/Papert book killed it

1969*
Freud/Schapire voted/avg: revived

1997
Cortes/Vapnik SVM

1999
Freund/Schapire voted/avg: revived

2000*
McDonald/Crammer/Pereira structured MIRA

2002
Collins structured

2003
Crammer/Singer MIRA

2005*
McDonald/Crammer/Pereira structured MIRA

2006
Singer group aggressive

2007-2010*
Singer group Pegasos

*mentioned in lectures but optional (other papers all covered in detail)

+max margin
+kernels

+soft-margin

online approx
max margin

subgradient descent

batch

minibatch

online

DEAD

AT&T Research

ex-AT&T and students
Multiclass Classification: Review

- one weight vector ("prototype") for each class:
 \[w = (w^{(1)}, w^{(2)}, \ldots, w^{(M)}) \]
- multiclass decision rule:
 \[\hat{y} = \arg\max_{z \in 1\ldots M} w^{(z)} \cdot x \]
 (best agreement w/ prototype)

Q1: what about 2-class?
Q2: do we still need augmented space?
Multiclass Perceptron: Review

- on an error, penalize the weight for the wrong class, and reward the weight for the true class.
Convergence of Multiclass

update rule:

\(\mathbf{w} \leftarrow \mathbf{w} + \Delta \Phi(\mathbf{x}, y, z) \)

separability:

\(\exists \mathbf{u}, \text{s.t. } \forall (\mathbf{x}, y) \in D, z \neq y \)

\[\mathbf{u} \cdot \Delta \Phi(\mathbf{x}, y, z) \geq \delta \]

where \(\mathbf{w}^{(i)} \) is used to calculate the functional margin for training example with label \(i \);

for a given training example \(\mathbf{x} \) and a label \(y \), we define feature map function \(\Phi \) as

\[\Phi(\mathbf{x}, y) = (0^{(1)}, \ldots, 0^{(y-1)}, \mathbf{x}, 0^{(y+1)}, \ldots, 0^{(M)}). \]

such that \(\mathbf{w} \cdot \Phi(\mathbf{x}, y) = \mathbf{w}^{(y)} \cdot \mathbf{x} \).

We also define that, with a given training example \(\mathbf{x} \), the difference between two feature vectors for labels \(y \) and \(z \) as \(\Delta \Phi \):

\[\Delta \Phi(\mathbf{x}, y, z) = \Phi(\mathbf{x}, y) - \Phi(\mathbf{x}, z). \]
Example: POS Tagging

- **gold-standard:**
 - the man bit the dog

- **current output:**
 - the man bit the dog

- **assumptions:**
 - Assume only two feature classes
 - Tag bigrams
 - Word/tag pairs

- **weights**
 - **++:** (NN, VBD) (VBD, DT) (VBD → bit)
 - **--:** (NN, NN) (NN, DT) (NN → bit)
Structured Perceptron

Inputs: Training set \((x_i, y_i)\) for \(i = 1 \ldots n\)

Initialization: \(W = 0\)

Define: \[F(x) = \arg\max_{y \in \text{GEN}(x)} \Phi(x, y) \cdot W \]

Algorithm: For \(t = 1 \ldots T, i = 1 \ldots n\)
\[z_i = F(x_i) \]
If \((z_i \neq y_i)\) \[W \leftarrow W + \Phi(x_i, y_i) - \Phi(x_i, z_i) \]

Output: Parameters \(W\)
Inference: Dynamic Programming

update weights if $y \neq z$

exact inference

$x \rightarrow w \rightarrow z$

y
Viterbi for argmax

Viterbi search for \(\arg \max \ p(t_{-1:t}) \cdot p(w_{-1:w} \mid t_{-1:t}) \):

for \(j = 1 \) to \(m \)
\[Q[1,j] = p(t_j) \cdot p(w_1 \mid t_j) \]

for \(i = 2 \) to \(n \)
for \(j = 1 \) to \(m \)
\[Q[i,j] = 0 \]
\[\text{best-prev}[i,j] = 0 \]
\[\text{best-score} = -\infty \]
for \(k = 1 \) to \(m \)
\[r = p(t_j \mid t_k) \cdot p(w_i \mid t_j) \cdot Q[i-1,k] \]
if \(r > \text{best-score} \)
\[\text{best-score} = r \]
\[\text{best-prev}[i,j] = k \]
\[Q[i,j] = r \]

\[\text{final-best} = 0 \]
\[\text{final-score} = -\infty \]
for \(j = 1 \) to \(m \)
if \(Q[n,j] > \text{final-score} \)
\[\text{final-score} = Q[n,j] \]
\[\text{final-best} = j \]

\[\text{print \ t_{final-best}} \]
\[\text{current} = \text{final-best} \]
for \(i = n-1 \) down to \(1 \)
\[\text{current} = \text{best-prev}[i+1, \text{current}] \]
\[\text{print \ t_{current}} \]

\(Q[i,j] \) = cost of shortest path ending with word \(i \) getting assigned tag \(j \).

how about unigram?
Python implementation

Complete this Python code implementing the Viterbi algorithm for part-of-speech tagging. It should print a list of word/tag pairs, e.g. [('a', 'D'), ('can', 'N'), ('can', 'A'), ('can', 'V'), ('a', 'D'), ('can', 'N')].

```python
from collections import defaultdict

best = defaultdict(lambda : defaultdict(float))
best[0]["<s>"] = 1
back = defaultdict(dict)

words = "<s> a can can can a can </s>".split()

tags = {"a": ["D"], "can": ["N", "A", "V"], "</s>": ["</s>"]}  # possible tags for each word
ptag = {"D": {"N": 1}, "V": {"</s>": 0.5, "D":0.5}, ... }
# ptag[x][y] = p(y | x)
pword = {"D": {"a": 0.5}, "N": {"can": 0.1}, ... }
# pword[x][w] = p(w | x)

for i, word in enumerate(words[1:], 1):
    for tag in tags[word]:
        for prev in best[i-1]:
            if tag in ptag[prev]:
                score = best[i-1][prev] * ptag[prev][tag] * pword[tag][word]
                if score > best[i][tag]:
                    best[i][tag] = score
                    back[i][tag] = prev

def backtrack(i, tag):
    if i == 0:
        return []
    return backtrack(i-1, back[i][tag]) + [(words[i], tag)];

print backtrack(len(words)-1, "</s>")[::-1]
```

Q: what about top-down recursive + memoization?
for \(j = 1 \) to \(m \)
\[
Q_1[1, j] = \ldots
\]

for \(j = 1 \) to \(m \)
for \(j_2 = 1 \) to \(m \)
\[
Q[2, j, j_2] = \ldots
\]

for \(i = 3 \) to \(n \)
for \(j = 1 \) to \(m \)
for \(j_2 = 1 \) to \(m \)
\[
Q[i, j, j_2] = \begin{cases} 0 & \text{best-pred}[i, j, j_2] = 0 \\ \text{best-score} = -\infty & \text{for } k = 1 \text{ to } m \\
\end{cases}
\]

\[
r = P(t_{j_2} | \text{t}_j) \cdot P(w_i | t_{j_2}) \cdot Q[i-1, k, j]
\]
if \(r \geq \text{best-score} \) ...

time complexity: \(O(nT^3) \)
in general: \(O(nT^g) \) for \(g \)-gram
Efficiency vs. Expressiveness

- The inference (argmax) must be efficient.
- Either the search space GEN(x) is small, or factored.
- Features must be local to y (but can be global to x).
 - E.g., bigram tagger, but look at all input words (cf. CRFs).
Averaged Perceptron

Inputs: Training set \((x_i, y_i)\) for \(i = 1 \ldots n\)

Initialization: \(W_0 = 0\)

Define: \(F(x) = \arg\max_{y \in \text{GEN}(x)} \Phi(x, y) \cdot W\)

Algorithm: For \(t = 1 \ldots T, i = 1 \ldots n\)

\[z_i = F(x_i) \]

If \((z_i \neq y_i)\)

\[W_{j+1} \leftarrow W_j + \Phi(x_i, y_i) - \Phi(x_i, z_i) \]

Output: Parameters \(W = \sum_j W_j\)

- more stable and accurate results
- approximation of voted perceptron (Freund & Schapire, 1999)
Averaging Tricks

- Daume (2006, PhD thesis)

\[
\text{Algorithm AVERAGEDSTRUCTUREDPERCEPTRON}(x_{1:N}, y_{1:N}, I)
\]

1: \(w_0 \leftarrow \langle 0, \ldots, 0 \rangle \)
2: \(w_a \leftarrow \langle 0, \ldots, 0 \rangle \)
3: \(c \leftarrow 1 \)
4: \text{for } i = 1 \ldots I \text{ do}
5: \quad \text{for } n = 1 \ldots N \text{ do}
6: \quad \hat{y}_n \leftarrow \arg \max_{y \in Y} w_0^\top \Phi(x_n, y)
7: \quad \text{if } y_n \neq \hat{y}_n \text{ then}
8: \quad \quad w_0 \leftarrow w_0 + \Phi(x_n, y_n) - \Phi(x_n, \hat{y}_n)
9: \quad \quad w_a \leftarrow w_a + c\Phi(x_n, y_n) - c\Phi(x_n, \hat{y}_n)
10: \quad \text{end if}
11: \quad c \leftarrow c + 1
12: \text{end for}
13: \text{end for}
14: \text{return } w_0 - w_a/c

Figure 2.3: The averaged structured perceptron learning algorithm.
Do we need smoothing?

- smoothing is much easier in discriminative models
- just make sure for each feature template, its subset templates are also included
 - e.g., to include \((t_0 w_0 w_{-1})\) you must also include
 - \((t_0 w_0) (t_0 w_{-1}) (w_0 w_{-1})\)
 - and maybe also \((t_0 t_{-1})\) because \(t\) is less sparse than \(w\)
Geometry of Convergence Proof pt 1

1: repeat
2: for each example \((x, y)\) in \(D\) do
3: \(z \leftarrow \text{EXACT}(x, w)\)
4: if \(z \neq y\) then
5: \(w \leftarrow w + \Delta \Phi(x, y, z)\)
6: until converged

Exact inference

Update weights if \(y \neq z\)

Perceptron update:

\[
\begin{align*}
 w^{(k+1)} &= w^{(k)} + \Delta \Phi(x, y, z) \\
 u \cdot w^{(k+1)} &= u \cdot w^{(k)} + u \cdot \Delta \Phi(x, y, z) \\
 u \cdot w^{(k+1)} &\geq k \delta \\
 \|u\| \|w^{(k+1)}\| &\geq u \cdot w^{(k+1)} \geq k \delta \\
 \|w^{(k+1)}\| &\geq k \delta
\end{align*}
\]

(by induction)

(part 1: upperbound)
Geometry of Convergence Proof pt 2

1: repeat
2: for each example \((x, y)\) in \(D\) do
3: \(z \leftarrow \text{EXACT}(x, w)\)
4: if \(z \neq y\) then
5: \(w \leftarrow w + \Delta \Phi(x, y, z)\)
6: until converged

Parts 1+2 \implies update bounds:

\[
\begin{align*}
\|w^{(k+1)}\|^2 &= \|w^{(k)} + \Delta \Phi(x, y, z)\|^2 \\
&= \|w^{(k)}\|^2 + \|\Delta \Phi(x, y, z)\|^2 + 2 w^{(k)} \cdot \Delta \Phi(x, y, z) \\
&\leq R^2 + \|\Delta \Phi(x, y, z)\|^2 + 2 w^{(k)} \cdot \Delta \Phi(x, y, z) \\
&\leq 0
\end{align*}
\]

by induction: \(\|w^{(k+1)}\|^2 \leq k R^2\) (part 2: upperbound)

violation

perceptron update:

\[
w^{(k+1)} = w^{(k)} + \Delta \Phi(x, y, z)
\]
Experiments
Experiments: Tagging

• (almost) identical features from (Ratnaparkhi, 1996)
• trigram tagger: current tag t_i, previous tags t_{i-1}, t_{i-2}
• current word w_i and its spelling features
• surrounding words w_{i-1} w_{i+1} w_{i-2} w_{i+2}...

<table>
<thead>
<tr>
<th>Method</th>
<th>Error rate/%</th>
<th>Numits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perc, avg, cc=0</td>
<td>2.93</td>
<td>10</td>
</tr>
<tr>
<td>Perc, noavg, cc=0</td>
<td>3.68</td>
<td>20</td>
</tr>
<tr>
<td>Perc, avg, cc=5</td>
<td>3.03</td>
<td>6</td>
</tr>
<tr>
<td>Perc, noavg, cc=5</td>
<td>4.04</td>
<td>17</td>
</tr>
<tr>
<td>ME, cc=0</td>
<td>3.4</td>
<td>100</td>
</tr>
<tr>
<td>ME, cc=5</td>
<td>3.28</td>
<td>200</td>
</tr>
</tbody>
</table>
Experiments: NP Chunking

- **B-I-O** scheme

```
Rockwell International Corp. B I I
's Tulsa unit said it signed B I I O B O
```

- **features:**
 - unigram model
 - surrounding words and POS tags

<table>
<thead>
<tr>
<th>Current word</th>
<th>w_i & t_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous word</td>
<td>w_{i-1} & t_i</td>
</tr>
<tr>
<td>Word two back</td>
<td>w_{i-2} & t_i</td>
</tr>
<tr>
<td>Next word</td>
<td>w_{i+1} & t_i</td>
</tr>
<tr>
<td>Word two ahead</td>
<td>w_{i+2} & t_i</td>
</tr>
</tbody>
</table>
| Bigram features | w_{i-2}, w_{i-1} & t_i
| | w_{i-1}, w_i & t_i
| | w_i, w_{i+1} & t_i
| | w_{i+1}, w_{i+2} & t_i |
| Current tag | p_i & t_i |
| Previous tag | p_{i-1} & t_i |
| Tag two back | p_{i-2} & t_i |
| Next tag | p_{i+1} & t_i |
| Tag two ahead | p_{i+2} & t_i |
| Bigram tag features| p_{i-2}, p_{i-1} & t_i
| | p_{i-1}, p_i & t_i
| | p_i, p_{i+1} & t_i
| | p_{i+1}, p_{i+2} & t_i |
| Trigram tag features| p_{i-2}, p_{i-1}, p_i & t_i
| | p_{i-1}, p_i, p_{i+1} & t_i
| | p_i, p_{i+1}, p_{i+2} & t_i |
Experiments: NP Chunking

- results

<table>
<thead>
<tr>
<th>Method</th>
<th>F-Measure</th>
<th>Numits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceptron, avg, cc=0</td>
<td>93.53</td>
<td>13</td>
</tr>
<tr>
<td>Perceptron, noavg, cc=0</td>
<td>93.04</td>
<td>35</td>
</tr>
<tr>
<td>Perceptron, avg, cc=5</td>
<td>93.33</td>
<td>9</td>
</tr>
<tr>
<td>Perceptron, noavg, cc=5</td>
<td>91.88</td>
<td>39</td>
</tr>
<tr>
<td>Max-ent, cc=0</td>
<td>92.34</td>
<td>900</td>
</tr>
<tr>
<td>Max-ent, cc=5</td>
<td>92.65</td>
<td>200</td>
</tr>
</tbody>
</table>

- (Sha and Pereira, 2003) trigram tagger
 - voted perceptron: 94.09% vs. CRF: 94.38%
Structured Perceptron (Collins 02)

- **challenge**: search efficiency (exponentially many classes)
 - often use dynamic programming (DP)
 - but still too slow for repeated use, e.g. parsing is $O(n^3)$
 - and can’t use non-local features in DP
Learning w/ Inexact Inference (Huang et al 2012)

- routine use of inexact inference in NLP (e.g. beam search)
- how does structured perceptron work with inexact search?
 - so far most structured learning theory assume exact search
 - would search errors break these learning properties?
 - if so how to modify learning to accommodate inexact search?
Idea: Search-Error-Robust Model

- train a “search-specific” or “search-error-robust” model
 - we assume the same “search box” in training and testing
 - model should “live with” search errors from search box
- exact search => convergence; greedy => no convergence
 - how can we make perceptron converge w/ greedy search?
Convergence with Exact Search

- linear classification: converges iff. data is separable
- structured: converges iff. data separable & search exact
 - there is an oracle vector that correctly labels all examples
 - one vs the rest (correct label better than all incorrect labels)
- theorem: if separable, then \# of updates \(\leq \frac{R^2}{\delta^2} \)

\[R: \text{diameter} \]

Rosenblatt => Collins
1957 => 2002
Convergence with Exact Search

standard perceptron converges with exact search
No Convergence w/ Greedy Search

Standard perceptron does not converge with greedy search.
Early update (Collins/Roark 2004) to rescue

Training example:
- Time: flies
 - N
 - V

Output space:
- \{N, V\} x \{N, V\}

Stop and update at the first mistake

Stop and update at the first mistake
Why?

- why does inexact search break convergence property?
- what is required for convergence? exactness?
- why does early update (Collins/Roark 04) work?
 - it works well in practice and is now a standard method
 - but there has been no theoretical justification
- we answer these Qs by inspecting the convergence proof
Geometry of Convergence Proof pt 1

1: repeat
2: for each example \((x, y)\) in \(D\) do
3: \(z \leftarrow \text{EXACT}(x, w)\)
4: if \(z \neq y\) then
5: \(w \leftarrow w + \Delta \Phi(x, y, z)\)
6: until converged

exact inference
update weights if \(y \neq z\)

perceptron update:
\[
w^{(k+1)} = w^{(k)} + \Delta \Phi(x, y, z)
\]
\[
u \cdot w^{(k+1)} = u \cdot w^{(k)} + u \cdot \Delta \Phi(x, y, z)
\]
\[
u \cdot w^{(k+1)} \geq k \delta
\]
\[
\|u\| \|w^{(k+1)}\| \geq u \cdot w^{(k+1)} \geq k \delta
\]
\[
\|w^{(k+1)}\| \geq k \delta
\]

(by induction)

(part 1: upperbound)
Geometry of Convergence Proof pt 2

1: repeat
2: for each example \((x, y)\) in \(D\) do
3: \(z \leftarrow \text{EXACT}(x, w)\)
4: if \(z \neq y\) then
5: \(w \leftarrow w + \Phi(x, y, z)\)
6: until converged

violation: incorrect label scored higher

perceptron update:
\[
\omega^{(k+1)} = \omega^{(k)} + \Phi(x, y, z)
\]
\[
\|\omega^{(k+1)}\|^2 = \|\omega^{(k)} + \Phi(x, y, z)\|^2
\]
\[
= \|\omega^{(k)}\|^2 + \|\Phi(x, y, z)\|^2 + 2 \omega^{(k)} \cdot \Phi(x, y, z)
\]
\[
\leq R^2
\]

diameter

by induction: \(\|\omega^{(k+1)}\|^2 \leq kR^2\) (part 2: upperbound)

parts 1+2 => update bounds:
\[
k \leq \frac{R^2}{\delta^2}
\]
Violation is All we need!

- exact search is **not** really required by the proof
- rather, it is only used to ensure violation!

violation: incorrect label scored higher

the proof only uses 3 facts:

1. separation (margin)
2. diameter (always finite)
3. violation (**but no need for exact**)
Violation-Fixing Perceptron

- If we guarantee violation, we don’t care about exactness!
- Violation is good because we can at least fix a mistake

```
1: repeat
2:  for each example \((x, y)\) in \(D\) do
3:      \((x, y', z)\) = FINDVIOLATION\((x, y, w)\)
4:      if \(z \neq y\) then \(\triangleright (x, y', z)\) is a violation
5:      \(w \leftarrow w + \Delta \Phi(x, y', z)\)
6: until converged
```

Standard Perceptron vs. Violation-Fixing Perceptron

- Exact inference: \(x \rightarrow w \rightarrow z \rightarrow y\)
- Update weights if \(y \neq z\)

- Find violation: \(x \rightarrow w \rightarrow z \rightarrow y'\)
- Update weights if \(y' \neq z\)
What if can’t guarantee violation

- this is why perceptron doesn’t work well w/ inexact search
 - because not every update is guaranteed to be a violation
 - thus the proof breaks; no convergence guarantee
- example: beam or greedy search
 - the model might prefer the correct label (if exact search)
 - but the search prunes it away
 - such a non-violation update is “bad” because it doesn’t fix any mistake
 - the new model still misguides the search
Standard Update: No Guarantee

training example
time flies
N V

output space
{N,V} x {N,V}

standard update doesn’t converge
b/c it doesn’t guarantee violation

correct label scores higher.
non-violation: bad update!
Early Update: Guarantees Violation

Training example:
- Time: flies
- Label: N, V

Output space:
- \{N, V\} x \{N, V\}

Standard update doesn't converge because it doesn't guarantee violation.

Early update: incorrect prefix scores higher: a violation!
Experiments

trigram part-of-speech tagging

incremental dependency parsing

local features only, exact search tractable (proof of concept)

non-local features, exact search intractable (real impact)
1) Trigram Part of Speech Tagging

- standard update performs terribly with greedy search ($b=1$)
- because search error is severe at $b=1$: half updates are bad!
- no real difference beyond $b=2$: search error becomes rare

![Graph showing best tagging accuracy on held-out data vs beam size](image)

% of bad (non-violation) standard updates: 53% 10% 1.5% 0.5%
Max-Violation Reduces Training Time

- max-violation peaks at \(b=2 \), greatly reduced training time
- early update achieves the highest dev/test accuracy
- comparable to best published accuracy (Shen et al ‘07)
- future work: add non-local features to tagging

<table>
<thead>
<tr>
<th>beam</th>
<th>iter</th>
<th>time</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>-</td>
<td>6</td>
<td>162m</td>
</tr>
<tr>
<td>early</td>
<td>4</td>
<td>6</td>
<td>37m</td>
</tr>
<tr>
<td>max-violation</td>
<td>2</td>
<td>3</td>
<td>26m</td>
</tr>
<tr>
<td>Shen et al (2007)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2) Incremental Dependency Parsing

- DP incremental dependency parser (Huang and Sagae 2010)
- non-local history-based features rule out exact DP
 - we use beam search, and search error is severe
 - baseline: early update. extremely slow: 38 iterations
Max-violation converges much faster

- **early update**: 38 iterations, 15.4 hours (92.24)
- **max-violation**: 10 iterations, 4.6 hours (92.25)
 12 iterations, 5.5 hours (92.32)
Comparison b/w tagging & parsing

- search error is much more severe in parsing than in tagging
- standard update is OK in tagging except greedy search (b=1)
- but performs **horribly** in parsing even at large beam (b=8)
 - because ~50% of standard updates are bad (non-violation)!

<table>
<thead>
<tr>
<th>test</th>
<th>79.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td></td>
</tr>
<tr>
<td>early</td>
<td>92.1</td>
</tr>
<tr>
<td>max-violation</td>
<td>92.2</td>
</tr>
</tbody>
</table>

take-home message: our methods are more helpful for harder search problems!
Annotated Bibliography

