
Language Technology

CUNY Graduate Center Spring 2013

Professor Liang Huang

liang.huang.sh@gmail.com

Unit 2: Tree Models
Lectures 9-11: Context-Free Grammars and Parsing

required
hard

optional

mailto:liang.huang.sh@gmail.com
mailto:liang.huang.sh@gmail.com

CS 562 - CFGs and Parsing

Big Picture

• only 2 ideas in this course: Noisy-Channel and Viterbi (DP)

• we have already covered...

• sequence models (WFSAs, WFSTs, HMMs)

• decoding (Viterbi Algorithm)

• supervised training (counting, smoothing)

• in this unit we’ll look beyond sequences, and cover...

• tree models (prob context-free grammars and extensions)

• decoding (“parsing”, CKY Algorithm)

• supervised training (lexicalization, history-annotation, ...)

2

CS 562 - CFGs and Parsing

Course Project

• Proposal

• due next Tuesday 4/23 -- should also propose a simple baseline

• please talk to us this Friday re: your topic

• Topic (see list of samples from previous years)

• must involve statistical processing of linguistic structures

• NO boring topics like text classification with bags of words

• example 1: playing the Shannon game with higher-order LM

• example 2: converting declarative sentences into questions

• Amount of Work: ~2 HWs for each student

3

CS 562 - CFGs and Parsing

Limitations of Sequence Models

• can you write an FSA/FST for the following?

• { (an, bn) } { (a2n, bn) }

• { an bn }

• { w wR }

• { (w, wR) }

• does it matter to human languages?

• [The woman saw the boy [that heard the man [that left]]].

• [The claim [that the house [he bought] is valuable] is wrong].

• but humans can’t really process infinite recursions... stack overflow!

4

CS 562 - CFGs and Parsing

Let’s try to write a grammar...

• let’s take a closer look...

• we’ll try our best to represent English in a FSA...

• basic sentence structure: N, V, N
5

(courtesy of Julia Hockenmaier)

CS 562 - CFGs and Parsing

Subject-Verb-Object

• compose it with a lexicon, and we get an HMM

• so far so good
6

CS 562 - CFGs and Parsing

(Recursive) Adjectives

• then add Adjectives, which modify Nouns

• the number of modifiers/adjuncts can be unlimited.

• how about no determiner before noun? “play tennis”
7

(courtesy of Julia Hockenmaier)
the ball
the big ball
the big, red ball
the big, red, heavy ball

CS 562 - CFGs and Parsing

Recursive PPs

• recursion can be more complex

• but we can still model it with FSAs!

• so why bother to go beyond finite-state?
8

(courtesy of Julia Hockenmaier)

the ball
the ball in the garden
the ball in the garden behind the house
the ball in the garden behind the house near the school

CS 562 - CFGs and Parsing

FSAs can’t go hierarchical!

• but sentences have a hierarchical structure!

• so that we can infer the meaning

• we need not only strings, but also trees

• FSAs are flat, and can only do tail recursions (i.e., loops)

• but we need real (branching) recursions for languages
9

(courtesy of Julia Hockenmaier)

CS 562 - CFGs and Parsing

FSAs can’t do Center Embedding

• in theory, these infinite recursions are still grammatical

• competence (grammatical knowledge)

• in practice, studies show that English has a limit of 3

• performance (processing and memory limitations)

• FSAs can model finite embeddings, but very inconvenient.
10

The mouse ate the corn.
The mouse that the snake ate ate the corn.

The mouse that the snake that the hawk ate ate ate the corn.
....
vs.

The claim that the house he bought was valuable was wrong.
vs.

I saw the ball in the garden behind the house near the school.

(courtesy of Julia Hockenmaier)

CS 562 - CFGs and Parsing

How about Recursive FSAs?
• problem of FSAs: only tail recursions, no branching recursions

• can’t represent hierarchical structures (trees)

• can’t generate center-embedded strings

• is there a simple way to improve it?

• recursive transition networks (RTNs)

11

S |
 NP VP |
-> 0 ------> 1 ------> 2 ->

NP |
 Det N |
-> 0 ------> 1 ------> 2 ->

VP |
 V NP |
-> 0 ------> 1 ------> 2 ->

CS 562 - CFGs and Parsing

Context-Free Grammars

• S → NP VP

• NP → Det N

• NP → NP PP

•PP → P NP

•VP → V NP

•VP → VP PP

• ...

12

• N → {ball, garden, house, sushi }

• P → {in, behind, with}

• V → ...

• Det → ...

CS 562 - CFGs and Parsing

Context-Free Grammars

13

A CFG is a 4-tuple〈N,Σ,R,S〉
A set of nonterminals N

 (e.g. N = {S, NP, VP, PP, Noun, Verb,})

A set of terminals Σ
(e.g. Σ = {I, you, he, eat, drink, sushi, ball, })

A set of rules R
R ⊆ {A → β with left-hand-side (LHS)" A ∈ N

and right-hand-side (RHS) β ∈ (N ∪ Σ)* }

A start symbol S (sentence)

CS 562 - CFGs and Parsing

Parse Trees

• N → {sushi, tuna}

• P → {with}

• V → {eat}

• NP → N

• NP → NP PP

• PP→P NP

• VP→V NP

• VP→VP PP

14

CS 562 - CFGs and Parsing

CFGs for Center-Embedding

• { an bn } { w wR }

• can you also do { an bn cn } ? or { w wR w } ?

• { an bn cm dm }

• what’s the limitation of CFGs?

• CFG for center-embedded clauses:

• S → NP ate NP; NP → NP RC; RC → that NP ate
15

The mouse ate the corn.
The mouse that the snake ate ate the corn.

The mouse that the snake that the hawk ate ate ate the corn.
....

CS 562 - CFGs and Parsing

Review

• write a CFG for...

• { am bn cn dm }

• { am bn c3m+2n }

• { am bn cm dn }

• buffalo buffalo buffalo ...

• write an FST or synchronous CFG for...

• { (w, wR) } { (an, bn) }

• HW3: including p(eprons) is wrong

• HW4: using carmel to test your own code
16

CS 562 - CFGs and Parsing

Chomsky Hierarchy

17CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Constituents, Heads, Dependents

18CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Constituency Test

19

how about “there is” or “I do”?
CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Arguments and Adjuncts

• arguments are obligatory

20CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Arguments and Adjuncts

• adjuncts are optional

21CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Noun Phrases (NPs)

22CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

The NP Fragment

23CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

ADJPs and PPs

24CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Verb Phrase (VP)

25CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

VPs redefined

26CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Sentences

27CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Sentence Redefined

28CS 498 JH: Introduction to NLP (Fall ʼ08)

CS 562 - CFGs and Parsing

Probabilistic CFG

• normalization

• sumβ p(A → β) =1

• what’s the most likely tree?

• in finite-state world,

• what’s the most likely string?

• given string w, what’s the most likely tree for w

• this is called “parsing” (like decoding)

29CS 498 JH: Introduction to NLP (Fall ␣08)

CS 562 - CFGs and Parsing

Probability of a tree

30CS 498 JH: Introduction to NLP (Fall ␣08)

CS 562 - CFGs and Parsing

Most likely tree given string

• parsing is to search for the best tree t* that:

• t* = argmax_t p (t | w) = argmax_t p(t) p (w | t)

• = argmax_{t: yield(t)=w} p(t)

• analogous to HMM decoding

• is it related to “intersection” or “composition” in FSTs?

31

NAACL 2009 Dynamic Programming

CKY Algorithm

32

(S, 0, n)

w0 w1 ... wn-1

NAACL 2009 Dynamic Programming

CKY Algorithm

33

flies like a flower

S → NP VP
NP → DT NN
NP → NNS
NP → NP PP
VP → VB NP
VP → VP PP
VP → VB
PP → P NP

VB → flies
NNS → flies
VB → like
P → like
DT → a
NN → flower

NAACL 2009 Dynamic Programming

CKY Algorithm

34

NNS,

VB,
NP

S

S, V
P,

NP

VB,
P,

VP

VP, P
P

DT

NP

NN

flies like a flower

S → NP VP
NP → DT NN
NP → NNS
NP → NP PP
VP → VB NP
VP → VP PP
VP → VB
PP → P NP

VB → flies
NNS → flies
VB → like
P → like
DT → a
NN → flower

S → VP

NAACL 2009 Dynamic Programming

CKY Example

35
CS 498 JH: Introduction to NLP (Fall ␣08)

CS 562 - CFGs and Parsing

Chomsky Normal Form

• wait! how can you assume a CFG is binary-branching?

• well, we can always convert a CFG into Chomsky-
Normal Form (CNF)

• A → B C

• A → a

• how to deal with epsilon-removal?

• how to do it with PCFG?

36

NAACL 2009 Dynamic Programming

What if we don’t do CNF...

• Earley’s algorithm (dotted rules, internal binarization)

37

CKY deductive system

NAACL 2009 Dynamic Programming

What if we don’t do CNF...

• Earley’s algorithm (dotted rules, internal binarization)

38

Earley (1970) deductive system

initial

goal

scan

predict

complete

NAACL 2009 Dynamic Programming

Earley Algorithm

• why complete must be first?

• how do you extend it for PCFG?

39

NAACL 2009 Dynamic Programming

Parsing as Deduction

40

: b: a

: a × b × Pr(A → B C)

(B, i, k) (C, k, j)

(A, i, j)
A→B C

NAACL 2009 Dynamic Programming

Parsing as Intersection

41

: b: a

: a × b × Pr(A → B C)

(B, i, k) (C, k, j)

(A, i, j)
A→B C

• intersection between a CFG G and an FSA D:

• define L(G) to be the set of strings (i.e., yields) G generates

• define L(G ∩ D) = L(G) ∩ L(D)

• what does this new language generate??

• what does the new grammar look like?

• what about CFG ∩ CFG ?

NAACL 2009 Dynamic Programming

Parsing as Composition

42

NAACL 2009 Dynamic Programming

Packed Forests
• a compact representation of many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

43

(Klein and Manning, 2001; Huang and Chiang, 2005)

0 I 1 saw 2 him 3 with 4 a 5 mirror 6

nodes hyperedges

a hypergraph

NAACL 2009 Dynamic Programming

Lattice vs. Forest

44

NAACL 2009 Dynamic Programming

Forest and Deduction

45

(Nederhof, 2003)

: b

v

u1 u2

fe

: a

: a × b × Pr(A → B C)

(A, i, j)

(C, k, j)(B, i, k)
(B, i, k) (C, k, j)

(A, i, j)
A→B C

v

u1 u2tails

head

fe

: a

: fe (a,b) v

u1 u2

fe

: a : b

: fe (a,b)

antecedents

consequent

: b

NAACL 2009 Dynamic Programming

Related Formalisms

46

v

u1 u2

e

v

u1 u2

e AND-node

OR-node

OR-nodes

NAACL 2009 Dynamic Programming

Viterbi Algorithm for DAGs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming edge (u, v) in E

• use d(u) to update d(v):

• key observation: d(u) is fixed to optimal at this time

• time complexity: O(V + E)
47

v

u w(u, v)

d(v) ⊕ = d(u) ⊗ w(u, v)

NAACL 2009 Dynamic Programming

Viterbi Algorithm for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming hyperedge e = ((u1, .., u|e|), v, fe)

• use d(ui)’s to update d(v)

• key observation: d(ui)’s are fixed to optimal at this time

• time complexity: O(V + E) (assuming constant arity)

48

v
u1

u2

fe
d(v) ⊕ = fe(d(u1), · · · , d(u|e|))

NAACL 2009 Dynamic Programming

Example: CKY Parsing

• parsing with CFGs in Chomsky Normal Form (CNF)

• typical instance of the generalized Viterbi for DAHs

• many variants of CKY ~ various topological ordering

49

O(n3|P|)

bottom-up left-to-right

(S, 0, n) (S, 0, n)

NAACL 2009 Dynamic Programming

Example: CKY Parsing

• parsing with CFGs in Chomsky Normal Form (CNF)

• typical instance of the generalized Viterbi for DAHs

• many variants of CKY ~ various topological ordering

50

O(n3|P|)

bottom-up left-to-right right-to-left

(S, 0, n) (S, 0, n) (S, 0, n)

NAACL 2009 Dynamic Programming

Parser/Tree Evaluation

• how would you evaluate the quality of output trees?

• need to define a “similarity measure” between trees

• for sequences, we used

• same length: hamming distance (e.g., POS tagging)

• varying length: edit distance (e.g., Japanese transliteration)

• varying length: precision/recall/F (e.g., word-segmentation)

• varying length: crossing brackets (e.g., word-segmentation)

• for trees, we use precision/recall/F and crossing brackets

• standard “PARSEVAL” metrics (implemented as evalb.py)

51

NAACL 2009 Dynamic Programming

PARSEVAL

• comparing nodes (“brackets”):

• labelled (by default): (NP, 2, 5);
or unlabelled: (2, 5)

• precision: how many predicted
nodes are correct?

• recall: how many correct nodes
are predicted?

• how to fake precision or recall?

• F-score: F=2pr/(p+r)

• other metrics: crossing brackets
52

matched=6
predicted=7

gold=7
precision=6/7

recall=6/7
F=6/7

NAACL 2009 Dynamic Programming

Inside-Outside Algorithm

53

NAACL 2009 Dynamic Programming

Inside-Outside Algorithm

54

NAACL 2009 Dynamic Programming

Inside-Outside Algorithm

• inside prob beta is easy to compute (CKY, max=>+)

• what is outside prob alpha(X,i,j)?

• need to enumerate ways to go to TOP from X,i,j

• X,i,j can be combined with other nodes on the left/right

• L: sum_{Y->Z X, k} alpha(Y,k,j) Pr(Y->Z X) beta(Z,k,i)

• R: sum_{Y->X Z, k} alpha(Y,i,k) Pr(Y->X Z) beta(Z,j,k)

• why beta is used in alpha? very diff. from F-W algorithm

• what is the likelihood of the sentence?

• beta(TOP, 0, n) or alpha(w_i, i, i+1) for any i
55

NAACL 2009 Dynamic Programming

Inside-Outside Algorithm

56

X Z

i j k

Y

TOP

0 n

X Z

i j k

Y

TOP

0 n

• L: sum_{Y->Z X, k} alpha(Y,k,j) Pr(Y->Z X) beta(Z,k,i)

• R: sum_{Y->X Z, k} alpha(Y,i,k) Pr(Y->X Z) beta(Z,j,k)

NAACL 2009 Dynamic Programming

Inside-Outside Algorithm

• how do you do EM with alphas and betas?

• easy; M-step: divide by fractional counts

• fractional count of rule (X,i,j -> Y,i,k Z,k,j) is

• alpha(X,i,j) prob(Y Z|X) beta(Y,i,k) beta(Z,k,j)

• if we replace “+” by “max”, what will alpha/beta mean?

• beta’: Viterbi inside: best way to derive X,i,j

• alpha’: Viterbi outside: best way to go to TOP from X,i,j

• now what is alpha’(X, i, j) beta’(X, i, j)?

• best derivation that contains X,i,j (useful for pruning)

57

NAACL 2009 Dynamic Programming

Viterbi => CKY

58

topological
(acyclic)

best-first
(superior)

graphs with
semirings

(e.g., FSMs)

hypergraphs with
weight functions

(e.g., CFGs)

Viterbi Dijkstra

Gen. Viterbi
(e.g., CKY)

Knuth

traversing order

se
ar

ch
 s

pa
ce

NAACL 2009 Dynamic Programming

How to generate from a CFG?

• analogy in finite-state world: given a WFSA, generate
strings (either randomly or in order)

• Viterbi doesn’t work (cycles)

• Dijkstra still works (as long as it’s probabilities)

• What’s the generalization of Dijkstra in the tree world?

59

NAACL 2009 Dynamic Programming

Forward Variant for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each outgoing hyperedge e = ((u1, .., u|e|), h(e), fe)

• if d(ui)’s have all been fixed to optimal

• use d(ui)’s to update d(h(e))

• time complexity: O(V + E)

60

v = ui

h(e)
u1

v

fe

u2 =

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
 how many tails yet to be fixed?
fire this hyperedge only if r[e]=0

h(e)
fe

NAACL 2009 Dynamic Programming

Example: Treebank Parsers

• State-of-the-art statistical parsers

• (Collins, 1999; Charniak, 2000)

• no fixed grammar (every production is possible)

• can’t do backward updates

• don’t know how to decompose a big item

• forward update from vertex (X, i, j)

• check all vertices like (Y, j, k) or (Y, k, i) in the chart (fixed)

• try combine them to form bigger item (Z, i, k) or (Z, k, j)

61

NAACL 2009 Dynamic Programming

Two Dimensional Survey

62

topological
(acyclic)

best-first
(superior)

graphs with
semirings

(e.g., FSMs)

hypergraphs with
weight functions

(e.g., CFGs)

Viterbi Dijkstra

Generalized
Viterbi

Knuth

traversing order

se
ar

ch
 s

pa
ce

NAACL 2009 Dynamic Programming

Viterbi Algorithm for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming hyperedge e = ((u1, .., u|e|), v, fe)

• use d(ui)’s to update d(v)

• key observation: d(ui)’s are fixed to optimal at this time

• time complexity: O(V + E) (assuming constant arity)

63

v
u1

u2

fe
d(v) ⊕ = fe(d(u1), · · · , d(u|e|))

NAACL 2009 Dynamic Programming

Forward Variant for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each outgoing hyperedge e = ((u1, .., u|e|), h(e), fe)

• if d(ui)’s have all been fixed to optimal

• use d(ui)’s to update d(h(e))

• time complexity: O(V + E)

64

v = ui

h(e)
u1

v

fe

u2 =

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
 how many tails yet to be fixed?
fire this hyperedge only if r[e]=0

h(e)
fe

NAACL 2009 Dynamic Programming

Dijkstra Algorithm

• keep a cut (S : V - S) where S vertices are fixed

• maintain a priority queue Q of V - S vertices

• each iteration choose the best vertex v from Q

• move v to S, and use d(v) to forward-update others

65

uw(v, u)

S V - S

vs ...

d(u) ⊕ = d(v) ⊗ w(v, u)

time complexity:
O((V+E) lgV) (binary heap)

O(V lgV + E) (fib. heap)

v

NAACL 2009 Dynamic Programming

Knuth (1977) Algorithm

• keep a cut (S : V - S) where S vertices are fixed

• maintain a priority queue Q of V - S vertices

• each iteration choose the best vertex v from Q

• move v to S, and use d(v) to forward-update others

66

S V - S

vs ...

time complexity:
O((V+E) lgV) (binary heap)

O(V lgV + E) (fib. heap)

u1

v
h(e)

fe

v

NAACL 2009 Dynamic Programming

Summary of Perspectives on Parsing

• Parsing and can be viewed as:

• search in the space of possible trees

• (logical/probabilistic) deduction

• intersection / composition

• generation (from intersected grammar)

• forest building

• Parsing algorithms introduced so far are DPs:

• CKY: simplest, external binarization -- implement in hw5

• intersection + Knuth 77: best-first search

67

NAACL 2009 Dynamic Programming

Translation as Parsing

68

• translation with SCFGs => monolingual parsing

• parse the source input with the source projection

• build the corresponding target sub-strings in parallel

PP1, 3 VP3, 6

VP1, 6

yu Shalong juxing le huitan

with Sharon held a talk

held a talk with Sharon

VP → PP(1) VP(2)
, VP(2) PP(1)

VP → juxing le huitan, held a meeting
PP → yu Shalong, with Sharon

complexity: same as
CKY parsing -- O(n3)

NAACL 2009 Dynamic Programming

Adding a Bigram Model

69

PP1, 3 VP3, 6

VP1, 6

_ _●●●	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ... talk_ _ _ _ _ ●●●●● ... Sharon

_ _●●●	 	 	 	 	 	 	 	 	 	 	 	 	 	 ... talks

_ _●●●	 	 	 	 ... meeting ●●●●● ... Shalong

with ... Sharon

along ... Sharon
with ... Shalong

held ... talk
held ... meeting

hold ... talks

with Sharon

bigram

complexity: O(n3 V4(m-1))

held ... talk

VP3, 6

with ... Sharon

PP1, 3

bigram

held ... Sharon

VP1, 6

