Language lechnology

CUNY Graduate Center Spring 2013

Unit 2: Tree Models

Lectures 9-1 |: Context-Free Grammars and Parsing

required
hard

- Professor Liang Huang

liang.huang.sh@gmail.com

mailto:liang.huang.sh@gmail.com
mailto:liang.huang.sh@gmail.com

Big Picture

® only 2 ideas in this course: Noisy-Channel and Viterbi (DP)
® we have already covered...

® sequence models (WFSAs,WFSTs, HMMs)

® decoding (Viterbi Algorithm)

® supervised training (counting, smoothing)
® in this unit we'll look beyond sequences, and cover..

® tree models (prob context-free grammars and extensions)

® decoding (“parsing”’, CKY Algorithm)

® supervised training (lexicalization, history-annotation, ...)

CS 562 - CFGs and Parsing 2

Course Project

® Proposal
® due next Tuesday 4/23 -- should also propose a simple baseline
® please talk to us this Friday re: your topic

® Jopic (see list of samples from previous years)
® must involve statistical processing of linguistic structures
® NO boring topics like text classification with bags of words
® example |: playing the Shannon game with higher-order LM
® example 2: converting declarative sentences into questions

¢ Amount of Work: ~2 HWVs for each student

CS 562 - CFGs and Parsing

Limitations of Sequence Models

® can you write an FSA/FST for the following?
®1("b")} {(@@"b")}
®{a"b"}
°{wwt}
° {(w,w") }
® does it matter to human languages!

® [The woman saw the boy [that heard the man [that left]]].
® [The claim [that the house [he bought] is valuable] is wrong].

® but humans can’t really process infinite recursions... stack overflow!

CS 562 - CFGs and Parsing 4

Let’s try to write a grammar...

S0

Noun
Y Verb Noun
(Subject) (Head) (Object)

(courtesy of Julia Hockenmaier)

® |et’s take a closer look...
® we'll try our best to represent English in a FSA...

® basic sentence structure: N,V, N
CS 562 - CFGs and Parsing 5

Subject-Verb-Object

I, you, eat, drink sushi, ...

® compose it with a lexicon, and we get an HMM

® so far so good

CS 562 - CFGs and Parsing

(Recursive) Adjectives

(courtesy of Julia Hockenmaier)

the ball

the big ball

the big, red ball

the big, red, heavy ball

® then add Adjectives, which modify Nouns
® the number of modifiers/adjuncts can be unlimited.

® how about no determiner before noun? “play tennis”

CS 562 - CFGs and Parsing 7

Recursive PPs

(courtesy of Julia Hockenmaier)

the ball

the ball in the garden

the ball in the garden behind the house

the ball in the garden behind the house near the school ...

® recursion can be more complex
® but we can still model it with FSAs!

® so why bother to go beyond finite-state!

CS 562 - CFGs and Parsing 8

the ball

FSAs can’t go hierarchical!
N\

in

the garden

behind

the housej

(courtesy of Julia Hockenmaier)

® but sentences have a hierarchical structure!

® so that we can infer the meaning

® we need not only strings, but also trees

® FSAs are flat, and can only do tail recursions (i.e., loops)

® but we need real (branching) recursions for languages
CS 562 - CFGs and Parsing

FSAs can’t do Center Embedding

The mouse ate the corn.
The mouse that the snake ate ate the corn.
The mouse that the snake that the hawk ate ate ate the corn.

(courtesy of Julia Hockenmaier)

VS.

The claim that the house he bought was valuable was wrong.
VS.

| saw the ball in the garden behind the house near the school.

® in theory, these infinite recursions are still grammatical
® competence (grammatical knowledge)

® in practice, studies show that English has a limit of 3
® performance (processing and memory limitations)

® FSAs can model finite embeddings, but very inconvenient.
CS 562 - CFGs and Parsing 10

How about Recursive FSASs!?

® problem of FSAs: only tail recursions, no branching recursions
® can’t represent hierarchical structures (trees)
® can’t generate center-embedded strings

® is there a simple way to improve it!

® recursive transition networks (RTNs)

CS 562 - CFGs and Parsing |

Context-Free Grammars

®S— NP VP
e NP - Det N
e NP - NP PP

®PP - P NP
°VP =V NP
VP — VP PP

CS 562 - CFGs and Parsing

e N = {ball, garden, house, sushi }
e P — {in, behind, with}

oV — ..

® Det — ...

Context-Free Grammars

A CFG is a 4-tuple (N,Z,R,S)

A set of nonterminals N
(e.g. N={S, NP, VP, PP, Noun, Verb,})

A set of terminals 2
(e.g. 2 ={l, you, he, eat, drink, sushi, ball, })

A set of rules R
R c {A — 3 with left-hand-side (LHS) A< N

and right-hand-side (RHS) B e (Nu X)* }

A start symbol S (sentence)

CS 562 - CFGs and Parsing

Parse Trees

VP
® N — {sushi, tuna =
{ | } //NP>PP\
® P — {with} '} NP P NP
eat sushi with tuna
o V — {eat}
e NP N / \
v p—" NP
® NP = NP PP eat sushn with chopsticks

® PP—P NP /
e VP—V NP

® VP—VP PP

CS 562 - CFGs and Parsing |14

CFGs for Center-Embedding

The mouse ate the corn.
The mouse that the snake ate ate the corn.
The mouse that the snake that the hawk ate ate ate the corn.

®{a"b"} {wwh}

® canyoualsodo {a"b"c"}?or {wwiw}?
e {a"b"c™dm}

® what’s the limitation of CFGs!?

® CFG for center-embedded clauses:

® S - NP ate NP; NP =& NP RC; RC — that NP ate

CS 562 - CFGs and Parsing

Review

® write a CFG for...

o famb"c"dm} . |
® { a™M bn C3m+2n} /R(E VP
P - N f W
o {amb"c™d"} N RN N
PN N PN N V Vv PN N

| | | |
» buffalo buffalo buffalo Buffdo buffalo Buffdo buffdo buffalo buffalo Buffalo buffalo

® write an FST or synchronous CFG for...
*{(wwi)} {(@.b")}
® HW3:including p(eprons) is wrong

® HW4: using carmel to test your own code

CS 562 - CFGs and Parsing |16

Chomsky Hierarchy

Parsing :
Language Automata complexity Dependencies
Type 3 Regular Finite-state linear adjacent words
Type 2 | Context-Free | Pushdown cubic nested
Type 1 Cortex: g exponential
yP sensitive Bounded P
Recursively Turing
lyped Enumerable machine

CS 562 - CFGs and Parsing

CS 498 JH: Introduction to NLP (Fall '08)

Constituents, Heads, Dependents

There are different kinds of constituents:
Noun phrases: the man, a girl with glasses, lllinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly

Every phrase has a head:
Noun phrases: the man, a girl with glasses, lllinois
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly
The other parts are its dependents.
Dependents are either arguments or adjuncts

CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall '08) 18

Constituency Test

He talks [in class].

Substitution test:

Can a be replaced by a single word?
He talks [there].

Movement test:

Can a be moved around in the sentence?
[In class], he talks.

Answer test:

Can a be the answer to a question?
Where does he talk? - [In class].

how about “there is” or “l do™?
CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall '08)

Arguments and Adjuncts

® arguments are obligatory

Words subcategorize for specific sets of arguments:
Transitive verbs (sbj + obj): [John] likes [Mary]

All arguments have to be present:
*[John] likes. *likes [Mary].

No argument can be occupied multiple times:
*[John] [Peter] likes [Ann] [Mary].

Words can have multiple subcat frames:
Transitive eat (sbj + obj): [John] eats [sushi].
Intransitive eat (sbj): [John] eats.

CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall '08) 20

Arguments and Adjuncts

® adjuncts are optional

Adverbs, PPs and adjectives can be adjuncts:

Adverbs: John runs [fast].
a [very| heavy book.
PPs: John runs [in the gym|.

the book [on the table]
Adjectives: a [heavy] book

There can be an arbitrary number of adjuncts
John saw Mary.
John saw Mary [yesterday].
John saw Mary [yesterday] [in town]
John saw Mary [yesterday] [in town] [during lunch]
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]

CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall '08) 21

Noun Phrases (NPs)

Simple NPs:
[He] sleeps. (pronoun)
[John] sleeps. (proper name)

[A student] sleeps. (determiner + noun)

Complex NPs:

[A tall student] sleeps. (det + adj + noun)

[The student in the back] sleeps. (NP + PP)

[The student who likes MTV] sleeps. (NP + Relative
Clause)

CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall '08)

22

CS 562 - CFGs and Parsing

The NP Fragment

NP — Pronoun

NP — ProperName
NP — Det Noun

Det — {a, the, every}

Pronoun — {he, she,...}
ProperName — {John, Mary,...}
Noun — AdjP Noun

Noun &+ N

NP — NP PP

NP — NP RelClause

CS 498 JH: Introduction to NLP (Fall '08)

23

CS 562 - CFGs and Parsing

ADJPs and PPs

AdjP — Adj

AdjP — Adv AdjP

Adj — {big, small, red,...}
Adv — {very, really,...}

PP - P NP
P — {with, in, above,...}

CS 498 JH: Introduction to NLP (Fall '08)

24

CS 562 - CFGs and Parsing

Verb Phrase (VP)

He [eats].

He [eats sushi].

He [gives John sushi].

He [eats sushi with chopsticks].

VP -V
VP - VNP

VP - V NP PP
VP - VP PP

V — {eats, sleeps gives,...}

CS 498 JH: Introduction to NLP (Fall '08)

25

CS 562 - CFGs and Parsing

VPs redefined

He [eats].

He [eats sushi].

He [gives John sushi].

He [eats sushi with chopsticks].

VP — V_intrans

VP = V_trans NP

VP — V_ditrans NP NP
VP - VP PP

V_intrans— {eals, sleeps}
V_trans— {eals}
V_trans— {gives}

CS 498 JH: Introduction to NLP (Fall '08)

26

Sentences

[He eats sushi].
[Sometimes, he eats sushi].
[In Japan, he eals sushi].

S—->NPVP
S—-AdvP S
S—-PPS

He says [he eats sushi].

VP - V_comp S
V_comp — {says, think, believes}

CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall '08)

27

Sentence Redefined

[He eats sushi].
[l eats sushi]. ?7?7?
*[They eats sushi]. ?7?7?

S — NP.3sg VP.3sg
S - NP.1sg VP.1sg
S — NP.3pl VP.3pl

We need features to capture agreement:
(number, person, case,...)

CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall '08)

28

Probabilistic CFG

S — NP VP
T S —5 5 conjj o
® normalization P — Noun
NP — Det Noun
® sumg p(A = P) =I NP — NP PP
NP — NP conj NP
VP — Verb
® what’s the most likely tree? VP — Verb NP
VP — Verb NP NP
® in finite-state world, VP — VP PP
PP — P NP

® what'’s the most likely string
® given string w, what’s the most likely tree for w

® this is called “parsing” (like decoding)

CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall __08)

O O O O s O O
O N~ W PHE NN HE DN O

29

Probability of a tree

The probability of a tree t is the product of the probabilities

of all its rules:

S
S
/ \ S
4 NP
NP
John Verb 1
NP
eats Noun\ wzth / an\ VP
cream VP
VP

P(t)= 0.8 x0.3 x0.2 x1.0 x0.2° gi
= 0.00384

CS 562 - CFGs and Parsing CS 498 JH: Introduction to NLP (Fall _08)

[B PRy R

NP VP

S conj S
Noun

Det Noun
NP PP

NP conj NP
Verb

Verb NP
Verb NP NP
vP PP

P NP

PR IO OO O O O Ol © O
O N F W HENDNDHLEDNDND O

30

Most likely tree given string

® parsing is to search for the best tree t* that:
® ¢* =argmax ¢ p (t | w) = argmax ¢ p(t) p (w | t)

® = argmax it yield(t)=w} p(t)
® analogous to HMM decoding

® is it related to “intersection” or “composition” in FSTs!?

VP

\NP
// \PP

NP P~ NP

T v x 5
vield\eat sushi withtuna] = eat sushi with tuna

CS 562 - CFGs and Parsing 31

CKY Algorithm

* For each diff (<= n)
* Foreach i1 (<=n)

= Foreachrule X - Y Z

* For each split point k
score[X] [1] [7] = max score[X] [1][]7],

score (X->YZ) *
score[Y][i][k] *
score[Z] [k] [j]

(S, 0, n)

W0 W] Wh-|

Dynamic Programming

CKY Algorithm

* For each diff (<= n)
* Foreach i1 (<=n)

= Foreachrule X =Y Z

* For each split point k
score[X] [1] [7J] = max score[X] [1][]],

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

S = NPVP

NP = DT NN VB — flies
NP — NNS NNS — flies

NP - NPPP VB = like
VP - VBNP P like
| | vPe - vppp DT —a
flies like a flower VP — VB NN — flower

PP — P NP

NAACL 2009 33 Dynamic Programming

CKY Algorithm

* For each diff (<= n)
* Foreach i1 (<=n)

= Foreachrule X =Y Z

* For each split point k
score[X] [1] [7] = max score[X] [1][]],

score (X->YZ) *
score[Y][1] [k] *
score[Z] [k] []]

S > NPVP vB > flies
NP = DT NN NNS — flies
NP — NNS VB — like
NP — NP PP P — like
VP — VB NP DT — 23
VP — VP PP NN — flower
flies like a flower VP — VB

PP — P NP S — VP

NAACL 2009 34 Dynamic Programming

John N eats V pie N with P cream N

CKY Example

Input: POS-tagged sentence

John | eats pie with | cream
N alr S 5 S John
02 0.8°0.2*0.4 | 0.8*0.2*0.08 .0.2'0.0024‘0.8.
VP VP VP
Y 04| ooz etz [
NP NP .
N 0.2 0.2°0.2*0.2 pie
P PP 1 with
g b 8
NP
N 0.2 cream
CS 498 JH: Introduction to NLP (Fall __08)
NAACL 2009 35

S

S

NP
NP
NP
NP
VP
VP
VP
VP
PP

b ooddln W wl e Y aliale b

NP VP 0.8
S conj S 0.2
Noun 0.2
Det Noun 0.4
NP PP ()2
NP conj NP 0.2
Verb 0.4
Verb NP 0.3
Verb NP NP 0.1
VP PP 0.2
P NP L.

Dynamic Programming

Chomsky Normal Form

® wait! how can you assume a CFG is binary-branching?

® well, we can always convert a CFG into Chomsky-
Normal Form (CNF)

s A—=-BC
®* A—a
® how to deal with epsilon-removal?

® how to do it with PCFG?

CS 562 - CFGs and Parsing

36

What if we don’t do CNEF..

® Earley’s algorithm (dotted rules, internal binarization)

Item form: (A, 1, j]
Axioms: A,i,i+1] A — wiqq
Goals: 1S, 0,n)]

1B,i,5] |G, 4, K]

(A, i, K] kB

Inference rules:

CKY deductive system

NAACL 2009 37 Dynamic Programming

What if we don’t do CNEF..

® Earley’s algorithm (dotted rules, internal binarization)

0,8" — 8,0] initial

0,5 — Se,nj gOal

6, A — e w;i1, j]

[Z,A—) QWj+1 .169.7+1] Scan
i,A> aeBBjl redict
G,B— ev,g 7 P
i,A—> aeBf,k| [k,B—~e,j]
A B e i complete

Earley (1970) deductive system

NAACL 2009 38 Dynamic Programming

Earley Algorithm

® why complete must be first?

® how do you extend it for PCFG?

procedure EARLEYPARSER(w1)
addToChart((TOP — S5, [0,0]))
for all (rule, k,i]) € chart do
if rule matches X — ye then > COMPLETE X
for all (Y — aeXp,|j,k|) € chart do
addToChart((Y — aX e f3,[},i]))

else if rule matches X — axe Y3 then > PREDICT Y
for all Y — y € RULES do
addToChart((Y — e7,[i,i]))

else if rule matches X — aetf3, and (¢t,w;) € LEX then > SCAN w;
addToChart((X — ate B, [k,i+1]))

if s=(TOP — Se,[0,n]) € chart then return s
else fail

NAACL 2009 39 Dynamic Programming

Parsing as Deduction

B,i,k):a (Ckj):b

A—B C
(Asi,j):a x b x Pr(A = B C)

NAACL 2009 40 Dynamic Programming

Parsing as Intersection

B,i,k):a (Ckj):b

A—BC
(Asi,)):a x b x Pr(A = B C)
® intersection between a CFG G and an FSA D:
® define L(G) to be the set of strings (i.e., yields) G generates
® define L(G n D) = L(G) n L(D)
® what does this new language generate?!
® what does the new grammar look like?

® what about CFG n CFG?

NAACL 2009 4 Dynamic Programming

Parsing as Composition

NAACL 2009 42 Dynamic Programming

Packed Forests

® 3 compact representation of many parses
® by sharing common sub-derivations

® polynomial-space encoding of exponentially large set

nodes > VP16 hyperedges

a hypergraph -t~ .. VBDio NPy3 PPy
NP 3 PP3 ¢ ! VP4

ol 1 saw >, him s with s a s mirror .

(Klein and Manning, 200 |; Huang and Chiang, 2005)
NAACL 2009 43 Dynamic Programming

Lattice vs. Forest

- S
NP3 3 PP3 ¢

NAACL 2009 44 Dynamic Programming

Forest and Deduction

(B, i, k) (C k1) B,i,k) (C, k)

: b R
°: o'

@ axbxPrA-BC)

(A i,]) (Nederhof, 2003)

tails 0 - Q :b 0 e b antecedents
Y
‘ fe (a, b)

Q@ . (a.b)

head consequent

NAACL 2009 45 Dynamic Programming

Related Formalisms

hypergraph | AND/OR graph | context-free grammar deductive system
vertex OR-node symbol item

source-vertex | leaf OR-node terminal axiom
target-vertex | root OR-node start symbol goal item

hyperedge AND-node production instantiated deduction

) Uy :a Ug:b
({Hl,uj},ﬂ,f) U— U1 u2 v f(ﬂ:rb)
OR-node
AND-node

00 00—

NAACL 2009 46 Dynamic Programming

Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each incoming edge (u,v) in E
® use d(u) to update d(v):

® key observation: d(u) is fixed to optimal at this time

0 w(u, V)
\) & = d(u) ® w(u, v)
o/

® time complexity: O(V + E)

NAACL 2009 47 Dynamic Programming

Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each incoming hyperedge e = ((uy, .., Uje|), V, fe)
® use d(ui)’s to update d(v)

® key observation: d(ui)’s are fixed to optimal at this time

Q} @) & = fe(d(u1), -+, d(ue))
/

® time complexity: O(V + E) (assuming constant arity)

NAACL 2009 48 Dynamic Programming

Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S,0,n) (S,0,n)
* For each diff (<=n)

* Foreach I (<=n)

= Foreachrule X =Y Z

= For each split point k
score[X] [1] [J] = max

bottom-up left-to-right

O(n’[P])

NAACL 2009 49 Dynamic Programming

Example: CKY Parsing

® parsing with CFGs in Chomsky Normal Form (CNF)
® typical instance of the generalized Viterbi for DAHs

® many variants of CKY ~ various topological ordering

(S,0,n) (S,0,n) (S,0,n)

bottom-up left-to-right right-to-left

O(n’[P])

NAACL 2009 50 Dynamic Programming

Parser/Tree Evaluation

® how would you evaluate the quality of output trees!?

® need to define a “similarity measure” between trees

® for sequences, we used
same length: hamming distance (e.g., POS tagging)
varying length: edit distance (e.g., Japanese transliteration)
varying length: precision/recall/F (e.g., word-segmentation)

varying length: crossing brackets (e.g., word-segmentation)

e for trees, we use precision/recall/F and crossing brackets

standard “PARSEVAL’ metrics (implemented as evalb.py)

NAACL 2009 51 Dynamic Programming

PARSEVAL

® comparing nodes (“brackets™):

VP
PP

® [abelled (by default): (NP 2, 5); v NP “NP
or unlabelled: (2, 5) eat sushi with tuna
VP
® precision: how many predicted ey,

PP
/ \
nodes are correct!? v ok B NP
eat sushi with chopsticks

® recall: how many correct nodes

are predicted? matched=6
predicted=7/
® how to fake precision or recall? gold=7
precision=6/7
® F-score: F=2pr/(p+r) re;a"6=/§>/7

® other metrics: crossing brackets
NAACL 2009 52 Dynamic Programming

Inside-Outside Algorithm

Forward Backward

Probability Probability
—_— 5

_ -1 Ui Tig1 «oua tn t
WieeedWi-1 Wi Wis1....Whn

t1

tr

Forward Probability of %;: «;(t)
O{i(t) — P(wl...wi, tagi — tz')

Backward Probability of #;: 3;(t)
Fill) = Plwps o lteg; =)
CS 498 JH: Introduction to NLP (Fall '08)

NAACL 2009 53 Dynamic Programming

Inside-Outside Algorithm

Wi | ... we | Wi | vea [Whn
Wi
XP %
WiieaaWi-1 Wieeaaaaae Wj Wijs+1....Whn
Outside Probability of XP; ;: o;;(XP)
OJZJ(XP) — P(S =" WieWi—gy XP wj+1...wn) i

Inside Probability of XP; ;: (;;(XP)

CS 498 JH: Introduction to NLP (Fall '08)
NAACL 2009 54 Dynamic Programming

Inside-Outside Algorithm

® inside prob beta is easy to compute (CKY, max=>+)
® what is outside prob alpha(X,i,j)?
® need to enumerate ways to go to TOP from Xi,j
® X,i,j can be combined with other nodes on the left/right
o L:sum_ {Y->Z X, k} alpha(Y,k,j) Pr(Y->Z X) beta(Z,k,i)
® R:sum_{Y->X Z, k} alpha(Y,i,k) Pr(Y->X Z) beta(Z,j,k)
® why beta is used in alpha? very diff. from F-WV algorithm
® what is the likelihood of the sentence?

® beta(TOP,0,n) or alpha(w_i,i,it+l) for any i

NAACL 2009 55 Dynamic Programming

Inside-Outside Algorithm

o L:sum_{Y->Z X, k} alpha(Yk,j) Pr(Y->Z X) beta(Z,k,i)
® R:sum_{Y->X Z, k} alpha(Y,i,k) Pr(Y->X Z) beta(Z,j,k)

NAACL 2009 56 Dynamic Programming

Inside-Outside Algorithm

® how do you do EM with alphas and betas?

® easy; M-step: divide by fractional counts

® fractional count of rule (X,i,j ->Y,i,k Zk,j) is

alpha(X,i,j) prob(Y Z[X) beta(Y,ik) beta(Z,kj)

® if we replace “+” by “max”, what will alpha/beta mean?

® beta’:Viterbi inside: best way to derive X,i,]

® alpha’:Viterbi outside: best way to go to TOP from X,i,j
® now what is alpha’(X, i, j) beta’(X, i, j)?

® best derivation that contains Xii,j (useful for pruning)

NAACL 2009 57 Dynamic Programming

Viterbi => CKY

traversing order

topological best-first

(acyclic) (superior)

graphs with

9 Ssemirings Viterbi Dijkstra
2 (e.g., FSMs) l l

= hypergraphs with L

“ weight functions G(eeg..’\/é}:(eYl;bl Knuth

(e.g., CFGs)

NAACL 2009 58 Dynamic Programming

How to generate from a CFG?

® analogy in finite-state world: given a WFSA, generate
strings (either randomly or in order)

® Viterbi doesn’t work (cycles)
® Dijkstra still works (as long as it's probabilities)

® What’s the generalization of Dijkstra in the tree world?

NAACL 2009 59 Dynamic Programming

Forward Variant for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing hyperedge e = ((ul, .., Uje|), h(e), fe)
® if d(ui)’s have all been fixed to optimal

use d(ui)’s to update d(h(e))

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
how many tails yet to be fixed!?

fire this hyperedge only if r[e]=0

® time complexity: O(V + E)

NAACL 2009 60 Dynamic Programming

Example: Treebank Parsers

® State-of-the-art statistical parsers
® (Collins, 1999; Charniak, 2000)
® no fixed grammar (every production is possible)

® can’t do backward updates

don’t know how to decompose a big item

® forward update from vertex (X i, j)
check all vertices like (Y, j, k) or (Y, k, i) in the chart (fixed)

try combine them to form bigger item (Z, i, k) or (Z, k, j)

NAACL 2009 61 Dynamic Programming

Two Dimensional Survey

traversing order

topological best-first

(acyclic) (superior)

graphs with
Ssemirings Viterbi Dijkstra

(e.g., FSMs) ‘ ‘

Generalized
Viterbi Knuth

hypergraphs with

search space

weight functions

(e.g., CFGs)

NAACL 2009 62 Dynamic Programming

Viterbi Algorithm for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each incoming hyperedge e = ((uy, .., Uje|), V, fe)
® use d(ui)’s to update d(v)

® key observation: d(ui)’s are fixed to optimal at this time

Q} @) & = fe(d(u1), -+, d(ue))
/

® time complexity: O(V + E) (assuming constant arity)

NAACL 2009 63 Dynamic Programming

Forward Variant for DA s

|. topological sort

2. visit each vertex v in sorted order and do updates
® for each outgoing hyperedge e = ((ul, .., Uje|), h(e), fe)
® if d(ui)’s have all been fixed to optimal

use d(ui)’s to update d(h(e))

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
how many tails yet to be fixed!?

fire this hyperedge only if r[e]=0

® time complexity: O(V + E)

NAACL 2009 64 Dynamic Programming

Dijkstra Algorithm

® keep a cut (S:V - S) where S vertices are fixed
® maintain a priority queue Q of V - S vertices
® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

|

) w(V, u) @ w (U u)

T(\ : time complexity:

O((V+E) IgV) (binary heap)
S O(V IgV + E) (fib. heap)

NAACL 2009 65 Dynamic Programming

Knuth (1977) Algorithm

® keep a cut (S:V - S) where S vertices are fixed

® maintain a priority queue Q of V - S vertices

® cach iteration choose the best vertex v from Q

® move v to S, and use d(v) to forward-update others

— ()
>
\V4

>
@~ ©
time complexity:

— O((V+E) IgV) (binary heap)
S V-S O(V IgV + E) (fib. heap)

NAACL 2009 66 Dynamic Programming

Summary of Perspectives on Parsing

® Parsing and can be viewed as:
® search in the space of possible trees
® (logical/probabilistic) deduction
® intersection / composition
® generation (from intersected grammar)
® forest building
® Parsing algorithms introduced so far are DPs:
e CKY:simplest, external binarization -- implement in hwb

® intersection + Knuth 77: best-first search

NAACL 2009 67 Dynamic Programming

Translation as Parsing

® translation with SCFGs => monolingual parsing

® parse the source input with the source projection

® build the corresponding target sub-strings in parallel

VP — PPWL VPO,
VP — juxing le huitan,
PP — yu Shalong,

complexity: same as
CKY parsing -- O(n?%)

NAACL 2009

held a talk with Sharon

with Sharon held a talk

yu Shalong juxing le huitan

68 Dynamic Programming

Adding a Bigram Model
L ><_

—
\ blng

held ...[talk ' with |.. Sharon

VP36 PP1,3

with ... Sharon held ... talk
complexity: O(n3 V4m-1)) along ... Sharon % held ... meeting

with .. Shalong hold ... talks
NAACL 2009 Dynamic Programming

