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CS 562 - CFGs and Parsing

Big Picture

• only 2 ideas in this course: Noisy-Channel and  Viterbi (DP)

• we have already covered...

• sequence models (WFSAs, WFSTs, HMMs)

• decoding (Viterbi Algorithm)

• supervised training (counting, smoothing)

• in this unit we’ll look beyond sequences, and cover...

• tree models (prob context-free grammars and extensions)

• decoding (“parsing”, CKY Algorithm)

• supervised training (lexicalization, history-annotation, ...)
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Course Project

• Proposal

• due next Tuesday 4/23 -- should also propose a simple baseline

• please talk to us this Friday re: your topic

• Topic (see list of samples from previous years)

• must involve statistical processing of linguistic structures

• NO boring topics like text classification with bags of words

• example 1: playing the Shannon game with higher-order LM

• example 2: converting declarative sentences into questions

• Amount of Work: ~2 HWs for each student
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Limitations of Sequence Models

• can you write an FSA/FST for the following?

• { (an, bn) }         { (a2n, bn) }

• { an bn }            

• { w wR }

• { (w, wR) }

• does it matter to human languages?

• [The woman saw the boy [that heard the man [that left] ] ].

• [The claim [that the house [he bought] is valuable] is wrong].

• but humans can’t really process infinite recursions... stack overflow!
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Let’s try to write a grammar...

• let’s take a closer look...

• we’ll try our best to represent English in a FSA...

• basic sentence structure: N, V, N
5

(courtesy of Julia Hockenmaier)
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Subject-Verb-Object

• compose it with a lexicon, and we get an HMM

• so far so good
6
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(Recursive) Adjectives

• then add Adjectives, which modify Nouns

• the number of modifiers/adjuncts can be unlimited.

• how about no determiner before noun? “play tennis”
7

(courtesy of Julia Hockenmaier)
the ball 
the big ball 
the big, red ball 
the big, red, heavy ball ....
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Recursive PPs

• recursion can be more complex

• but we can still model it with FSAs!

• so why bother to go beyond finite-state?
8

(courtesy of Julia Hockenmaier)

the ball 
the ball in the garden 
the ball in the garden behind the house 
the ball in the garden behind the house near the school ....
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FSAs can’t go hierarchical!

• but sentences have a hierarchical structure!

• so that we can infer the meaning

• we need not only strings, but also trees

• FSAs are flat, and can only do tail recursions (i.e., loops)

• but we need real (branching) recursions for languages
9

(courtesy of Julia Hockenmaier)
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FSAs can’t do Center Embedding

• in theory, these infinite recursions are still grammatical

• competence (grammatical knowledge)

• in practice, studies show that English has a limit of 3

• performance (processing and memory limitations)

• FSAs can model finite embeddings, but very inconvenient.
10

The mouse ate the corn. 
The mouse that the snake ate ate the corn. 

The mouse that the snake that the hawk ate ate ate the corn.
....
vs.

The claim that the house he bought was valuable was wrong.
vs.

I saw the ball in the garden behind the house near the school.

(courtesy of Julia Hockenmaier)
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How about Recursive FSAs?
• problem of FSAs: only tail recursions, no branching recursions

• can’t represent hierarchical structures (trees)

• can’t generate center-embedded strings

• is there a simple way to improve it?

• recursive transition networks (RTNs)
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---------------------------------------
S                                      |
               NP        VP            |
        -> 0 ------> 1 ------> 2 ->    |
---------------------------------------
---------------------------------------
NP                                     |
               Det       N             |                
        -> 0 ------> 1 ------> 2 ->    |
---------------------------------------

----------------------------------
VP                                |
           V        NP            |
   -> 0 ------> 1 ------> 2 ->    |
----------------------------------
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Context-Free Grammars

• S → NP VP

• NP → Det N

• NP → NP PP

•PP → P NP 

•VP → V NP

•VP → VP PP

• ...

12

• N → {ball, garden, house, sushi } 

• P → {in, behind, with} 

• V → ...

• Det → ...
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Context-Free Grammars

13

A CFG is a 4-tuple〈N,Σ,R,S〉 
A set of nonterminals N

     (e.g. N = {S, NP, VP, PP, Noun, Verb, ....}) 

A set of terminals Σ
(e.g. Σ = {I, you, he, eat, drink, sushi, ball, }) 

A set of rules R
R ⊆ {A → β with left-hand-side (LHS)" A ∈ N 

and right-hand-side (RHS) β ∈ (N ∪ Σ)* }

A start symbol S (sentence)



CS 562 - CFGs and Parsing

Parse Trees

• N → {sushi, tuna} 

• P → {with} 

• V → {eat} 

• NP → N

• NP → NP PP 

• PP→P NP 

• VP→V NP

• VP→VP PP

14
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CFGs for Center-Embedding

• { an bn }            { w wR }

• can you also do { an bn cn } ? or { w wR w } ?

• { an bn cm dm }

• what’s the limitation of CFGs?

• CFG for center-embedded clauses:

• S → NP ate NP;  NP → NP RC;  RC → that NP ate
15

The mouse ate the corn. 
The mouse that the snake ate ate the corn. 

The mouse that the snake that the hawk ate ate ate the corn.
....
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Review

• write a CFG for...

• { am bn cn dm } 

• { am bn c3m+2n } 

• { am bn cm dn } 

• buffalo buffalo buffalo ...

• write an FST or synchronous CFG for...

• { (w, wR) }      { (an, bn) }

• HW3: including p(eprons) is wrong

• HW4: using carmel to test your own code
16
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Chomsky Hierarchy

17CS 498 JH: Introduction to NLP (Fall ʼ08)



CS 562 - CFGs and Parsing

Constituents, Heads, Dependents

18CS 498 JH: Introduction to NLP (Fall ʼ08)
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Constituency Test

19

how about “there is” or “I do”?
CS 498 JH: Introduction to NLP (Fall ʼ08)
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Arguments and Adjuncts

• arguments are obligatory

20CS 498 JH: Introduction to NLP (Fall ʼ08)
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Arguments and Adjuncts

• adjuncts are optional

21CS 498 JH: Introduction to NLP (Fall ʼ08)
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Noun Phrases (NPs)

22CS 498 JH: Introduction to NLP (Fall ʼ08)
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The NP Fragment

23CS 498 JH: Introduction to NLP (Fall ʼ08)
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ADJPs and PPs

24CS 498 JH: Introduction to NLP (Fall ʼ08)
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Verb Phrase (VP)

25CS 498 JH: Introduction to NLP (Fall ʼ08)
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VPs redefined

26CS 498 JH: Introduction to NLP (Fall ʼ08)
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Sentences

27CS 498 JH: Introduction to NLP (Fall ʼ08)
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Sentence Redefined

28CS 498 JH: Introduction to NLP (Fall ʼ08)
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Probabilistic CFG

• normalization

• sumβ  p( A → β) =1

• what’s the most likely tree?

• in finite-state world, 

• what’s the most likely string?

• given string w, what’s the most likely tree for w

• this is called “parsing” (like decoding)

29CS 498 JH: Introduction to NLP (Fall ␣08)
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Probability of a tree

30CS 498 JH: Introduction to NLP (Fall ␣08)
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Most likely tree given string

• parsing is to search for the best tree t* that:

• t* = argmax_t  p (t | w) = argmax_t p(t) p (w | t)

•    =  argmax_{t: yield(t)=w} p(t)       

• analogous to HMM decoding

• is it related to “intersection” or “composition” in FSTs?

31
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CKY Algorithm

32

(S, 0, n)

w0  w1           ...           wn-1 
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CKY Algorithm

33

flies like a flower

S → NP VP
NP → DT NN
NP → NNS
NP → NP PP
VP → VB NP
VP → VP PP
VP → VB
PP → P NP

VB → flies
NNS → flies
VB → like
P → like 
DT → a
NN → flower
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CKY Algorithm

34

NNS,

VB, 
NP

S

S, V
P, 

NP

VB, 
P, 

VP

VP, P
P

DT

NP

NN

flies like a flower

S → NP VP
NP → DT NN
NP → NNS
NP → NP PP
VP → VB NP
VP → VP PP
VP → VB
PP → P NP

VB → flies
NNS → flies
VB → like
P → like 
DT → a
NN → flower

S → VP
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CKY Example

35
CS 498 JH: Introduction to NLP (Fall ␣08)
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Chomsky Normal Form

• wait! how can you assume a CFG is binary-branching?

• well, we can always convert a CFG into Chomsky-
Normal Form (CNF)

• A → B C

• A → a

• how to deal with epsilon-removal?

• how to do it with PCFG?

36
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What if we don’t do CNF...

• Earley’s algorithm (dotted rules, internal binarization)

37

CKY deductive system
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What if we don’t do CNF...

• Earley’s algorithm (dotted rules, internal binarization)

38

Earley (1970) deductive system

initial

goal

scan

predict

complete
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Earley Algorithm

• why complete must be first?

• how do you extend it for PCFG?

39
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Parsing as Deduction

40

: b: a

: a × b × Pr(A → B C)

(B, i, k)        (C, k, j) 

(A, i, j)
A→B C
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Parsing as Intersection

41

: b: a

: a × b × Pr(A → B C)

(B, i, k)        (C, k, j) 

(A, i, j)
A→B C

• intersection between a CFG G and an FSA D:

• define L(G) to be the set of strings (i.e., yields) G generates

• define L(G ∩ D) = L(G) ∩ L(D)

• what does this new language generate??

• what does the new grammar look like?

• what about CFG ∩ CFG ?
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Parsing as Composition

42
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Packed Forests
• a compact representation of many parses

• by sharing common sub-derivations

• polynomial-space encoding of exponentially large set

43

(Klein and Manning, 2001; Huang and Chiang, 2005)

0  I 1 saw  2  him  3  with 4 a 5 mirror 6

nodes hyperedges

a hypergraph
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Lattice vs. Forest

44
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Forest and Deduction

45

(Nederhof, 2003)

: b

v

u1 u2

fe

: a

: a × b × Pr(A → B C)

(A, i, j)

(C, k, j)(B, i, k)
(B, i, k)        (C, k, j) 

(A, i, j)
A→B C

v

u1 u2tails

head

fe

: a

: fe (a,b) v

u1 u2

fe

: a : b

: fe (a,b)

antecedents

consequent

: b
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Related Formalisms

46

v

u1 u2

e

v

u1 u2

e AND-node

OR-node

OR-nodes
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Viterbi Algorithm for DAGs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming edge (u, v) in E

• use d(u) to update d(v):

• key observation: d(u) is fixed to optimal at this time

• time complexity: O( V + E )
47

v

u w(u, v)

d(v) ⊕ = d(u) ⊗ w(u, v)
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Viterbi Algorithm for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming hyperedge e = ((u1, .., u|e|), v, fe)

• use d(ui)’s to update d(v)

• key observation: d(ui)’s are fixed to optimal at this time

• time complexity: O( V + E )    (assuming constant arity)

48

v
u1

u2

fe
d(v) ⊕ = fe(d(u1), · · · , d(u|e|))
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Example: CKY Parsing

• parsing with CFGs in Chomsky Normal Form (CNF)

• typical instance of the generalized Viterbi for DAHs

• many variants of CKY ~ various topological ordering

49

O(n3|P|)

bottom-up left-to-right

(S, 0, n) (S, 0, n)



NAACL 2009 Dynamic Programming

Example: CKY Parsing

• parsing with CFGs in Chomsky Normal Form (CNF)

• typical instance of the generalized Viterbi for DAHs

• many variants of CKY ~ various topological ordering

50

O(n3|P|)

bottom-up left-to-right right-to-left

(S, 0, n) (S, 0, n) (S, 0, n)
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Parser/Tree Evaluation

• how would you evaluate the quality of output trees?

• need to define a “similarity measure” between trees

• for sequences, we used

• same length: hamming distance (e.g., POS tagging)

• varying length: edit distance (e.g., Japanese transliteration)

• varying length: precision/recall/F (e.g., word-segmentation)

• varying length: crossing brackets (e.g., word-segmentation)

• for trees, we use precision/recall/F and crossing brackets

• standard “PARSEVAL” metrics (implemented as evalb.py)

51
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PARSEVAL

• comparing nodes (“brackets”): 

• labelled (by default): (NP, 2, 5);  
or unlabelled: (2, 5)

• precision: how many predicted 
nodes are correct?

• recall: how many correct nodes 
are predicted?

• how to fake precision or recall?

• F-score: F=2pr/(p+r)

• other metrics: crossing brackets
52

matched=6
predicted=7

gold=7
precision=6/7

recall=6/7
F=6/7
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Inside-Outside Algorithm

53
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Inside-Outside Algorithm

54
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Inside-Outside Algorithm

• inside prob beta is easy to compute (CKY, max=>+)

• what is outside prob alpha(X,i,j)?

• need to enumerate ways to go to TOP from X,i,j

• X,i,j can be combined with other nodes on the left/right

• L: sum_{Y->Z X, k} alpha(Y,k,j) Pr(Y->Z X) beta(Z,k,i)

• R: sum_{Y->X Z, k} alpha(Y,i,k) Pr(Y->X Z) beta(Z,j,k)

• why beta is used in alpha? very diff. from F-W algorithm

• what is the likelihood of the sentence?

• beta(TOP, 0, n)   or  alpha(w_i, i, i+1) for any i
55
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Inside-Outside Algorithm

56

X Z 

i j k 

Y 

TOP 

0 n 

X Z 

i j k 

Y 

TOP 

0 n 

• L: sum_{Y->Z X, k} alpha(Y,k,j) Pr(Y->Z X) beta(Z,k,i)

• R: sum_{Y->X Z, k} alpha(Y,i,k) Pr(Y->X Z) beta(Z,j,k)
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Inside-Outside Algorithm

• how do you do EM with alphas and betas?

• easy; M-step: divide by fractional counts

• fractional count of rule (X,i,j -> Y,i,k Z,k,j) is

• alpha(X,i,j) prob(Y Z|X) beta(Y,i,k) beta(Z,k,j)

• if we replace “+” by “max”, what will alpha/beta mean?

• beta’: Viterbi inside: best way to derive X,i,j

• alpha’: Viterbi outside: best way to go to TOP from X,i,j

• now what is alpha’(X, i, j) beta’(X, i, j)?

• best derivation that contains X,i,j (useful for pruning)

57
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Viterbi => CKY

58
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(acyclic)
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graphs with 
semirings

(e.g., FSMs)

hypergraphs with 
weight functions

(e.g., CFGs)

Viterbi Dijkstra

Gen. Viterbi
(e.g., CKY)
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How to generate from a CFG?

• analogy in finite-state world: given a WFSA, generate 
strings (either randomly or in order)

• Viterbi doesn’t work (cycles)

• Dijkstra still works (as long as it’s probabilities)

• What’s the generalization of Dijkstra in the tree world?

59
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Forward  Variant for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each outgoing hyperedge e = ((u1, .., u|e|), h(e), fe)

• if d(ui)’s have all been fixed to optimal 

• use d(ui)’s to update d(h(e))

• time complexity: O( V + E )

60

v = ui

h(e)
u1

v

fe

u2 = 

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
   how many tails yet to be fixed?
fire this hyperedge only if r[e]=0

h(e)
fe
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Example: Treebank Parsers

• State-of-the-art statistical parsers

• (Collins, 1999; Charniak, 2000)

• no fixed grammar (every production is possible)

• can’t do backward updates

• don’t know how to decompose a big item

• forward update from vertex (X, i, j)

• check all vertices like (Y, j, k) or (Y, k, i) in the chart (fixed)

• try combine them to form bigger item (Z, i, k) or (Z, k, j)

61
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Two Dimensional Survey

62

topological
(acyclic)
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Viterbi Algorithm for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each incoming hyperedge e = ((u1, .., u|e|), v, fe)

• use d(ui)’s to update d(v)

• key observation: d(ui)’s are fixed to optimal at this time

• time complexity: O( V + E )    (assuming constant arity)

63

v
u1

u2

fe
d(v) ⊕ = fe(d(u1), · · · , d(u|e|))
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Forward  Variant for DAHs
1. topological sort

2. visit each vertex v in sorted order and do updates

• for each outgoing hyperedge e = ((u1, .., u|e|), h(e), fe)

• if d(ui)’s have all been fixed to optimal 

• use d(ui)’s to update d(h(e))

• time complexity: O( V + E )

64

v = ui

h(e)
u1

v

fe

u2 = 

Q: how to avoid repeated checking?
maintain a counter r[e] for each e:
   how many tails yet to be fixed?
fire this hyperedge only if r[e]=0

h(e)
fe
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Dijkstra Algorithm

• keep a cut (S : V - S) where S vertices are fixed

• maintain a priority queue Q of  V - S vertices

• each iteration choose the best vertex v from Q

• move v to S, and use d(v) to forward-update others

65

uw(v, u)

S V - S

vs ...

d(u) ⊕ = d(v) ⊗ w(v, u)

time complexity:
O((V+E) lgV) (binary heap)

O(V lgV + E) (fib. heap)

v
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Knuth (1977) Algorithm

• keep a cut (S : V - S) where S vertices are fixed

• maintain a priority queue Q of  V - S vertices

• each iteration choose the best vertex v from Q

• move v to S, and use d(v) to forward-update others

66

S V - S

vs ...

time complexity:
O((V+E) lgV) (binary heap)

O(V lgV + E) (fib. heap)

u1

v
h(e)

fe

v
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Summary of Perspectives on Parsing

• Parsing and can be viewed as:

• search in the space of possible trees

• (logical/probabilistic) deduction

• intersection / composition

• generation (from intersected grammar)

• forest building

• Parsing algorithms introduced so far are DPs:

• CKY: simplest, external binarization -- implement in hw5

• intersection + Knuth 77: best-first search

67
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Translation as Parsing

68

• translation with SCFGs => monolingual parsing

• parse the source input with the source projection

• build the corresponding target sub-strings in parallel

PP1, 3 VP3, 6

VP1, 6

yu  Shalong juxing  le  huitan

with Sharon held a talk

held a talk  with Sharon

VP → PP(1) VP(2)
, VP(2) PP(1)

VP → juxing le huitan, held a meeting
PP → yu Shalong, with Sharon

complexity: same as 
CKY parsing -- O(n3)
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Adding a Bigram Model

69

PP1, 3 VP3, 6

VP1, 6

_ _●●●	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ... talk_ _ _ _ _ ●●●●●  ... Sharon

_ _●●●	 	 	 	 	 	 	 	 	 	 	 	 	 	 ... talks

_ _●●●	 	 	 	 ... meeting ●●●●●  ... Shalong

with ... Sharon

along ... Sharon
with ... Shalong

held ... talk
held ... meeting

hold ... talks

with   Sharon

bigram

complexity: O(n3 V4(m-1) )

held  ...   talk

VP3, 6

with ...  Sharon

PP1, 3

bigram

held               ...             Sharon

VP1, 6


