
Language Technology HW6: Parsing

due Tuesday Dec 23 at midnight on blackboard

In this assignment you will

1. train a probabilistic context-free grammar (PCFG) from a treebank (need binarization);

2. build a simple CKY parser (which handles unary rules), and report its parsing accuracy on test data.

You will need to download from http://acl.cs.qc.edu/~lhuang/teaching/nlp/hw6/data.tgz:

corpora:

train.trees training data, one tree per line
test.txt test data, one sentence per line
test.trees gold-standard trees for the test data (for evaluation)

scripts:

tree.py Tree class and reading tool
evalb.py evaluation script

You need to submit:

1. a PDF report (include the answers, e.g., accuracies or statistics, to each question);

2. all your python programs;

3. result files mentioned in each question.

1 Learning a grammar (40 pts)

The file train.trees contains a sequence of trees, one per line, each in the following format:

(TOP (S (NP (DT the) (NN boy)) (VP (VB saw) (NP (DT a) (NN girl)))))

(TOP (S (NP (PRP I)) (VP (VB need) (S (VP (TO to) (VP (VB arrive) (ADVP (RB early)) (NP (NN today))))))))

N.B. tree.py provides tools for you to read these trees (building a Tree object from a string).

TOP

S

NP

DT

the

NN

boy

VP

VB

saw

NP

DT

a

NN

girl

TOP

S

NP

PRP

I

VP

VB

need

S

VP

TO

to

VP

VB

arrive

ADVP

RB

early

NP

NN

today

1

http://acl.cs.qc.edu/~lhuang/teaching/nlp/hw6/data.tgz


Note that the second example is particularly interesting because it covers

• unary rules on preterminals like NP -> PRP and NP -> NN;

• unary rules on nonterminals like S -> VP and TOP -> S;

• ternary rules like VP -> VB ADVP NP (so that you need binarization).

Your job is to learn a probabilistic context-free grammar (PCFG) from these trees.

Q1.a Preprocessing: replace all one-count words (those occurring only once, case-sensitive) with <unk>:

cat train.trees | python replace_onecounts.py > train.trees.unk 2> train.dict

where train.trees.unk is the resulting trees with <unk> symbols, and train.dict is a file of words
which appear more than once (one word per line). Explain why we do this.

Q1.b Binarization: we binarize a non-branching tree (recursively) in the following way:

A

B C D

⇒ A

B A’

C D

e.g. VP

VB NP PP ADVP

⇒ VP

VB VP’

NP VP’

PP ADVP

cat train.trees.unk | python binarize.py > train.trees.unk.bin

What are the properties of this binarization scheme? Why we would use such a scheme? (What are
the alternatives, and why we don’t use them?)

Q1.c Learn a PCFG from trees:

cat train.trees.unk.bin | python learn_pcfg.py > grammar.pcfg.bin

The output grammar.pcfg.bin should have the following format:

TOP

TOP -> S # 1.0000

S -> NP VP # 0.8123

S -> VP # 0.1404

VP -> VB NP # 0.3769

VB -> saw # 0.2517

...

where the first line (TOP) denotes the start symbol of the grammar, and the number after # in each
rule is its probability, with four digits accuracy.

We group rules into three categories: binary rules (A -> B C), unary rules (A -> B), and lexical rules
(A -> w). How many rules are there in each group?

2



2 CKY Parser (60 pts)

Now write a CKY parser that takes a PCFG and a test file as input, and outputs, for each sentence in the
test file, the best parse tree in the grammar. For example, if the input file is

the boy saw a girl

I need to arrive early today

the output (according to some PCFG) could be:

(TOP (S (NP (DT the) (NN boy)) (VP (VB saw) (NP (DT a) (NN girl)))))

(TOP (S (NP (PRP I)) (VP (VB need) (S (VP (TO to) (VP (VB arrive) (ADVP (RB early)) (NP (NN today))))))))

Q2.a Design a toy grammar toy.pcfg and its binarized version toy.pcfg.bin such that the above two trees
are indeed the best parses for the two input sentences, respectively. How many strings do these
two grammars generate?

Q2.b Write a CKY parser. Your code should have the following input-output protocol:

cat toy.txt | python cky.py toy.pcfg.bin > toy.parsed

Verify that you get the desired output in toy.parsed. Note that your output trees should be
debinarized (see examples above).

Q2.c Now that you passed the toy testcase, apply your CKY parser to the real test set:

cat test.txt | python cky.py grammar.pcfg.bin > test.parsed

Your program should handle (any levels of) unary rules correctly, even if there are unary cycles.

How many sentences failed to parse? Your CKY code should simply output a line

NONE

for these cases (so that the number of lines in test.parsed should be equal to that of test.txt).
What are main reasons of parsing failures?

Q2.d Now modify your parser so that it first replaces words that appear once or less in the training data:

cat test.txt | python cky.py grammar.pcfg.bin train.dict > test.parsed.new

Note that:

• train.dict should be treated as an optional argument: your CKY code should work in either
case! (and please submit only one version of cky.py).

• your output tree, however, should use the original words rather than the <unk> symbol. Like
binarization, it should be treated as internal representation only.

Now how many sentences fail to parse?

Q2.e Evaluate your parsing accuracy by

python evalb.py test.trees test.parsed

python evalb.py test.trees test.parsed.new

Report the labeled precisions, recalls and F-1 scores of the two parsing results. Do their differences
make sense?

3



Debriefing

Please answer these questions in debrief.txt and submit it along with your work. Note: You get 5 points
off for not responding to this part.

1. How many hours did you spend on this assignment?

2. Would you rate it as easy, moderate, or difficult?

3. Are the lectures too fast, too slow, or just in the right pace?

4. Any other comments (to the course or to the instructors)?

4


