
A note on in situ estimates of sorption

using push-pull tests

Giorgio Cassiani

Dipartimento di Scienze Geologiche e Geotecnologie, Università di Milano-Bicocca, Milan, Italy
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[1] A sensitivity analysis reveals that large uncertainty exists in estimates of solute
retardation factor R made from sorption push-pull tests. A simplified push-pull data
interpretation method for estimating instantaneous linear sorption in confined aquifers is
developed. The new method is less restrictive in its application than the conventional
method that uses an approximate analytical solution to the push-pull test problem.
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1. Introduction

[2] The need to characterize the behavior of reactive
solutes in the subsurface, together with the practical and
financial limitations of large-scale tracer tests, has motivated
the development of fast, single-well tracer tests, such as the
push-pull test. Recently, a simplified model has been
proposed for the interpretation of push-pull tests applied
to determine solute retardation properties [Schroth et al.,
2001]. The method is based on the approximate analytical
solution of the radial dispersion problem presented by
Gelhar and Collins [1971], which by default limits the
applicability of the method to cases where the distance
traveled by the solute is much larger than the aquifer
longitudinal dispersivity. In the proposed interpretation
method the aquifer longitudinal dispersivity is estimated
from the breakthrough curve of a nonsorbing tracer, and
the retardation factor is consequently estimated from the
breakthrough curve of an adsorbing solute, using the
same dispersivity value. The sensitivity of the parameters
and interrelationship that exists between them are as yet
uncharacterized.
[3] The objectives of this technical note are (1) to

investigate the sensitivity of, and assess any correlation
that may exist between, the two estimated governing
parameters of push-pull sorption studies: dispersivity
and retardation factor, by means of a numerical radial-
flow model and automated numerical inversion procedure;
(2) to compare results obtained with the numerical model
with those calculated using the Gelhar and Collins [1971]
model to highlight the limitations of the existing inter-
pretation method [Schroth et al., 2001] that is heavily
based on this model; and (3) to develop a modified data
interpretation method that uses a type-curve approach to

produce more accurate prediction of retardation from
push-pull tests.

2. Governing Equations

[4] The mathematical expressions that describe one-
dimensional radial flow and transport of a solute about a
well in a homogenous, confined aquifer are [Hoopes and
Harleman, 1967]
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; ð2Þ

where t is time [T], r is the radial distance [L], Q is the
pumping rate [L3/T], b is the aquifer thickness [L], q is the
aquifer porosity [ ], C is the solute concentration [M/L3], aL

is longitudinal dispersivity [L], and R is the solute
retardation factor [ ]. Note that in a push-pull test, the flow
field around the well is initially divergent (Q > 0) and then
convergent (Q < 0).
[5] The nondimensional form of (1) and (2) can be

written as

@c

@v
¼ e

r
@2c

@r2
� 1

2r
@c

@r
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where the four dimensionless terms relate to (1) the
dimensionless concentration, c = C/C0; (2) the dimension-
less extracted volume (or dimensionless time), v = V/Vinj =
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t/tinj, where Vinj = Q tinj; (3) the dimensionless radial
distance, r = r/rw; and (4) the dimensionless ratio e,
defined as

e ¼ aL

2rmax

; ð4Þ

where rmax is the invasion radius [L] of the injected solute,
equal to the frontal position in the case of pure advection.
The retardation factor R is linked to the maximum
invasion radius rmax through the relationship (assuming a
negligible well radius)

rmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
Qtinj

pbqR

r
: ð5Þ

[6] In the case of a conservative and an adsorbing
species, the dimensionless term e of both species can be
related through

e ¼ e1
ffiffiffi
R

p
; ð6Þ

where e1 refers to the nonadsorbing (R = 1) species and e
refers to the adsorbing species. From the above it is
apparent that the sorption push-pull tracer breakthrough
curves can be parameterized on the value of e alone.

3. Discussion of Existing Interpretation Models

[7] Schroth et al. [2001] demonstrated that the retardation
factor can be estimated from conservative and reactive
tracer push-pull test breakthrough curves using a two-step
procedure that uses the approximate analytical solution of
the radial dispersion problem developed by Gelhar and
Collins [1971]:
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where erfc is the complementary error function.
[8] In the method proposed by Schroth et al. [2001], first

the aquifer dispersivity aL is estimated by applying (7) to
create a breakthrough curve that matches the nonreactive
tracer (R = 1) field data. Substituting for the known value of
aL in (7) and considering the relationship in (5), the model
fitting is repeated for the adsorbing tracer until an estimate
of R is obtained. The limitation of this interpretation method
is that the approximate analytical solution of Gelhar and
Collins [1971] is only accurate when e1/2 � 1 [Gelhar and
Collins, 1971] outside of which errors arise in the disper-
sivity estimate, which ultimately manifest themselves in
the estimation of R. A reasonable upper limit to e is
therefore e � 0.01 (e1/2 = 0.1 � 1).

4. Methodology

[9] In order to investigate the interaction that may exist
between e and R, we studied a series of six base-case push-
pull scenarios for which e1 values ranged from 0.0054 to
0.25. For each base-case we looked at reactive solutes with

retardation factors of 5 and 20. Details of the base-case
scenarios are provided in Table 1. We studied parameter
sensitivity from the conservative and adsorbing tracer
breakthrough curves of each scenario using a numerical
push-pull model, followed by the approximate analytical
Gelhar and Collins [1971] model to serve as a comparison.

4.1. General Forward (Numerical) Model

[10] For each of the 12 combined e1 and R scenarios, a
conservative (R = 1) and a reactive tracer breakthrough
curve were generated using a numerical finite difference
model to solve (1) with the following initial and boundary
conditions:

C r; t ¼ 0ð Þ ¼ 0 for r > rw ð8Þ

C rw; tð Þ ¼ C0 for 0 < t < tinj ð9Þ

@C rw; tð Þ
@r

¼ 0 for tinj < t ð10Þ

C r ! 1; tð Þ ! 0 for t > 0 ð11Þ

where rw is the well radius.
[11] The performance of the numerical code was assessed

against the analytical solution of radial dispersion in a
diverging flow field provided by Hsieh [1986] and with
tracer breakthrough curves published by Schroth et al.
[2001] and generated using the STOMP code. In both cases,
our model produced results indistinguishable (<0.1% error)
from those in the literature.

4.2. Model Inversion

[12] For each set of simulated conservative and adsorbing
tracer breakthrough curves an automated nonlinear least
squares, Newton-Raphson root-finding technique was used
to solve for aL, R. The inversion procedure was performed
using both the numerical finite difference code and the
analytical Gelhar and Collins [1971] solution as forward
predictive models. Reactive and conservative tracer break-
through curve data were assessed simultaneously, and aL

and R were built into a single sum-of-squares error objective
function. Parameter optimization threshold limits were the
same for all cases. Once the Newton-Raphson method
reached convergence, an approximate confidence region
was mapped in the (aL, R) parameter space about the final
optimized parameter set (âL, R̂).

4.3. Confidence Regions

[13] Following Draper and Smith [1998, p. 156], under
the assumption of independent Gaussian errors on the data,
an approximate 100(1 � b)% confidence contour (b is an
arbitrary confidence level and in this study was taken to
equal 5%) was computed from

S aL;Rð Þ ¼ S âL; R̂
 �

1þ 2

n1 þ nR � 2
F 2; n1 þ nR � 2; 1� bð Þ

� �
;

ð12Þ

where S is the sum-of-squares error objective function and n
is the number of observation points on the breakthrough
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curve. Subscripts 1 and R denote the conservative tracer
data and adsorbing tracer data, respectively. F( ) is the
Fisher distribution function. Note that the confidence
regions developed using this approach are true in their
shape but only approximate in their confidence level.

4.4. Sensitivity Analysis

[14] In order to assess the sensitivity of the model
interpretation methods to measurement errors borne in the
tracer breakthrough curve data, 0.5% and 2% random
Gaussian error were applied to the default conservative
and adsorbing tracer breakthrough curve data of the 12
scenarios. The parameter estimation and confidence-region
plotting were repeated for these 24 additional scenarios, and
results were compared with those from the default case in
which no error was assumed.

4.5. Model Efficiency and Parameter Sensitivity
Indices

[15] To assess parameter sensitivity, aL and R were
normalized with respect to the true respective parameter
values a*L, R* (i.e., those used to numerically generate the
no-error tracer breakthrough curves), to provide aL

0 and R0.
The accuracy of the push-pull interpretation methods (i.e.,
fully numerical solution or solution using the analytical
Gelhar and Collins [1971] model) was evaluated by con-
sidering the percentage error in the optimized parameter
estimations of aL and R (equivalent to 100â0

L, 100R̂
0). A

measure of correlation between dispersivity and retardation
was evaluated from the slope m of a linear-regression fit to
the 95% confidence regions mapped in the parameter space
a0

L, R
0. A value of jmj = 1 indicates perfect correlation

between the parameters, and as jmj !1 or jmj ! 0 there is
decreasing dependence of the parameters on each other. The
indices Da0

L and DR0, which were calculated as the range
between the minimum and maximum values of the approx-
imate 95% confidence limits of an individual parameter,
were used to highlight the relative sensitivity of each of the
studied parameters.

5. Results

5.1. Parameter Sensitivity

[16] The results of the parameter estimates inverted using
the numerical radial flow model and complementary
approximate 95% confidence contour regions for six of
the 12 base-case scenarios including 0.5% and 2% error
assessments are shown in Figure 1. Sensitivity indices for
all the scenarios are reported in Table 1. Confidence regions
for the no-error case are not shown because they are
extremely small (S(aL, R) < 1 � 10�6). It is apparent from
Figure 1 that there is a positive, monotonic relationship
between error in the breakthrough curve data and the final
parameter estimate. This is not surprising since the break-
through curves were originally generated with the same
numerical model that was used in the inversion.
[17] The elliptic shape and negative slope of the confi-

dence regions indicate that aL and R are near-linearly,
negatively correlated. The magnitude of the correlation
index m for all the simulated confidence regions ranges
1.58 < jmj < 2.34 and demonstrates that there is a depen-
dence between aL and R. Although m values are relatively
indifferent for the simulated cases of low retardation (R = 5)T
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Figure 1. Confidence regions for the estimated dispersivity aL and retardation factor R parameter
values for three of the six studied base cases. Parameter estimates were obtained using an automated
Newton-Raphson technique using the radial finite difference model. Parameter values in the figures are
plotted as relative values (a0

L, R
0), normalized with respect to the true (simulated) parameter values (a*L,

R*). Plus signs symbolize the true parameter set; triangles and boxes symbolize the optimal parameter
estimates, and the dashed and dotted curves symbolize the approximate 95% confidence regions, after
inversion from data containing 0.5% and 2% random Gaussian error, respectively. Note that no error
cases are not shown, since for these cases S(aL, R) < 1 � 10�6.

Figure 2. Approximate 95% confidence regions for the estimated dispersivity aL and retardation factor
R parameter values for three of the six studied base cases. Parameter estimates were obtained using an
automated Newton-Raphson technique using the Gelhar and Collins [1971] model. Symbols and coding
are analogous with that of Figure 1, except no error cases are included, the best estimate for which is
denoted by circles and approximate 95% confidence interval by the solid curves.
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(2.0 < jmj < 2.10), at higher retardation (R = 20) the
correlation between aL and R is consistently greater
(1.58 < jmj < 1.99) and grows, i.e., jmj ! 1, as e
increases. The measures of relative thickness of the
confidence ellipses (Da0

L, DR0) indicate that aL is a
well-defined parameter in the sorption push-pull model.
In contrast, the data interpretationmethodology is relatively
insensitive to R, particularly in systems demonstrating high
relative dispersivity, e.g., for base-case 6 (e1 = 0.25, R = 20,
e = 1.12), despite only 2% error in the breakthrough curve
data, 19% error arose in the final R estimate ±144% at the
approximate 95% confidence level.
[18] As a relative comparison, the results of the parameter

estimates and approximate 95% confidence contour regions
for the same scenarios inverted using the Gelhar and
Collins [1971] model are shown in Figure 2 and sensitivity
indices are included in Table 1. For the first three simulated
base cases (e1  0.025) it is apparent that the confidence
regions are of similar shape, and parameter sensitivity
indices are of similar magnitude, to the inversion results
obtained using the numerical radial flow model. However,
in these cases, parameter estimates themselves are <90%
accurate, except for the initial case, for which e = 0.012
(which is close to the value recommended by Gelhar and
Collins [1971] for accurate application of their solution).
From the results of base-case 3 upward, the effects of the
approximation in the Gelhar and Collins [1971] solution are
apparent and result in underestimations of both aL and R. In
contrast to the results of the inversions made with the
numerical radial flow model, for high retardation (R = 20)
the correlation between aL and R decreases as e increases.
This is reflected in the decreasing ellipticity of the confi-
dence regions in Figure 2 that indicates an increasingly
nonlinear parameter relationship. Although R remains

insensitive in the R = 5 scenarios, when R = 20 the relative
sensitivity of both parameters (aL, R) decreases as e1
increases. Estimation of R tends to a minimal saturation
level of unity, since R < 1 is not physically possible.

5.2. Application to Field Data

[19] The performance of the model inversion process was
evaluated by applying it to estimate dispersivity and retar-
dation parameters from the sorption push-pull field data set
of Pickens and Grisak [1981]. These field data were
similarly used by Schroth et al. [2001] to validate their
interpretation method. The inversion was performed with
the finite difference and approximate analytical push-pull
models to enable a comparison to be made.
[20] Using the inversion process with our numerical finite

difference scheme, respective best estimates for aL and R of
0.063 m and 13.24 were obtained for the data (S(âL, R̂) =
0.04 (n = 57)). Respective best estimates of 0.064 m and
11.44 (identical to the results of Schroth et al. [2001]) were
computed when the Gelhar and Collins [1971] solution was
substituted as the forward model in the inversion process
(S(âL, R̂) = 0.10 (n = 57)). The numerically derived estimate
of R = 13.24 falls within the solute retardation factor range
12.6 < R < 36.3 measured from lab and field experiments
reported by Pickens et al. [1981]. From the resulting
parameter estimates, values of e 1 = 0.013 and e = 0.046
were evaluated, the latter being above the limit for accurate
application of the Gelhar and Collins [1971] solution
(e1/2 � 1). This would explain the relatively small but
measurable difference in R estimates between our approach
and the method proposed by Schroth et al. [2001]. It is
useful to note that the errors in the tracer breakthrough
curve data of Pickens and Grisak [1981] measured against
the numerically simulated data were approximately 2.7%
and almost normally distributed. Thus the Gaussian error
that we applied to the breakthrough curve data of our
base-case scenarios is reasonably representative of that
encountered in the field.

5.3. Simplified Interpretation Method

[21] On the basis that in nondimensional form, sorption
push-pull tracer breakthrough curves can be parameterized
on the value of e alone, a simplified sorption interpretation
procedure can be developed that overcomes the limitations
of the Gelhar and Collins [1971] approximation that conse-
quently limits the applicability of the interpretation method
proposed by Schroth et al. [2001]. Figure 3 contains a set of
dimensionless tracer breakthrough curves generated using
our numerical radial-flowmodel for the range 0.005 < e < 1.0.
For all cases a negligible well radius has been assumed and
injection and abstraction flow rates were equal. Note that all
breakthrough curves contain more solute mass than from a
simple C0 � Vinj calculation. This is the result of a non-
negligible dispersion component at the well face that causes
more solute to be flushed into the aquifer than by pure
advection, as well known from the literature [e.g., Chen,
1987; P. A. Hsieh, personal communication, 2002]. This
effect is more evident for large e values, since e can be
envisaged as a ratio between dispersive and advective com-
ponents of the injection process.
[22] The interpretation procedure is as follows:
[23] 1. Plot the conservative tracer and the adsorbing

solute breakthrough curves on a C/C0 versus V/Vinj scale.

Figure 3. Dimensionless breakthrough curves for the
interpretation of sorption push-pull tests. Curves are shown
for e = 0.005, 0.01, 0.025, 0.05, 0.1, 0.175, 0.25, 1.
Numerical values for these curves are summarized in
Table 2. These curves can be utilized following the
procedure described in section 5.3.
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[24] 2. Find the best curve of the set in Figure 3 that
matches the field data for the conservative tracer (no shift is
needed), and identify the corresponding value for e1.
[25] 3. From e1 we can calculate the longitudinal dis-

persivity explicitly rearranging equation (4):

aL ¼ 2e1

ffiffiffiffiffiffiffiffiffi
Qtinj

pbq

r
: ð13Þ

[26] 4. Find the best curve of the set in Figure 3 that
matches the field data for the adsorbing solute in the same
way done for the conservative tracer in step 2, and identify
the corresponding value of e.

[27] 5. From e, and knowing e1 from step 2, we can
calculate the retardation factor rearranging equation (6):

R ¼ e
e1

� �2

ð14Þ

Table 2 provides the values necessary to reproduce Figure 3
to be used as a chart for this procedure.

6. Discussion and Conclusions

[28] Using an automated nonlinear least squares inversion
procedure with an approximate confidence region algo-
rithm, we have been able to analyze the interpretation of

Table 2. Numerical Values for the Dimensionless Breakthrough Curves Shown in Figure 3 for the Interpretation of a Sorption Push-Pull

Test

V/Vinj e = 0.005 e = 0.01 e = 0.025 e = 0.05 e = 0.1 e = 0.175 e = 0.25 e = 0.5 e = 1

0 1 1 1 1 1 1 1 1 1
0.1 1 0.999999 0.998463 0.97842 0.918156 0.854315 0.822414 0.767336 0.723964
0.2 1 0.999917 0.988912 0.937126 0.84401 0.766226 0.730779 0.673218 0.630237
0.3 0.999992 0.998583 0.963419 0.879665 0.770403 0.691167 0.657342 0.603762 0.564526
0.4 0.999669 0.990673 0.917705 0.811716 0.699876 0.625668 0.595589 0.548204 0.51357
0.5 0.995905 0.965208 0.852713 0.738624 0.633887 0.568045 0.542556 0.50204 0.472102
0.6 0.976144 0.910615 0.773226 0.664643 0.57309 0.517114 0.496432 0.462784 0.437345
0.7 0.9175 0.822711 0.685621 0.592808 0.517645 0.471937 0.455952 0.428858 0.407614
0.8 0.803496 0.707931 0.59605 0.525083 0.467421 0.431735 0.420173 0.39918 0.381795
0.9 0.642923 0.579949 0.509443 0.462592 0.422127 0.39585 0.388362 0.372967 0.359104
1.0 0.466869 0.4536 0.429185 0.405843 0.381395 0.363723 0.359935 0.349628 0.338969
1.1 0.308511 0.340218 0.357217 0.354926 0.344827 0.334878 0.334417 0.328707 0.320956
1.2 0.186958 0.245914 0.294326 0.309657 0.312028 0.308905 0.311418 0.309845 0.304732
1.3 0.104904 0.172128 0.240481 0.269689 0.282617 0.285455 0.290613 0.292751 0.29003
1.4 0.055038 0.117194 0.19513 0.234589 0.256243 0.264225 0.271729 0.27719 0.27664
1.5 0.027248 0.077925 0.157432 0.203891 0.232581 0.244957 0.254536 0.262967 0.264387
1.6 0.012833 0.050779 0.126428 0.177125 0.211339 0.227424 0.238838 0.249919 0.253128
1.7 0.005792 0.032528 0.101147 0.153841 0.192253 0.211434 0.224466 0.237909 0.242744
1.8 0.00252 0.020536 0.080677 0.13362 0.175089 0.196816 0.211276 0.226821 0.233135
1.9 0.001063 0.012807 0.064196 0.11608 0.159637 0.183424 0.199142 0.216555 0.224216
2.0 0.000437 0.007905 0.050986 0.100877 0.14571 0.171129 0.187956 0.207026 0.215913
2.1 0.000175 0.004837 0.040438 0.087707 0.133144 0.159818 0.177622 0.19816 0.208164
2.2 6.91E-05a 0.002938 0.032039 0.0763 0.121792 0.149394 0.168057 0.189892 0.200915
2.3 2.68E-05 0.001774 0.025367 0.066419 0.111525 0.13977 0.159188 0.182167 0.194118
2.4 1.02E-05 0.001066 0.020076 0.057859 0.102228 0.130869 0.150948 0.174933 0.187733
2.5 3.87E-06 0.000638 0.015886 0.05044 0.093799 0.122624 0.143283 0.168149 0.181722
2.6 1.45E-06 0.000381 0.01257 0.044009 0.086147 0.114975 0.136139 0.161774 0.176053
2.7 5.38E-07 0.000226 0.009949 0.038429 0.079194 0.107869 0.129472 0.155775 0.170698
2.8 1.98E-07 0.000134 0.007877 0.033586 0.072867 0.10126 0.123242 0.150121 0.165632
2.9 7.28E-08 7.98E-05 0.00624 0.029379 0.067104 0.095105 0.117411 0.144785 0.160831
3.0 2.66E-08 4.73E-05 0.004945 0.025722 0.061848 0.089366 0.111948 0.139741 0.156276
3.1 9.7E-09 2.8E-05 0.003922 0.02254 0.05705 0.084009 0.106822 0.134967 0.151948
3.2 3.53E-09 1.66E-05 0.003113 0.01977 0.052665 0.079005 0.102007 0.130444 0.14783
3.3 1.28E-09 9.81E-06 0.002473 0.017356 0.048652 0.074326 0.09748 0.126154 0.143908
3.4 4.64E-10 5.81E-06 0.001966 0.015251 0.044977 0.069946 0.093218 0.122079 0.140168
3.5 1.68E-10 3.44E-06 0.001565 0.013413 0.041608 0.065845 0.089202 0.118205 0.136597
3.6 6.1E-11 2.04E-06 0.001247 0.011807 0.038515 0.062001 0.085414 0.114518 0.133186
3.7 2.21E-11 1.21E-06 0.000994 0.010403 0.035675 0.058396 0.081838 0.111006 0.129922
3.8 8.04E-12 7.21E-07 0.000793 0.009174 0.033063 0.055013 0.078458 0.107658 0.126798
3.9 2.92E-12 4.29E-07 0.000634 0.008097 0.03066 0.051837 0.075261 0.104462 0.123803
4.0 1.06E-12 2.56E-07 0.000507 0.007153 0.028447 0.048854 0.072234 0.10141 0.120931
4.1 3.88E-13 1.53E-07 0.000406 0.006324 0.026406 0.04605 0.069366 0.098493 0.118175
4.2 1.42E-13 9.14E-08 0.000326 0.005596 0.024524 0.043413 0.066647 0.095701 0.115526
4.3 5.21E-14 5.48E-08 0.000261 0.004956 0.022786 0.040934 0.064067 0.093029 0.11298
4.4 1.92E-14 3.29E-08 0.00021 0.004392 0.021181 0.038601 0.061617 0.090469 0.110531
4.5 7.06E-15 1.98E-08 0.000169 0.003896 0.019696 0.036405 0.059288 0.088014 0.108172
4.6 2.61E-15 1.19E-08 0.000136 0.003459 0.018323 0.034338 0.057074 0.085659 0.1059
4.7 9.68E-16 7.18E-09 0.00011 0.003073 0.017052 0.032391 0.054967 0.083398 0.10371
4.8 3.6E-16 4.34E-09 8.85E-05 0.002732 0.015874 0.030558 0.05296 0.081226 0.101597
4.9 1.34E-16 2.63E-09 7.15E-05 0.002431 0.014783 0.02883 0.051048 0.079138 0.099558
5.0 5.03E-17 1.6E-09 5.78E-05 0.002165 0.01377 0.027202 0.049225 0.07713 0.097588

aRead as 6.91 � 10�5.
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instantaneous linear sorption push-pull tests. From our work
we have concluded the following:
[29] 1. A sensitivity analysis of the two governing param-

eters of sorption push-pull tests, aL and R, has shown that
their estimates are negatively correlated to a certain degree,
and this correlation is more pronounced for smaller values
of e. It has also been shown that aL is well defined in the
push-pull test interpretation methodology, whereas R is a
relatively insensitive parameter.
[30] 2. When analyzed in the context of confidence

regions, aL can be estimated very precisely, even when
reasonable realistic errors are implicit to the breakthrough
curve data. In contrast, R estimates show a very wide range
of uncertainty that increases as e increases, i.e., as disper-
sion becomes increasingly important over the distance
traveled by the solute. The conclusion is that errors in the
breakthrough curve can propagate to generate fairly large
errors in the estimates of R.
[31] 3. The problems of using the Gelhar and Collins

[1971] as a forward model to interpret sorption push-pull
test data have been clearly demonstrated. From our sensi-
tivity analysis performed using the Gelhar and Collins
[1971] model, we notice that the true parameter values are
not even within the approximate 95% confidence regions of
the optimized estimates âL, R̂ when e and e1 are greater than
0.06. The actual optimized parameter estimates in these
cases are as much as �7.6% (aL) and �21.7% (R) in error.
Note that Gelhar and Collins [1971] claimed that their
method yielded usable dispersivity estimates for e as high as
0.07, which is consistent with our findings. Unfortunately, a
good estimation of R with the same approach requires that e
be substantially smaller. In one case recorded by Schroth et
al. [2001] in their Table 1 (high aL = 10 cm, R = 10), <10%
error in R estimate was achieved using their interpretation
method (that incorporates the Gelhar and Collins [1971]
model), when e was as high as 0.17 (and e1 = 0.05). When
we interpreted the same case using our automated inversion
process, we derived �16.4% and �38% errors in aL and R,
respectively (S(âL, R̂) = 0.31 (n = 48)). We interpret such
discrepancies between Schroth et al.’s [2001] and our
findings as a symptom that their approximate fitting of the

approximate Gelhar and Collins [1971] solution may, at
times, lead to a better solution. However, there does not
seem to be any guarantee that this is generally the case. If
using the Gelhar and Collins [1971] model to invert
sorption push-pull test data with a single objective function,
then our results suggest it would be prudent to do so only if
e and e1 < 0.02, as above this value we observed >10% error
in R̂. This in itself presents a paradox, for it is generally not
possible to evaluate e a priori.
[32] 4. The simplified type-curve approach that we have

devised for interpreting instantaneous linear sorption in
push-pull tests performed in confined aquifers should help
overcome this hurdle. The method treats push-pull data in a
nondimensional form and is not constrained mathematically
by the value of e.
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