Spatial Variability in In Situ Aerobic Respiration and Denitrification Rates in a Petroleum-Contaminated Aquifer

by M.H. Schroth, J.D. Istock, G.T. Conner, M.R. Hyman, R. Haggerty, and K.T. O’Reilly

Abstract
An extensive series of single-well, push-pull tests was performed to quantify horizontal and vertical spatial variability in aerobic respiration and denitrification rates in a petroleum-contaminated aquifer. The results indicated rapid consumption of injected O₂ or NO₃⁻ in shallow and deep test intervals across a large portion of the site. Computed first-order rate coefficients for aerobic respiration ranged from 0.15 to 1.69 h⁻¹ in the shallow test interval, and from 0.08 to 0.83 h⁻¹ in the deep test interval. The largest aerobic respiration rates occurred on the upgradient edge of the contaminant plume where concentrations of petroleum hydrocarbons and dissolved O₂ were relatively high. Computed first-order rate coefficients for denitrification ranged from 0.09 to 0.42 h⁻¹ in the shallow test interval, and from 0.11 to 0.28 h⁻¹ in the deep test interval. The largest denitrification rates occurred on the downgradient edge of the plume where hydrocarbon concentrations were relatively high but dissolved oxygen concentrations were small. The rates reported here represent maximal rates of aerobic respiration and denitrification, as supported by high concentrations of electron acceptors in the injected test solutions. Production of dissolved CO₂ during aerobic respiration and denitrification tests provided evidence that O₂ and NO₃⁻ consumption was largely due to microbial activity. Additional evidence for microbial NO₃⁻ consumption was provided by reduced rates of NO₃⁻ consumption when dissolved O₂ was injected with NO₃⁻, and by increased N₂O production when C₂H₂ was injected with NO₃⁻.

Introduction
Quantitative information on subsurface microbial metabolic activities is needed (1) to improve our understanding of microbiological processes in pristine and contaminated environments; (2) to predict rates of natural microbial attenuation of contaminants; and (3) to evaluate the effectiveness of microbial-based treatment technologies. Microorganisms display a broad metabolic diversity but share the ability to obtain energy for cell production and maintenance by facilitating oxidation-reduction reactions. A wide variety of compounds may serve as electron donors and these may be either organic or inorganic; substantially fewer compounds may serve as electron acceptors and these are most commonly inorganic (Brock and Madigan 1991). It is often possible to use observed changes in electron acceptor concentrations as quantitative indicators of microbial activity (e.g., Thorstenson et al. 1979). This concept is especially applicable in contaminated environments, where microbial activity is typically limited by the availability of suitable electron acceptors (McAllister and Chiang 1994).

Aerobic respiration, in which O₂ is the electron acceptor, is the most energetically favorable form of respiration (Jorgensen 1989). In the absence of O₂, a variety of anaerobic respiration and fermentation processes may occur (Ghiorse and Wilson 1988). The most energetically favorable anaerobic respiration process is denitrification, wherein the oxidation of inorganic or organic carbon is coupled to the reduction of NO₃⁻ (Brock and Madigan 1991).

In contaminated environments, we expect microbial metabolic activity to vary both spatially and temporally in response to variations in types and concentrations of available electron donors and/or electron acceptors (Smith et al. 1991). For example, Fedele et al. (1990) reported rapid decreases in microbial biomass and activity with depth in an aquifer contaminated by infiltrating waste water. Ronen et al. (1987) and Cozzarelli et al. (1988) reported high rates of aerobic respiration near the water table, while rates of anaerobic activity increased with increasing depth below the water table. Harvey et al. (1984) and Chiang et al. (1989) reported steep horizontal gradients in dissolved O₂ across the perimeter of contaminant plumes and attributed this to the occurrence of high rates of aerobic respiration in these locations.

A wide variety of laboratory-based methods have been used to estimate subsurface microbial metabolic activities including microcosms (Wilson et al. 1983), direct observation (Harvey et al. 1984), biochemical markers (Balikwill et al. 1988), molecular methods (Bowman et al. 1993), analysis of geochemistry data (Lovley and Goodwin 1988), and ecological modeling (Kelly et al. 1983).

924

925

Vol. 36, No. 6—GROUND WATER—November–December 1998
available to help establish spatial relationships between microbial metabolic activities and concentrations of various electron donors and acceptors in contaminated environments.

The objectives of this study were to quantify the spatial variability in potential rates of aerobic respiration and denitrification in a petroleum-contaminated aquifer; and to examine the spatial relationships between these rates and concentrations of potential electron donors, electron acceptors, and metabolic products at the site. Aerobic respiration and denitrification were selected because they play an important role in both intrinsic bioremediation and enhanced bioremediation strategies (Madsen 1991). Rates were measured in situ using the recently developed single-well, push-pull test method (Istok et al. 1997). Because the microbial activities we determined are based on measured rates of consumption of injected O_2 or NO_3^-, an important component of this study was to determine whether the observed consumption rates were attributable to microbial activity or to abiotic processes.

Methods

Site Description

The study area was a former gasoline/diesel fuel distribution terminal in Newberg, Oregon. A portion of the site was contaminated with petroleum hydrocarbons from leaking storage tanks and surface spills which occurred between the 1930s and 1991. The storage tanks were removed between 1991 and 1993 but no other remediation actions were taken. Ten monitoring wells were installed between 1991 and 1995 (Figure 1). Wells were constructed of 5.1 cm I.D. polyvinyl chloride casing and screen and were installed inside an 11 or 15 cm hole created with a hollow stem auger to a depth of between 5 and 7 m below ground surface. The wells were screened across the entire saturated thickness of the aquifer. The annular space of each well was filled with clean sand, except near the surface, where bentonite and concrete were used to seal the annular space. Boring logs indicate that the aquifer consists primarily of lacustrine deposits of clayey silt and silt, with occasional traces of fine sand, gravel, and peat. The aquifer is unconfined and water table depths ranged from 0.59 to 1.24 m (Figure 1). Regional ground water flow is generally from north to south; the hydraulic gradient is approximately 0.01 m/m, and the average ground water (Darcy) velocity is approximately 10^{-3} m/d.

Push-Pull Test Procedures

Two vertically separated inflatable rubber packers were used to isolate 1 m long test intervals within the screened portion of the wells (Figure 2). Tests were performed at two depths in each well, designated as “shallow” and “deep.” For the shallow tests, a 10 cm long injector was placed approximately 1.5 m below the water table; for the deep tests, the injector was placed approximately 4.5 m below the water table.

Prior to conducting push-pull tests at the site, ground water samples were collected from all test intervals and analyzed to determine initial background concentrations of total organic carbon (TOC), total petroleum hydrocarbons gasoline (C_6 through C_{10}, TPH-G), benzene, toluene, ethyl benzene, and xylene isomers (BTEX), dissolved O_2, NO_3^-, NO_2^-, SO_4^{2-}, $Fe(II)$, dissolved CO_2, and pH. All test intervals were purged before collecting ground water samples by pumping at least 30 L of ground water (approximately three times the estimated volume of water within the well casing and sand pack between the two packers) using a peristaltic pump (Barnant Model E1188, Cole-Parmer, Niles, Illinois).
Test and clean water solutions were prepared from tap water in 50 L plastic carboys (Figure 2). For aerobic respiration tests, the test solution contained 100 mg/L Br\(^-\), prepared from KBr; and a dissolved O\(_2\) concentration between 33 and 47 mg/L, prepared by bubbling O\(_2\) gas through the test solution prior to injection. For denitrification tests, the test solution contained 100 mg/L Br\(^-\), a dissolved O\(_2\) concentration < 0.5 mg/L, prepared by bubbling N\(_2\) gas through the test solution prior to injection, and 25 mg/L NO\(_3^-\)-N prepared from NaN\(_3\). The clean water flushing solution contained no Br\(^-\) and had a dissolved O\(_2\) concentration < 0.5 mg/L.

Before each test, the test interval was purged and ground water was analyzed for Br\(^-\), dissolved CO\(_2\), and dissolved O\(_2\) or NO\(_3^-\). Then ~ 30 L of test solution were injected followed by the injection of 10 L of clean water (both at ~ 1 L/min) to flush the test solution from the well casing and sand pack into the aquifer. The volume of test solution and clean water combined represents the volume of water required to penetrate into the aquifer a radial distance of ~ 15 cm beyond the outer edge of the sand pack (Istok et al. 1997).

The extraction phase began immediately after the end of the injection phase using a peristaltic pump. The pump effluent was first passed through a flow-through cell which provided temperature stability for the O\(_2\) electrode used to measure dissolved O\(_2\), and then collected in volumetric containers. Samples for Br\(^-\), dissolved CO\(_2\), and dissolved O\(_2\) or NO\(_3^-\) were collected every 2 L during the extraction phase of the tests. Extraction phase pumping (at ~ 1 L/min) continued until Br\(^-\) concentrations were reduced to background levels, which typically required an extraction volume of between 50 and 60 L.

Verification of Microbial Metabolic Activity

Following the completion of all tests described in the previous section, a limited number of additional push-pull tests were performed in selected test sites and wells in an attempt to verify that observed O\(_2\) and NO\(_3^-\) consumption was due to microbial activity and not abiological chemical reactions (e.g., O\(_2\) or NO\(_3^-\) reduction by Fe(II)). In one type of test, a portion of the aquifer was treated to reduce numbers of living organisms by injecting approximately 30 L of a 2% solution of sodium hypochlorite. After allowing the solution to react with the aquifer for approximately 48 hours, an aerobic respiration test was performed in the treated zone using the identical methods described previously. In another type of test, denitrification tests were performed using test solutions that contained between 43 and 46 mg/L dissolved O\(_2\) (in addition to Br\(^-\) and NO\(_3^-\)) to inhibit the activity of anaerobic denitrifying bacteria. In yet another type of test, denitrification tests were performed using solutions containing Br\(^-\) and NO\(_3^-\) that were saturated with a mixture of 10% acetylene (C\(_2\)H\(_2\)) gas in N\(_2\) to block N\(_2\) gas production from N\(_2\)O. This is an application of the "acetylene block" technique that has been widely used to verify denitrifying activity in microcosm studies (e.g., Bulderston et al. 1976; Yoshinari and Knowles 1976). During the extraction phase of these tests, water samples were collected for C\(_2\)H\(_2\) and nitrous oxide (N\(_2\)O) analyses by injecting 10 mL of water into 40 mL glass serum bottles capped with rubber septa.

Analytical Methods

Analyses for nonvolatile TOC, hereafter referred to as TOC, were performed using a TOC analyzer (Model Dohrmann DC-190, Rosemount Analytical, Santa Clara, California) by separately measuring total carbon (TC) and inorganic carbon (IC) to obtain TOC as the difference between TC and IC (method 5310; APHA et al. 1992). Samples were analyzed for TPH-G using OR-TPH-G (ODEQ 1990) and for BTEX using EPA method 8020 (U.S. EPA 1986).

Bromide concentrations were measured using a combination glass body Br\(^-\) electrode (Model 27502-05, Cole Parmer Instrument Co., Niles, Illinois) and ion-specific meter (Accumet Model 25, Denver Instrument Co., Arvada, Colorado). Dissolved O\(_2\) concentrations were determined with either a colorimetric assay based on Rhodamine D reduction (CHEMetrics Inc., Calverton, Virginia) for O\(_2\) concentrations ≤ 1 mg/L, or with a Clark-type polarographic probe and meter (Models 5531 and 5300, Yellow Springs Instrument Co., Yellow Springs, Ohio) for O\(_2\) concentrations >1 mg/L. Nitrate concentrations were determined by a colorimetric assay based on cadmium reduction and organic dye formation (CHEMetrics Inc., and HACH Co., Loveland, Colorado). Sulfate concentrations were determined by reacting BaCl\(_2\) with the sample to form a BaSO\(_4\) precipitate and measuring the resulting turbidity with a colorimeter (Model DR/700, HACH Co.). A colorimetric analysis based on the use of an acidic, buffered solution of 1,10-phenanthroline (CHEMetrics Inc.) was used to measure Fe(II) concentrations.

Dissolved CO\(_2\) concentrations were determined by a titration/colorimetric assay (CHEMetrics Inc.), in which a caustic titrant was titrated with sample until the phenolphthalein end point (pH ~ 8.3) was reached (method 4500-C\(_2\)O, APHA et al. 1992). This method was employed despite the presence of Fe(II) in concentrations > 1.0 mg/L. Noting that no precipitates formed during the assays, the magnitude of Fe(II) interference on measured CO\(_2\) concentrations was estimated from the reaction: Fe(II) + H\(_2\)O ⇔ FeOH\(^+\) + H\(^+\); log K = -9.5 (at 25°C; Stumm and Morgan 1981). At pH ~ 8.3, only ~ 5% of all Fe(II) in solution is in the form of FeOH\(^+\). Given the concentration ratios of Fe(II)/CO\(_2\) at our site (Table 1), we found that the largest relative error in measured CO\(_2\) concentrations due to Fe(II) interference is ~ 1%, which we considered insignificant.

Ground water pH was measured using an Oakton Meter (Fisher Scientific, Pittsburgh, Pennsylvania). Dissolved C\(_2\)H\(_2\) concentrations were analyzed using a gas chromatograph (Model 3700 Varian Corp., Walnut Creek, California) equipped with a flame ionization detector. Dissolved N\(_2\)O concentrations were analyzed using the same gas chromatograph equipped with an electron capture detector and a 1.5 m stainless steel column containing Porapak R. The column and detector temperatures were 35 and 320°C, respectively, and the carrier gas was 5% CH\(_4\) in Ar.

Data Analysis

The total masses of injected Br\(^-\) and dissolved O\(_2\) or NO\(_3^-\) were computed for each test from the known solute concentrations and measured volumes of injected test solutions. Similarly, the total masses of extracted Br\(^-\) and dissolved O\(_2\) or NO\(_3^-\) were computed by integrating measured solute concentrations and extraction volumes during the extraction phase.

Rate coefficients of injected O\(_2\) or NO\(_3^-\) consumption were determined using the method of Haggerty et al. (1998), which is based on an analysis of injected tracer and reactive solute transport in the alternating diverging/converging radial flow field surrounding a monitoring well during a push-pull test. Their approach assumes that an injected reactive solute is transformed within the aquifer according to the "first-order" type reaction \(\partial C / \partial t = - k C\)
where $C_r(t)$ is the reactive solute concentration at time t, C^0_r is the reactive solute concentration at time $t = 0$, and k [T⁻¹] is the rate coefficient. Their approach also assumes that the injected test solution is well mixed with ground water within the aquifer, that the advection-dispersion transport properties of tracer and reactant are identical, and that changes in saturated thickness due to injection and extraction pumping are negligible. With these assumptions, the breakthrough curve for a reactive solute $C_r(t^*)$ is given by

$$C_r(t^*) = \frac{C^0_r(t^* e^{-k t^*} - e^{-kt_{inj}})}{k t_{inj}}$$ \hspace{1cm} (2)$$

where t^* is the time elapsed since the end of the test solution injection, $C_r(t^*)$ is the breakthrough curve for a co-injected tracer, and t_{inj} is the duration of the test solution injection. Equation 2 can be rewritten:

$$\ln \left(\frac{C_r(t^*)}{C_r(t^*)} \right) = \ln \left(\frac{1 - e^{-k t_{inj}}}{k t_{inj}} \right) - k t^*$$ \hspace{1cm} (3)$$

so that a plot of $\ln (C_r/C^0_r)$ versus t^* generates a straight line with
a slope $-k$ and intercept $\ln \left(\frac{(1 - e^{-k \cdot t_{inj}})}{k \cdot t_{inj}} \right)$. Haggerty et al. (1998) showed that fitting Equation 3 to push-pull test breakthrough curves gives accurate estimates for k for a wide range of aquifer properties and test conditions including both homogeneous and heterogeneous patterns of hydraulic conductivity.

Since the determination of k is based on the evaluation of ratios of C_i/C_{w} as a function of t^* (Equation 3), no complete tracer mass recovery is required during push-pull tests to obtain accurate estimates of k. Note that this differs from the frequently used method of moments to determine k (e.g., Istok et al. 1997), in which a high tracer mass recovery is required to obtain accurate estimates of k. A nonlinear least-squares routine was used to fit Equation 3 (both slope and intercept) to experimental breakthrough data to obtain estimates for first-order rate coefficients for aerobic respiration and denitrification for each test interval and well. For this purpose, C_i in Equation 3 is the relative concentration (i.e., the measured concentration divided by the known concentration in the injected test solution) of either O_2 (aerobic respiration tests) or NO_3^- (denitrification tests) and C_{w} is the relative concentration of Br^- (both types of test). Additional details and example calculations are in Haggerty et al. (1998).

To determine the 95% confidence intervals for the estimated k, we assumed (1) that changes in $\ln (C_i/C_{w})$ are approximately linear with respect to changes in k in Equation 3 in the region of the parameter estimate; and (2) the errors in $\ln (C_i/C_{w})$ are normally distributed and have the same distribution through time. For this case, a first-order estimate of the parameter covariance matrix, V_p, is given by (after Bard 1974; Draper and Smith 1981):

$$V_p = \sigma^2 (J^T J)^{-1}$$ \hspace{1cm} (4)

where $\sigma^2 [\cdot]$ is the variance of the errors in $\ln (C_i/C_{w})$ and J is the Jacobian matrix. Since we estimate only one parameter (i.e., k), J is simply the vector of the first derivative of Equation 3 with respect to k, evaluated at all values of t^* where measurements are made. Consequently, V_p contains only a single term, which is the variance of the estimated k, σ_k^2. The derivative of Equation 3 with respect to k is

$$\frac{d \ln(C_i/C_{w})}{dk} = \frac{1 - e^{k \cdot t_{inj}} + k \cdot t_{inj}}{k(e^{k \cdot t_{inj}} - 1) - t^*}$$ \hspace{1cm} (5)

The variance of the estimated k can now be evaluated using

$$\sigma_k^2 = \sigma^2 \left(\sum_{i=1}^{n} \left(\frac{1 - e^{k \cdot t_{inj}} + k \cdot t_{inj}}{k(e^{k \cdot t_{inj}} - 1) - t^*} \right)^2 \right)^{-1}$$ \hspace{1cm} (6)

with $i = 1$ to n, where n is the total number of observations. The 95% confidence interval for k is now given by $k \pm 2\sigma_k$.

Results

Background Concentrations

Large measured concentrations of TOC, TPH-G, and BTEX in ground water suggest that substantial quantities of potential electron donors are present, especially in the heavily contaminated interior of the site (Table 1). The total supply of organic carbon at this site is probably larger than the concentrations in Table 1, because hydrocarbons sorbed to aquifer solids or present as a separate liquid phase are not included in the ground water analyses. It is highly probable that most TOC at the site consists of petroleum hydrocarbons and their breakdown products as concentrations of natural dissolved organic carbon rarely exceed 2 mg/L in pristine environments (Thurman 1985).

Concentrations of TOC, TPH-G, and BTEX were highly spatially variable, as indicated by large coefficients of variation (CV) with regard to the respective mean values (Table 1). Note that nondetects were presumed to have a value of zero for all statistical analyses. The largest concentrations for TOC, TPH-G, and BTEX
were observed at MW-1, suggesting that most of the fuel was spilled there, while concentrations decreased rapidly with increasing distance from MW-1 (Figure 3a and b). Concentrations of TOC, TPH-G, and BTEX were generally larger in the shallow test interval than in the deep test interval. Concentrations of TPH-G were significantly smaller than those for TOC, suggesting that much of the dissolved organic carbon at the site may consist of higher molecular weight (i.e., >C_{10}) components of diesel fuel. Although concentrations of individual BTEX components are not shown, BTEX consisted primarily of benzene (Figure 3c and d). For example, the BTEX concentration in the shallow test interval at MW-1 was 1725 μg/L and the benzene concentration was 1700 μg/L.

Dissolved O_{2} concentrations in ground water entering the site from the north (e.g., at MW-3) were between 2 and 3 mg/L, which is substantially smaller than the air-saturated value (10.2 mg/L) at the site ground water temperature of 15°C. Dissolved O_{2} concentrations decreased to ≤ 0.6 mg/L near the center of the site and then increased to 4 mg/L further downgradient (Figure 4). Less variability was observed for SO_{4}^{2-} concentrations at the site, which generally increased downgradient in both shallow and deep test intervals (Table 1). Concentrations of NO_{3}^{-} and NO_{2}^{-} were < 0.1 mg/L in both test intervals in all wells.

Concentrations of Fe(II) were largest near MW-1 (shallow test interval) and MW-4 (deep test interval) and decreased with
<table>
<thead>
<tr>
<th>Monitoring Well</th>
<th>Test Interval</th>
<th>TOC (mg/L)</th>
<th>TPH-G (mg/L)</th>
<th>BTEX (µg/L)</th>
<th>O₂ (mg/L)</th>
<th>SO₄²⁻ (mg/L)</th>
<th>Fe(II) (mg/L)</th>
<th>CO₂ (mg/L)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-1</td>
<td>shallow</td>
<td>53.3</td>
<td>4.6</td>
<td>1725.2</td>
<td>0.6</td>
<td>7.3</td>
<td>25</td>
<td>130</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>73.0</td>
<td>3.0</td>
<td>903.1</td>
<td>0.5</td>
<td>6.2</td>
<td>10</td>
<td>115</td>
<td>6.4</td>
</tr>
<tr>
<td>MW-2</td>
<td>shallow</td>
<td>16.6</td>
<td>1.0</td>
<td>63.8</td>
<td>0.3</td>
<td>8.5</td>
<td><5</td>
<td>125</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>17.0</td>
<td>1.0</td>
<td>179.2</td>
<td>2.0</td>
<td>7.1</td>
<td><5</td>
<td>130</td>
<td>6.5</td>
</tr>
<tr>
<td>MW-3</td>
<td>shallow</td>
<td>14.5</td>
<td><0.1</td>
<td>4.5</td>
<td>2.6</td>
<td>7.7</td>
<td>10</td>
<td>125</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>12.0</td>
<td><0.1</td>
<td>2.5</td>
<td>2.5</td>
<td>7.4</td>
<td>10</td>
<td>135</td>
<td>6.4</td>
</tr>
<tr>
<td>MW-4</td>
<td>shallow</td>
<td>16.2</td>
<td>0.1</td>
<td>8.6</td>
<td>0.5</td>
<td>7.2</td>
<td>13</td>
<td>109</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>11.2</td>
<td>0.3</td>
<td>14.9</td>
<td>0.7</td>
<td>7.5</td>
<td>20</td>
<td>100</td>
<td>6.6</td>
</tr>
<tr>
<td>MW-5</td>
<td>shallow</td>
<td>11.4</td>
<td>0.3</td>
<td>36.5</td>
<td><0.01</td>
<td>6.8</td>
<td>10</td>
<td>43</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>10.0</td>
<td>0.6</td>
<td>63.9</td>
<td><0.01</td>
<td>9.4</td>
<td>5</td>
<td>40</td>
<td>6.5</td>
</tr>
<tr>
<td>MW-6</td>
<td>shallow</td>
<td>17.1</td>
<td><0.1</td>
<td>23.6</td>
<td>2.8</td>
<td>9.3</td>
<td>5</td>
<td>85</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>17.4</td>
<td>0.6</td>
<td>48.0</td>
<td>1.8</td>
<td>9.1</td>
<td>15</td>
<td>117</td>
<td>6.6</td>
</tr>
<tr>
<td>MW-7</td>
<td>shallow</td>
<td>20.7</td>
<td>0.6</td>
<td>152.1</td>
<td>0.05</td>
<td>10.6</td>
<td>12</td>
<td>129</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>2.6</td>
<td>0.6</td>
<td>103.3</td>
<td>0.02</td>
<td>9.3</td>
<td>15</td>
<td>114</td>
<td>6.6</td>
</tr>
<tr>
<td>MW-8</td>
<td>shallow</td>
<td><0.1</td>
<td><0.1</td>
<td>1.3</td>
<td>2.7</td>
<td>8.1</td>
<td>5</td>
<td>47</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>6.3</td>
<td><0.1</td>
<td>1.3</td>
<td>2.3</td>
<td>6.2</td>
<td><5</td>
<td>65</td>
<td>6.6</td>
</tr>
<tr>
<td>MW-9</td>
<td>shallow</td>
<td>1.0</td>
<td><0.1</td>
<td>1.9</td>
<td>4.0</td>
<td>8.3</td>
<td><5</td>
<td>69</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td><0.1</td>
<td><0.1</td>
<td>4.2</td>
<td>3.6</td>
<td>10.8</td>
<td><5</td>
<td>85</td>
<td>6.7</td>
</tr>
<tr>
<td>MW-10</td>
<td>shallow</td>
<td><0.1</td>
<td><0.1</td>
<td>5.0</td>
<td>3.2</td>
<td>14.5</td>
<td>5</td>
<td>48</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td><0.1</td>
<td><0.1</td>
<td>6.5</td>
<td>4.0</td>
<td>17.2</td>
<td><5</td>
<td>28</td>
<td>7.4</td>
</tr>
</tbody>
</table>

	mean	15.1	0.67	202.3	1.68	8.83	8.5	91.0	6.57
	CV(%)	103	214	266	91	26	88	41	4
	mean	15.0	0.58	132.7	1.74	9.03	7.5	92.9	6.63
	CV(%)	143	156	209	82	36	101	40	4

increasing distance from these wells (Figure 5a and b). Dissolved CO₂ concentrations were largest near the interior of the site and generally decreased downgradient (Figure 5c and d). Values of pH showed little variation across the site (Table 1).

Aerobic Respiration Tests

During aerobic respiration, O₂ is reduced to water during the concurrent oxidation of organic carbon to CO₂:

\[
[\text{CH}_2\text{O}] + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O}
\]

(7)

where [CH₂O] is a generic formula for a source of organic carbon (note that this reaction is used for illustration only). Thus indirect evidence for aerobic respiration at the site is given by reduced dissolved O₂ concentrations and elevated dissolved CO₂ concentrations in some locations (e.g., in the shallow test intervals in MW-2 and MW-5 and in the deep test intervals at MW-5 and MW 7; Table 1). However, aerobic respiration may also be occurring in locations where dissolved O₂ and organic carbon concentrations are both elevated (e.g., near MW-4).

The extracted Br⁻ mass for all aerobic respiration tests ranged from 27 to 100% of the injected Br⁻ mass, with a mean of 77% and a CV of 25%. The extracted dissolved O₂ mass ranged from 20 to 66% of the injected dissolved O₂ mass, with a mean of 42% and a CV of 31%. The residence time for the test solutions in the aquifer ranged from 64 to 140 minutes, with a mean of 96 minutes and a CV of 23 minutes. In this context, the residence time is defined as the time interval from the instant when 50% of the test solution is injected into the aquifer to the instant when 50% of the injected Br⁻ mass is extracted. It was assumed that the transport properties of Br⁻ and dissolved O₂ are identical in the aquifer so that the mass of O₂ consumed is proportional to the area between the Br⁻ and dissolved O₂ breakthrough curves (note that this assumption was demonstrated to be valid in similar push-pull tests performed by Isto et al. [1997]). Thus, if no O₂ consumption occurred during the test, the two curves would be identical. However, dissolved O₂ breakthrough curves had generally lower peak concentrations and substantially smaller areas than Br⁻ breakthrough curves. This is illustrated by the breakthrough curve for the test in the deep interval of MW-2 (Figure 6a). In Figure 6a, measured Br⁻ and dissolved O₂ concentrations are plotted as "relative concentrations," C/C₀, where C is the measured concentration of either solute and C₀ is the known concentration of the same solute in the injected test solution. The x-axis shows time as elapsed time since the end of the test solution injection, t (see Equation 2). In this test, only 39% of the injected dissolved O₂ mass was extracted (Figure 6a), compared to 87% of the injected Br⁻ mass, indicating substantial O₂ consumption (~55%) during the test. Here, O₂ or NO₃⁻ consumption is calculated as [1 - (extracted O₂ or NO₃⁻ mass fraction / extracted Br⁻ mass fraction)] × 100%. Dissolved O₂ consumption displayed substantial spatial variability with values ranging from ~0% in the deep test interval in MW-8 to ~73% in the shallow test interval in MW-4 (data not shown).

First-order rate coefficients for aerobic respiration were computed by fitting Equation 3 to experimental breakthrough data (Table 2). For example, for the test in the deep interval of MW-2, k was 0.65 h⁻¹ and 2O₂ was 0.09 h⁻¹ (Figure 6b). Note that the best fit line in Figure 6b is intentionally extended to the y-axis intercept.
Figure 6. (a) Example breakthrough curves for aerobic respiration test performed in the deep interval of MW-2 ($t_{eq} = 42.6$ minutes). The dashed line represents computed CO$_2$ concentrations based on the dilution of site ground water by the injection solution. (b) Associated regression plot for rate coefficient determination, obtained by fitting Equation 3 to the experimental data using a nonlinear least-squares routine.

<table>
<thead>
<tr>
<th>Monitoring Well</th>
<th>Test Interval</th>
<th>Aerobic Respiration</th>
<th>Denitrification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>k [h$^{-1}$]</td>
<td>$2\sigma_k$ [h$^{-1}$]</td>
</tr>
<tr>
<td>MW-1</td>
<td>shallow</td>
<td>0.22</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td>MW-2</td>
<td>shallow</td>
<td>0.33</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.65</td>
<td>0.09</td>
</tr>
<tr>
<td>MW-3</td>
<td>shallow</td>
<td>0.42</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.41</td>
<td>0.04</td>
</tr>
<tr>
<td>MW-4</td>
<td>shallow</td>
<td>1.69</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.75</td>
<td>0.07</td>
</tr>
<tr>
<td>MW-5</td>
<td>shallow</td>
<td>0.37</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.83</td>
<td>0.16</td>
</tr>
<tr>
<td>MW-6</td>
<td>shallow</td>
<td>0.49</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.55</td>
<td>0.06</td>
</tr>
<tr>
<td>MW-7</td>
<td>shallow</td>
<td>0.82</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.63</td>
<td>0.04</td>
</tr>
<tr>
<td>MW-8</td>
<td>shallow</td>
<td>0.15</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>MW-9</td>
<td>shallow</td>
<td>0.24</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.52</td>
<td>0.05</td>
</tr>
<tr>
<td>MW-10</td>
<td>shallow</td>
<td>0.35</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>deep</td>
<td>0.44</td>
<td>0.03</td>
</tr>
</tbody>
</table>

| Mean | Shallow | 0.51 [h$^{-1}$] | 0.07 [h$^{-1}$] | 0.23 [h$^{-1}$] | 0.03 [h$^{-1}$] |
| | Deep | 0.52 [h$^{-1}$] | 0.06 [h$^{-1}$] | 0.22 [h$^{-1}$] | 0.04 [h$^{-1}$] |

Figure 7. Spatial variability in first-order reaction rate coefficients for aerobic respiration in (a) shallow and (b) deep test intervals.
since both slope and y-axis intercept were fitted in this approach (Equation 3). While temporal trends are visible in the experimental data (Figure 6b), fitting both slope and intercept improves the robustness of this method (Haggerty et al. 1998), leading to 2σk values that in most cases are < 20% of the estimated values of k (Table 2). Alternate kinetic models (zero- and nth order) were fit to the experimental data by Conner (1997). However, employing these models did not significantly reduce the magnitude of the respective 2σk values. Aerobic respiration rates in the shallow test interval were highly spatially variable; the largest rates were obtained for tests conducted in MW-4 and rates decreased sharply in tests conducted further downgradient (Figure 7a). Aerobic respiration rates were much less spatially variable in the deep test interval (Figure 7b).

Dissolved CO₂ concentrations increased during the extraction phase of aerobic respiration tests (Figure 6a), which may be attributed in part to microbial CO₂ production (Equation 7). However, the interpretation of dissolved CO₂ concentrations during extraction phase pumping is complicated by the presence of large background dissolved CO₂ concentrations in site ground water (Table 1). This creates the possibility that increasing dissolved CO₂ concentrations during extraction phase pumping are not due to microbial CO₂ production but are simply due to the decreasing dilution of site ground water by the injected test and clean water flushing solutions (which contained no dissolved CO₂). For example, in Figure 6a, dissolved CO₂ concentrations increased during extraction phase pumping and approached the CO₂ background concentration of 100 mg/L, as measured at the conclusion of the pre-test purging for this test. Note that this background concentration differs from the initial background data presented in Table 1, due to temporal variability in subsurface conditions caused primarily by recharge. Using the Br⁻ breakthrough curve as a measure of the degree of dilution of site ground water by injected solutions, CO₂ concentrations were computed based on dilution of site ground water alone (dashed line, Figure 6a). Measured CO₂ concentrations were significantly higher than computed CO₂ concentrations during a large portion of the extraction phase, supporting the conclusion that substantial CO₂ production occurred during this test. Similar results were obtained for the other aerobic respiration tests (data not shown).

Denitrification Tests

During denitrification, NO₃⁻ is reduced to N₂ gas in a series of steps with the oxidation of organic carbon to CO₂:

\[
\begin{align*}
[\text{CH}_2\text{O}] + \text{NO}_3^- & \rightarrow \text{NO}_2^- + \text{CO}_2 + \text{H}_2\text{O} \quad (8a) \\
[\text{CH}_2\text{O}] + \text{NO}_2^- & \rightarrow \text{NO} + \text{CO}_2 + \text{H}_2\text{O} \quad (8b) \\
[\text{CH}_2\text{O}] + \text{NO} & \rightarrow \text{N}_2\text{O} + \text{CO}_2 + \text{H}_2\text{O} \quad (8c) \\
[\text{CH}_2\text{O}] + \text{N}_2\text{O} & \rightarrow \text{N}_2 + \text{CO}_2 + \text{H}_2\text{O} \quad (8d)
\end{align*}
\]

where again [CH₂O] represents a generic carbon source. Thus, indirect evidence for denitrification would be given by reduced NO₃⁻ concentrations, elevated NO₂⁻, NO, N₂O, or N₂ concentrations, and elevated dissolved CO₂ concentrations. However, at this site NO₃⁻ and NO₂⁻ background concentrations were uniformly below detection (< 0.1 mg/L) and provide no useful information on locations where denitrifying activity may be occurring.

The extracted Br⁻ mass for all denitrification tests ranged from 68 to 100% of the injected Br⁻ mass, with a mean of 86% and a CV of 13%. The extracted NO₃⁻ mass ranged from 51 to 81% of the injected NO₃⁻ mass, with a mean of 64% and a CV of 14%. The residence time for the test solutions in the aquifer ranged from 77 to 143 minutes, with a mean of 97 minutes and a CV of 18 minutes. It was assumed that the transport properties of Br⁻ and NO₃⁻ were identical so that the magnitude of NO₃⁻ consumed is proportional to the area between the Br⁻ and NO₃⁻ breakthrough curves. In general, NO₃⁻ breakthrough curves had lower peak concentrations and substantially smaller areas than Br⁻ breakthrough curves. This is illustrated by the breakthrough curve for the test in the shallow interval of MW-2 (Figure 8a). In this test, only 52% of the injected NO₃⁻ mass was extracted, compared to 83% for Br⁻, indicating substantial NO₃⁻ consumption (~ 37%) during the test. Nitrate consumption displayed substantial spatial variability with values ranging from ~ 3% in the shallow test interval in MW-5 to ~ 36% in the shallow test interval in MW-7 (data not shown). Increasing concentrations of dissolved CO₂ were measured during the extraction phase of denitrification tests (Figure 8a; CO₂ background concen-
Figure 9. Spatial variability in first-order reaction rate coefficients for denitrification in (a) shallow and (b) deep test intervals.

Figure 10. Breakthrough curves for additional denitrification tests in MW-3 with (a) dissolved O$_2$ and (b) dissolved C$_3$H$_2$ in test solution.

...tration was 60 mg/L, measured at the conclusion of the pre-test purging, which is attributed in part to microbial production of CO$_2$ (Equation 8), as discussed in the previous section.

First-order rate coefficients for denitrification were computed by fitting Equation 3 to experimental breakthrough data (Table 2). For example, for the test in the shallow interval of MW-2, k was 0.30 h$^{-1}$ and $2\sigma_k$ was 0.04 h$^{-1}$ (Figure 8b). Denitrification rates were highly spatially variable; the largest rates were computed for tests conducted in MW-7 (Figure 9).

Verification of Microbial Metabolic Activity

Substantial consumption of injected dissolved O$_2$ was observed in the aerobic respiration test conducted in the deep test interval of MW-3 prior to the treatment of this portion of the aquifer with sodium hypochlorite, and the computed rate coefficient was 0.41 h$^{-1}$ with $2\sigma_k$ of 0.04 h$^{-1}$ (Table 2). When the aerobic respiration test was repeated at the same location after the sodium hypochlorite treatment, the extracted O$_2$ mass was almost identical to the extracted Br$^-$ mass, and the computed rate coefficient decreased to essentially zero. However, breakthrough curves for Br$^-$ were radically different in tests conducted before and after sodium hypochlorite treatment (data not shown), which suggests that the sodium hypochlorite may have caused additional changes in aquifer properties.

Substantial consumption of injected NO$_3^-$ (~ 19%) was observed in the denitrification test conducted in the deep test interval of MW-3, and the computed rate coefficient was 0.24 h$^{-1}$ with $2\sigma_k$ of 0.04 h$^{-1}$ (Table 2). However, when dissolved O$_2$ was included in the injected test solution to inhibit anaerobic denitrifying activity, NO$_3^-$ consumption decreased to ~ 11% and the computed rate coefficient for denitrification decreased to 0.12 h$^{-1}$ with $2\sigma_k$ of 0.02 h$^{-1}$ (Figure 10a). The rate coefficient for aerobic respiration in this test was 0.32 h$^{-1}$ with $2\sigma_k$ of 0.08 h$^{-1}$.

Additional tests were conducted using test solutions containing dissolved C$_3$H$_2$. The presence of C$_3$H$_2$ inhibits nitrous oxide reductase, the terminal enzyme of the denitrification pathway, thus blocking the conversion of N$_2$O to N$_2$ (Equation 8d), and increasing concentrations of dissolved N$_2$O were observed during the
extraction phase in these tests. This is illustrated for the test in the deep interval of MW-3 (Figure 10b). The denitrification rate coefficient in this test was 0.28 h⁻¹ with 2σ of 0.05 h⁻¹. Dissolved C₃H₂ was apparently transported conservatively during these tests as its breakthrough curves were virtually identical to the breakthrough curves for Br⁻ (data not shown).

Discussion

In a previous study, we demonstrated that the push-pull test method is useful for quantifying a variety of subsurface microbial activities in situ (Istok et al. 1997). In this study we have demonstrated that the push-pull test can also be used to quantify site-scale spatial variability in microbial activities. This is illustrated by reasonably small 95% confidence intervals for estimated rate coefficients across a petroleum-contaminated site (Table 2). Both studies indicated good reproducibility of test results. In this study, rate coefficients of aerobic respiration and denitrification determined from additional push-pull tests in selected locations (aimed at verifying microbially mediated electron acceptor consumption; see previous section) agreed well with rate coefficients determined from previous push-pull tests at the same locations (Table 2).

In general, rates of microbial activities reported here are considerably higher than those reported in other recent studies. For example, previous estimates of first-order aerobic respiration rate coefficients in petroleum-contaminated aquifers have ranged from 0.4 × 10⁻³ h⁻¹ (Chiang et al. 1989) to 0.02 h⁻¹ (Nielsen et al. 1996), whereas estimates at this site ranged from 0.08 to 1.69 h⁻¹ (Table 2). Similarly, the denitrification rate coefficients we determined were up to two orders of magnitude larger than several recently determined rate coefficients of denitrification (e.g., Starr and Gillham 1989; Reinhard et al. 1997). Obviously, many factors such as the specific types and concentrations of electron donors could contribute to these differences. However, it is important to note that our approach assumed that the microbial processes we investigated are electron acceptor limited, and that the high concentrations of electron acceptors in the injected test solutions will support maximal rates of electron donor oxidation, and not the intrinsic rate of activity which is supported by ambient concentrations of electron acceptors in site ground water.

Furthermore, our rate estimates were based on measurements of electron acceptor consumption and may have included contributions from abiological reactions such as the oxidation of Fe(II) by O₂ or by NO₃⁻ (chemodenitrification). However, the relatively small aerobic respiration rate coefficients determined in both intervals of MW-1 (Table 2), despite the presence of high concentrations of Fe(II) (Table 1), provide some evidence that abiological reactions such as O₂-dependent Fe(II) oxidation are not major contributors to the observed rates of electron acceptor consumption at this site. To corroborate this argument, we computed the theoretical maximum contribution of dissolved Fe(II) to the O₂ consumption for selected tests, accounting for the dilution of our test solutions by site ground water using Br⁻ breakthrough data and Fe(II) background concentrations from Table 1 (see previous calculations for CO₂ production). For example, for the test in the shallow interval of MW-1, 382 mg Fe(II) should have come in contact with our test solution, which could account for 16.8% of the O₂ consumed during this test. For the test in the shallow interval of MW-4 (highest aerobic respiration rate coefficient at this site; Table 2), 287 mg Fe(II) should have come in contact with our test solution, which could account for 5.5% of the observed O₂ consumption during this test. However, while these calculations confirm the limited significance of dissolved Fe(II) contribution to the overall O₂ consumption, we cannot eliminate the possibility that solid-phase Fe(II) could also have interacted with our test solutions, i.e., FeCO₃(s) (e.g., Stumm and Morgan 1981), and its contribution to observed O₂ consumption at the site remains uncertain.

Conversely, it is interesting to note that the highest rates of both aerobic respiration and denitrification found in other recent studies have been determined using in situ microcosm (ISM) studies rather than the more conventional natural gradient tracer tests (Bjerg et al. 1996; Gillham et al. 1990). Furthermore, it is interesting to note that the more widely accepted geochemical methods of determining subsurface microbial activities provide activity estimates which underestimate rates derived using radiotracer data by factors ranging from 10⁶ to 10⁸ (Phelps et al. 1994). Together, these results provide some additional credibility to the high aerobic respiration and denitrification rates that were determined in situ in this study.

We used several approaches to discriminate the role of biological agents in the observed electron acceptor-consuming activities. The first and simplest of these approaches was to examine whether the production of CO₂ occurred concurrently with electron acceptor consumption. In a biologically catalyzed process, CO₂ production and electron acceptor consumption should be temporally related because the catalysis of organic electron donors to CO₂ requires the concurrent use of electron acceptors to allow the regeneration of oxidized co-factors such as nicotine adenine dinucleotide (NAD⁺). No production of CO₂ should occur in an abiological process such as Fe(II) oxidation by O₂:

\[
\text{Fe(II)} + 1/4\text{O}_2 + 2\text{OH}^- + 1/2\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_4
\]

It has been demonstrated previously that the stoichiometry of HCO₃⁻ /CO₂ production and electron acceptor consumption during push-pull-type tests is close to predicted values for both aerobic respiration (Istok et al. 1997) and denitrification using model electron donors such as glucose (Trudell et al. 1986). These calculations were not performed in this study, because the stoichiometries of O₂ or NO₃⁻ consumption and CO₂ production are substrate-specific. It is therefore inappropriate to use these ratios to estimate rates of catalysis of mixtures of electron donors (Hickey 1995). In addition, no routine measurements for total carbonate and pH were conducted during the extraction phase of the push-pull tests, impeding a fully quantitative interpretation of the available CO₂ data. However, the push-pull test breakthrough curves for aerobic respiration and denitrification obtained at this site (Figures 6a and 8a) demonstrated concurrent CO₂ production and electron acceptor consumption, and therefore qualitatively suggest that the observed electron acceptor consumption involved a substantial biological component.

Our second approach involved the use of a variety of inhibitors to investigate the role of microorganisms in electron acceptor consumption. Unfortunately, in the case of aerobic respiration, the range of inhibitors available for this study was limited. Simple and effective inhibitors of aerobic respiration such as cyanide (CN⁻) or azide (N₃⁻) could not be used because of their considerable human toxicity and the potential for off-site transport of these compounds in ground water. Using a sodium hypochlorite treatment, we demonstrated an inhibition of O₂ consumption. However, sodium hypochlorite may also have removed much of the abiotic O₂ demand due to its strong oxidizing capability, e.g., by oxidizing dissolved Fe(II) or even FeCO₃(s). In addition, other physical and chemical parameters (e.g., pH) were likely altered during this test. Together, these unde-
tial microbial activities and likely important variables such as electron donor or acceptor concentrations. While these correlations might be more apparent if the limited abiological component to the electron acceptor usage rates could be removed with confidence, the lack of significant correlations may be regarded as indicative of the complex nature of microbial metabolic activities in contaminated subsurface environments. For example, denitrifying activity is known to be strongly influenced by a number of factors including the availability of nitrate, the availability of an electron donor (C-source), temperature, O2 concentration, and pH, although good correlations between activity and any individual parameter are rarely observed (Korom 1992). Previous laboratory studies of denitrification using subsurface materials have consistently demonstrated that this activity shows considerable spatial variability (e.g., Christensen et al. 1990; Parkin 1987) and is often log-normally distributed in soil samples. This skewed distribution is consistent with the existence of localized “hot spots” of activity which are established when one variable (e.g., C-availability) predominates over the numerous other variables known to affect the environmental distribution and activity of soil microorganisms. Log-normal distributions of microbial activity have also been reported in studies of methanogenesis (Adrian et al. 1994) and aerobic respiration (Parkin and Robinson 1992).

Conclusions

The single-well, push-pull test method was used to quantify the spatial variability in rates of selected microbial metabolic activities in situ in the saturated zone of a petroleum-contaminated, uncongested alluvial aquifer. The push-pull test method was successful in measuring rates of consumption of injected electron acceptors (O2 for aerobic respiration tests and NO3 for denitrification tests) in the presence of abundant petroleum hydrocarbons and their breakdown products to serve as electron donors. Significant horizontal and vertical variability in aerobic respiration and denitrification rates was observed. The highest rates of aerobic respiration occurred near the upgradient edge of the contamination zone, where the microbial population was apparently best adapted to conditions of high carbon concentrations and continuous inputs of dissolved O2 from upgradient. The highest rates of denitrification were observed downgradient from locations of the highest rates of aerobic respiration, where dissolved O2 concentrations were low but carbon levels were still high.

We provided strong qualitative evidence that observed electron acceptor consumption at this site was largely biologically mediated. However, we were unable to quantitatively delineate the contribution of biological and abiological processes to the electron acceptor consumption. Nonetheless, while some of our results, such as the effect of O2 on NO3 consumption (Figure 10a), might decrease our rate estimates by a factor of two, this is clearly insufficient to account for differences between rates obtained in this study and rates obtained by others which are often separated by more than one order of magnitude. In this respect, it is important to note that the rates we determined represent maximal rates of aerobic respiration and denitrification due to the high concentrations of electron acceptors in the injected test solutions, and not intrinsic rates which are supported by ambient concentrations of electron acceptors in site ground water. On the other hand, it is noteworthy that the rates we determined show closest agreement with rates found in other in situ studies and that there is evidence that rates may be significantly

Beyond these general observations, we were unable to detect any significant correlations between the distribution of the poten-
underestimated using non-in situ techniques. Together, these findings suggest that results obtained using in situ test methods, such as the push-pull test, may provide more accurate rate estimates of subsurface microbial metabolic activities. Further studies will be required to compare the results of these types of techniques in similar environments.

Acknowledgments

Financial support for this project was provided by Chevron Research and Technology Co., Richmond, California, and the National Center for Integrated Bioremediation Research and Development, Ann Arbor, Michigan. Additional financial support was provided by the Office of Research and Development, U.S. Environmental Protection Agency, under agreement R-815738-01 through the Western Region Hazardous Substance Research Center. The content of this paper does not necessarily represent the views of the agency. The authors would like to thank M. Humphrey and J. Guida for their help in the field and laboratory. Helpful review comments by Dr. R. Allen-King were greatly appreciated.

References

