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Abstract
An approximate analytical solution to the advection-dispersion equation was derived to describe solute trans-

port during spherical-flow conditions in single-well push-pull tests. The spherical-flow case may be applicable to
aquifer tests conducted in packed intervals or partially penetrating wells. Using results of two-dimensional numer-
ical simulations, we briefly illustrate the applicability of the derived spherical-flow solution and provide a compar-
ison with its cylindrical-flow counterpart. Good agreement between simulated extraction-phase breakthrough
curves and the spherical-flow solution was found when the length of the injection/extraction region was small
compared to both aquifer thickness and maximum solute frontal position at the end of the injection phase. On the
other hand, discrepancies between simulated breakthrough curves and the spherical-flow solution increased with
increasing anisotropy in hydraulic conductivities. Several inherent limitations embedded in its derivation such as
assumptions of isotropy and homogeneity warrant the cautious use of the spherical-flow solution.

Introduction
Single-well injection-withdrawal tests, which we call

‘‘push-pull’’ tests (PPTs), have been used for the quantita-
tive determination of a wide range of aquifer physical,
biological, and chemical characteristics (e.g., Drever and
McKee 1980; Gelhar and Collins 1971; Istok et al. 1997).
In a PPT, a prepared test solution containing one or more
solutes is injected (pushed) into the aquifer using an exist-
ing well; the test solution/ground water mixture is then
extracted (pulled) from the same location. Aquifer char-
acteristics are determined from an analysis of solute
breakthrough curves obtained by measuring solute con-
centrations at the well during the extraction phase.

Push-pull tracer tests have been used to study physical
processes such as advection and dispersion during non-
uniform flow. A general form of the advection-dispersion

equation for nonuniform flow was developed by Hoopes
and Harleman (1967) to study the displacement and mixing
of ground water by waste water injected into a single well.
Type curves for the analysis of cylindrical-flow fields (one
specific form of nonuniform flow) were presented by Sauty
(1978), and based on this work, approximate solutions to
cylindrical flow were derived by Wang and Crampon
(1995). Methods to estimate longitudinal dispersivity from
PPTs were developed by Mercado (1966), Gelhar and
Collins (1971), and Welty and Gelhar (1994). Based on ear-
lier work by Leap and Kaplan (1988), Hall et al. (1991)
derived equations to determine effective porosity and
regional ground water velocity from PPTs. The PPTs have
also proven useful as a diagnostic tool to quantify matrix
diffusion in fractured rock (e.g., Haggerty et al. 2001).

Analytical or semianalytical solutions to solute trans-
port in either diverging or converging flow fields have
been derived by several authors (e.g., Chen and Woodside
1988; Novakowski 1992). More recently, a semianalytical
solution for solute transport in a sequentially diverging-
converging flow field (i.e., during a PPT) was developed
by Haggerty et al. (1998). But no fully analytical solu-
tion for solute transport during a PPT is available to date
as a result of the difficulty of combining the test’s di-
verging flow segment with its converging flow segment.
Nevertheless, an approximate analytical solution for
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solute transport during a PPT was derived by Gelhar and
Collins (1971), which is based on the assumption of
cylindrical flow from/to a well screened across the entire
saturated thickness of a homogeneous, confined aquifer.

The objective of this note is to present an approxi-
mate analytical solution for solute transport during a PPT
based on the assumption of spherical flow from/to a well.
The spherical-flow case may be applicable to PPTs con-
ducted in packed intervals or partially penetrating wells.
Using results from simulated PPTs, we briefly illustrate
the applicability of the derived solution and provide
a comparison with its cylindrical-flow counterpart.

Theory

General Aspects of Solute Transport during
Spherical Flow

The governing equation for one-dimensional solute
transport subject to advection, dispersion, and sorption
during nonuniform flow in a homogeneous and confined
aquifer is (adopted from Bear 1979; Valocchi 1986):
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where C and S are solute aqueous-phase and solid (sorbed)–
phase concentrations, respectively, qb is bulk density, n is
effective porosity, aL is longitudinal dispersivity, t is time,
r is radial distance, and the average pore-water velocity v
is a function of r. Equation 1 assumes that molecular dif-
fusion is negligible and mechanical dispersion is a linear
function of v (e.g., Bear 1979). Assuming linear equilib-
rium sorption, a solute retardation factor R can be defined
as R = 1 + qbKd/n, where the solute distribution coeffi-
cient Kd = S/C.

For the case of spherical flow, v is given by:

v¼ dr=dt ¼ A=r2R¼ Q=4pnr2R ð2Þ

with A = Q/4pn, where Q is the pumping rate (positive
during the injection phase and negative during the extrac-
tion phase of a PPT). Note that Equation 2 assumes that
the regional ground water velocity is negligible compared
to the imposed velocity due to pumping.

During the injection phase of a PPT, the solute fron-
tal position r̂inj (Figure 1a) can be obtained by rearrang-
ing (separating variables) and integrating Equation 2:
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where Qinj is the pumping rate during the injection phase,
tinj is time since injection began, and rw is the injection/
extraction well radius. At the end of the injection phase,
the solute frontal position attains a maximum value, r̂max

(Figure 1b):
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with the total volume injected, Vinj = QinjTinj, where
Tinj is the duration of the injection phase. During the

extraction phase, flow is reversed and the frontal position
r̂ext is given by (Figure 1b):

r̂ext ¼
�
r̂3max þ

3

4
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where Qext is the pumping rate during the extraction
phase (not necessarily equal in magnitude to Qinj) and text
is the time since extraction began. Note that Equation 5 is
only meaningful for jQextjtext � Vinj. Solute frontal posi-
tion as specified in Equations 3 through 5 is defined here
as the location in the aquifer where C/C0 = 0.5, with C0

being solute concentration in the injected test solution.
Equations 3 through 5 clearly reveal the inverse cubic
variation in solute frontal position with time due to the
spherical velocity field (Equation 2).

Approximate Analytical Solution
Gelhar and Collins (1971) derived a general approxi-

mate solution for transport of a conservative tracer (S = 0,
R = 1) during nonuniform flow by rewriting Equation 1 in
the form of a diffusion equation:
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with g ¼ sðrÞ2t̂

sðrÞ ¼
Z r

ro

vðrÞ21
dr ð7Þ

t̂ ¼ sðrÞ evaluated at r ¼ r̂ and ð8Þ

x¼
Z r̂

ro

vðrÞ22
dr ð9Þ

where s is the average travel time for a tracer from the
origin ro to r, t̂ is the average travel time for a tracer from
ro to the frontal position r̂, and x accounts for the effects
of variable dispersion as a result of the nonuniform veloc-
ity field (Welty and Gelhar 1994). For a step change in
tracer concentration at the injection/extraction well, i.e.,
when during a PPT’s injection phase, water with C = 0 is
displaced by the injected test solution with constant

Figure 1. Solute frontal position (C/C0 = 0.5) during (a) the
injection phase and (b) prior to (gray line and label) and during
the extraction phase (black line and label) of a PPT conducted
under ideal conditions of spherical flow in a homogeneous, con-
fined aquifer. Note that aquifer thickness b is not drawn to scale
(r̂max should be substantially smaller than b/2).
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concentration C0, the general solution to Equation 6 is
(Gelhar and Collins 1971):
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while during the extraction phase of a PPT, the general
solution is:
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Employing the general analysis of Gelhar and Collins
(1971), we here derive an approximate analytical solution
for solute transport during a PPT based on the assumption
of spherical flow from/to a well. Evaluating Equations 7
through 9 for a diverging spherical-flow field yields:
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where r̂inj is given by Equation 3. By inserting Equations
12 through 14 into Equation 10, we obtain the approxi-
mate solution for tracer concentration during the injection
phase of a PPT:
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Evaluating Equations 7 through 9 for a converging spherical-
flow field yields:
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where r̂ max and r̂ ext are given by Equations 4 and 5,
respectively, v is a variable of integration, and c is a con-
stant determined by inserting Equations 16 through 18
into Equation 11 and matching the result with Equation
15 at the end of the injection phase when r̂inj = r̂max = r̂ext.
This yields the approximate solution for tracer concentra-
tion during the PPT’s extraction phase:
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Evaluating Equation 19 at r = rw and neglecting the well
radius, tracer concentration at the well during the extrac-
tion phase can be expressed as:
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where the extracted volume Vext = jQextjtext. While Equa-
tions 15, 19, and 20 were derived for a conservative tracer,
they equally apply to solute transport of sorbing solutes
during spherical-flow PPTs. Sorbing solutes’ retardation be-
havior is implicitly incorporated in Equations 15, 19, and
20 through r̂inj, r̂max, and r̂ext (Equations 3 through 5).

To better understand the limitations of Equations 15,
19, and 20, the inherent assumptions embedded in their
derivation must be remembered. These include (1) molec-
ular diffusion is negligible; (2) lateral dispersion can be
neglected (longitudinal dispersion is much larger than lat-
eral dispersion); (3) steady-state flow is rapidly achieved
during injection and extraction phases; and (4) the porous
medium is isotropic in hydraulic parameters. Moreover,
Equations 15, 19, and 20 are only accurate if aL � Lo,
where Lo is the total distance traveled by the solute front
(Gelhar and Collins 1971).

Example Application
In the following, we present an application of the

derived approximate analytical solution for spherical flow.
Specifically, we compared Equation 20 and its cylindrical-
flow counterpart (equation 42 in Gelhar and Collins 1971)

C

C0

¼ 1

2
erfc

��
Vext

Vinj

21

��
�
16

3

aL
r̂max

�
22





12Vext

Vinj






1=2�

12
Vext

Vinj

���1=2	
ð21Þ

with simulated extraction-phase breakthrough curves of
hypothetical tracer PPTs conducted in wells screened
over only a portion of the saturated thickness of a homo-
geneous, confined aquifer.

Numerical simulations were conducted using the
STOMP code (White and Oostrom 2000), which has been
extensively tested and validated against published analyti-
cal solutions, as well as other numerical codes (e.g., Nichols
et al. 1997). Our computational domain consisted of an
array of 1800 nodes distributed in a radial (r)-vertical (z)
coordinate system (where z is vertical distance from the
base of the aquifer). We used a variable node spacing
of �r = 5 cm for 2.5 cm < r < 52.5 cm, �r = 10 cm for
52.5 cm < r < 202.5 cm, and �r = 20 cm for 202.5 cm <
r < 302.5 cm, and a uniform node spacing of �z = 5 cm
for 0 cm � z � 300 cm. The simulation time-step size
varied between 2 and 10 s. Initial conditions were con-
stant hydraulic head for the aqueous phase and C = 0 and
S = 0 for the tracer. Time-varying third-type flux boundary
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conditions were used at rw = 2.5 cm to represent pumping
at the injection/extraction well. Zero flux boundary con-
ditions were imposed along the aquifer base (z = 0 cm) and
top (z = 300 cm); constant head and zero solute flux bound-
ary conditions at r = 302.5 cm were used to represent aqui-
fer conditions beyond the radius of influence of the well.
For all simulations, the total-variation–diminishing scheme
was employed (White and Oostrom 2000), which consists
of a third-order flux limiter permitting oscillation-free
numerical solutions while minimizing numerical disper-
sion for a wide range of grid Peclet numbers (Gupta et al.
1991).

We performed simulations for a ‘‘base case’’ and
nine additional cases, which differed from the base case
either in the length of the well screen, Ls, or additionally
in the ratio of hydraulic conductivities in r (Kr) and z (Kz)
direction, i.e., the ratio K = Kr/Kz. Base-case parameters
(rw = 2.5 cm, dispersivity in r direction ar = 2.0 cm, dis-
persivity in z direction az = 0.05 cm, n = 0.4, Tinj = 24 h,
Qinj = Qext = 83.3 L/h [Vinj = 2000 L], Ls = 10 cm, and
K = 1) were chosen to represent a typical test conducted
in a homogeneous, unconsolidated sand. For case 2, we
used Ls = 50 cm, K = 1; for cases 3 to 10, we used Ls = 50
cm and varied K between 2 and 500.

The duration of the injection phase was selected to
give r̂max ’ 106 cm for the tracer (Equation 4). Results of
the base-case simulation were in excellent agreement
with this value, yielding r̂max = 106.5 cm at z = 125 cm
(the vertical distance to the center of the well screen, not
shown). For this case, we obtained good agreement
between the simulated tracer breakthrough curve and the
spherical-flow solution (Equation 20, Figure 2a), with
a mean-squared error (MSE) of 3.40 3 1024. Conversely,
agreement between the simulated breakthrough curve and
the approximate solution for cylindrical flow (Equation
21) was poor (MSE = 1.03 3 1022). This was largely due
to the calculation of r̂max in the latter case, which for cy-
lindrical flow is a function of aquifer thickness b: r̂max =
(Vinj/pbnR + rw2)0.5 (Schroth et al. 2000). Moreover, in
the derivation of the cylindrical-flow solution, b is
assumed to be equal to Ls (Gelhar and Collins 1971).
Thus, base-case parameters would yield r̂max = 399 cm for
cylindrical flow, which drastically differed from the
actual r̂max = 106.5 cm obtained in our simulation.

Note that all spherical- and cylindrical-flow solutions
shown in Figure 2 were computed using simulation input
parameters (using aL = ar), i.e., no fitting of approximate
solutions to simulated tracer breakthrough curves was
employed. On the other hand, when we optimized aL for
the base-case simulation by fitting the approximate sol-
utions to the simulated tracer breakthrough curve, we ob-
tained for spherical flow aL = 1.89 cm and for cylindrical
flow aL = 9.61 cm (not shown). Hence, use of the cylin-
drical-flow solution under circumstances of spherical
flow during a PPT led to a severe overestimation of ar .

For case 2, we obtained reasonable agreement be-
tween the simulated tracer breakthrough curve and the
spherical-flow solution (Figure 2b). Nonetheless, the MSE
value for the spherical-flow solution (7.48 3 1024) in-
creased compared to the base-case simulation, while the
MSE value for the cylindrical-flow solution (2.35 3 1023)

decreased. This trend was enhanced in additional simu-
lations, in which Ls was further increased (not shown).
Therefore, more accurate results are obtained with the
spherical-flow solution when Ls is small compared to r̂max

and b.
In cases 3 to 10, an increase in simulated anisotropy

(2 � K � 500) led to less agreement between the simulated
tracer breakthrough curve and the spherical-flow solution
and thus to a monotonic increase in associated MSE values,
while MSE values decreased for the cylindrical-flow solu-
tion (Figure 3). Less agreement between the simulated
tracer breakthrough curve and the spherical-flow solution
was mainly caused by changes in r̂max, which increased in
the simulations from 106.1 cm (for K = 1) to a value of
176.9 cm (for K = 500) at z = 125 cm (not shown).

Discussion and Conclusions
Despite the demonstrated reasonable agreement be-

tween simulated breakthrough curves and the approximate
analytical solution for spherical flow under ‘‘ideal’’ condi-
tions (Figure 2a), there are several factors that limit the
applicability of the spherical-flow solution. First, for the
flow field during a PPT to resemble a spherical-flow pat-
tern (as shown idealized in Figure 1), Ls should be small

Figure 2. Simulated extraction-phase breakthrough curves
for a tracer (solid lines) obtained at the injection/extraction
well for (a) base-case (Ls = 10 cm, K = 1) and (b) case 2 (Ls =
50 cm, K = 1) PPTs in a homogeneous, confined aquifer.
Dashed lines show approximate analytical solution for spher-
ical flow (Equation 20), and dotted lines represent approxi-
mate analytical solution for cylindrical flow (Equation 21).
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compared to r̂ max and b. A relatively large value for
r̂max will also aid in satisfying the requirement of aL � Lo.
Conversely, r̂max should be substantially smaller than b/2
to prevent solute from reaching aquifer top and bottom
boundaries, which would also lead to distortion of the
spherical-flow pattern. Second, the derived spherical-flow
solution implicitly assumes isotropy in hydraulic parame-
ters, which is rarely encountered in natural settings.

Violation of either factor may cause the flow pat-
tern to approach that of cylindrical flow, i.e., the velocity
component in z direction may vanish. Thus, we would
clearly expect to obtain less agreement between measured
tracer breakthrough curves and the approximate solution
for spherical flow for more severe cases of anisotropy
(Figure 3). It was beyond the scope of this technical note to
assess other inherent assumptions embedded in the deriva-
tion of the approximate analytical solution, e.g., the effect
of heterogeneities in hydraulic parameters on the accuracy
of the spherical-flow solution. Nevertheless, for this case
we would expect less agreement with increasing heteroge-
neity, as was observed for the case of cylindrical flow in
PPT simulations performed by Schroth et al. (2000).
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